
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55357 | Page 1

Post-Quantum-Ready Prototype for Standardized Certificate Creation and

Verification Model

Praveenraj J

Master of Technology in Cyber Security

The Northcap University

Gurugram – 122017, Haryana, India

praveenraj25csp002@ncuindia.edu

Dr. Swati Gupta

Assistant Professor, Department of Computer Science

The NorthCap University

Gurugram – 122017, Haryana, India

Email ID: swatigupta@ncuindia.edu

 Abstract – Certificate forgery is a major problem in

academic, professional, governmental, and industrial domains.

Classical digital signature algorithms like RSA and ECC are

weak against emerging quantum attacks which compromises the

authenticity and integrity of the documents. To address this

challenge, this paper proposes a Standardized Post-Quantum-

Ready Prototype for Certificate Creation and Verification using

NIST-approved CRYSTALS-Dilithium2 post-quantum digital

signature algorithm. Furthermore, each physical certificate has

QR code which links to its corresponding digital version, enables

the authenticity and integrity checks to all formats. Not limited

only for certificates, can be applicable for all forms of document

creation and verification.

 Keywords – Post-Quantum Cryptography, Digital Signature,

Certificate Security, Lattice Cryptography, CRYSTALS-Dilithium.

I. INTRODUCTION

 Certificates are widely used in academic, professional,

governmental, and industrial domains to prove identity and

document achievements. Traditionally, certificates were issued

in physical form, but with increasing digitalization, digital

certificates are common. However, both physical and digital

certificates remain vulnerable to certificate forgery.

 Traditionally, digital certificates were protected against

forgery by using classical cryptographic techniques like RSA

and ECC [8]. For decades, these techniques provided the trust

that the institutions can rely on. With the rise of quantum

computing, algorithms like Shor’s Algorithm can break RSA

and ECC [4]. Researchers estimate that within 10-15 years

practical quantum computers may feasible and place the

classical certificate systems at risk [7].

 To address this challenge, this paper presents a

standardized post-quantum-ready prototype for certificate

creation and verification to address the above gap. The

proposed prototype uses CRYSTALS-Dilithium2 digital

signature algorithm to generate, sign, and verify certificates.

This ensures certificate authenticity, integrity, and tamper

detection against unauthorized modifications.

 The system also supports printed physical certificates by

including QR codes which link to their corresponding digital

version. This ensures authenticity and integrity verification for

both physical and digital documents.

II. BACKGROUND AND RELATED WORK

A. Classical Digital Signatures and Certificate

Infrastructure

 Physical and Digital certificates are used to validate

identity and confirm achievements. These digital certificates

are verified through the Public Key Infrastructure (PKI) which

uses asymmetric cryptography for signing and verification.

Classical algorithms like RSA and ECC are commonly used to

ensure certificate authenticity and integrity.

 In PKI-based systems, a private key is used to generate a

digital signature and its corresponding public key is used to

verify it. RSA and ECC depend on mathematical problems like

integer factorization and elliptic curve discrete logarithm, but

both can be solved by Shor’s Algorithm on a large-scale

quantum computer [4]. Therefore, current digital signature

mechanisms are not quantum-resistant and they are vulnerable

in a post-quantum era.

B. Post-Quantum Cryptography Developments

 To address the threat caused by quantum attacks, the NIST

started the PQC Standardization Project in 2016 [5]. The

primary goal was to identify and standardize algorithms which

can be secure against both classical and quantum attacks.

 In 2024, NIST standardized two post-quantum algorithms,

CRYSTALS-Kyber for encryption (FIPS 203) and

CRYSTALS-Dilithium for digital signatures (FIPS 204) [1],

[2]. Both these algorithms are based on lattice-based

cryptography (Module Learning with Errors and Module Short

Integer Solution problems), these are believed to be hard to

crack even for quantum computers [1].

 In these two algorithms, Dilithium offers a good balance

between security and performance, so it is widely

recommended for post-quantum secure digital signature

applications.

C. Related Implementations and Research

 Many studies and implementations have adopted post-

quantum algorithms, but mostly focuses on network-level

protocols rather than document-centric systems.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55357 | Page 2

 For Example,

1) Hulsing et al. [9] used hash-based signatures to

achieve long-term security in firmware updates.

2) Bos et al. [1], [11] implemented lattice-based

signatures for Internet of Things (IoT) devices.

3) NIST’s PQC project reports [5], [11] studied

Dilithium integration in secure communication

protocols such as TLS 1.3 and SSH.

 However, document centric systems such as PDF and XML

signatures or certificate creations are still depending on

RSA/ECC, but they are not quantum-resistant which makes

them vulnerable in the post-quantum era.

D. Research Gap and Motivation

 Most studies highly focus on secure key exchange and

network-layer encryption [7], [10]; it leaves a significant gap

in document creation and verification mechanisms which can

be post-quantum ready. This paper addresses that gap by

implementing post-quantum ready framework document

verification.

 This paper proposes a standardized post-quantum-ready

prototype which is capable of

1) Generating digital certificates,

2) Embedding secure digital signatures based on

CRYSTALS-Dilithium2, and

4) Validating and detecting any tampering within the

certificate file.

 This approach ensures document authenticity, integrity and

non-repudiation in the quantum era and bridges the gap

between theoretical PQC research and real-world document

verification system.

III. PROPOSED FRAMEWORK

 This Prototype ensures certificate authenticity, integrity,

and non-repudiation of certificates even in the post-quantum

era. It uses NIST-approved CRYSTALS-Dilithium2 digital

signature algorithm for signing and verification [1], [2].

 This model has four major parts:

1) Key Generation – Generates post-quantum key pairs

using the Dilithium2 algorithm. A centralized

authority (like government or regulatory committee)

manages key creation to avoid key duplication. This

authority provides a secure portal where certificate

issuers can register themselves to get unique ID and

key pairs. Certificate verifier can use the creator’s id

to get its corresponding public key to verify the

certificate.

2) Certificate Creation – Generates digital certificate

with embedded metadata and unique identifiers.

3) Hashing and Signing – Creates a hash of the

certificate content and embeds the digital signature in

the PDF metadata for tamper detection.

4) Verification and Tamper Detection – Extracts and

verifies the embedded signature to confirm the

document’s integrity.

 Fig. 1, shows the work flow of key generation, database,

certificate creation and certificate verification works together

through secure portal.

Fig. 1. Overall Process Flow

A. Key Generation

 Key Generation is the foundation of this framework. It uses

the CRYSTALS-Dilithium2 algorithm from Open Quantum

Safe (OQS) library to create key pairs [3].

 Private Key is used by the certificate issuer (like university

or organization) to sign certificates and Public Key is used to

verify the signature.

Algorithm 1: Key Generation using CRYSTALS-Dilithium2

1) Choose Dilithium2 parameter set,

2) Use OQS API to generate key pair,

3) Encrypt and Save keys,

4) Assign unique issuer ID,

5) Share the private key and issuer ID with the certificate

creator and share the corresponding public key with

the certificate verifiers,

6) Maintain encrypted backups of the key pairs.

 The generated key pair gives 128-bit quantum-resistant

security.

B. Certificate Creation

 Certificate Creation generates digital certificates in

Portable Document Format (PDF) using FPDF and PyPDF2

libraries in Python.

 Each certificate includes key attributes like

1) Issuer name and organization,

2) Recipient name and ID,

3) Course details,

4) Date of issuance,

5) Unique certificate identifier.

 Metadata fields like Payload, Signature, Fingerprint are

added to PDF.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55357 | Page 3

 This design helps to detect any tampering in the visual

elements, or metadata during the verification process.

C. Hashing and Signing

 Once the certificate is created, its visual content is hashed

using SHA-256 algorithm. Generated hash will be placed in a

payload. Payload is then signed using the issuer’s Dilithium2

private key to produce a post-quantum digital signature. The

signature, along with the payload and algorithm identifier will

be embedded into the PDF’s metadata fields.

Algorithm 2: Certificate Signing and Embedding

1) Generate hash of the certificate visual content,

2) Generate a payload with the content and hash,

3) Load issuer’s private key,

4) Generate digital signature of that payload,

5) Embed payload and signature into the PDF metadata,

6) Save the signed certificate file.

D. Verification and Tamper Detection

 Verification and Tamper Detection allow verifiers to

validate the authenticity and integrity of the certificate.

 The verifier extracts the embedded signature, payload, and

metadata from the received PDF. First, Signature is verified

using the issuer’s public key and payload bytes, Secondly, New

hash is generated and compared with the hash stored in the

payload. A valid signature confirms the payload has not been

modified. Therefore, the hash stored inside the payload can be

trusted. If both the newly generated hash and hash stored in

payload hash are equal then the certificate is valid else not.

Algorithm 3: Certificate Verification and Tamper Detection

1) Extract signature, and Payload from the certificate,

2) Load issuer’s public key,

3) Verify signature with the payload bytes, and issuer’s

public key,

4) Generate new hash of the certificate visual content,

5) Comparing the newly generated hash and the hash

stored in the payload

6) If both, the signature and newly generated hash are

valid then the certificate is authentic, otherwise the

certificate is tampered.

 This process ensures tamper detection and authenticity

validation. Any changes in visual content, or metadata will

lead to verification failure.

IV. IMPLEMENTATION AND RESULTS

 The Post-Quantum-Ready Prototype for Standardized

Certificate Creation and Verification is built using Python 3.10

on a Windows 11, 64-bit system. It uses the OQS library for

Dilithium2 signatures and standard Python libraries like FPDF,

PyPDF2, and hashlib for certificate creation, PDF handling,

and hashing [3]. This prototype is designed to simulate real

world certificate issuance and verification process workflow

securely.

A. Implementation Environment Details

 Table I presents the implementation environment used to

develop and evaluate the prototype.

TABLE I

IMPLEMENTATION ENVIRONMENT DETAILS

Component Specification
Programming Language Python 3.10

Operating System Windows 11 (64-bit)

Hardware Intel i7 & 16 GB RAM

Cryptographic Library OQS

Post-Quantum Algorithm CRYSTALS-Dilithium2

Hash Algorithm SHA-256

PDF Libraries FPDF, PyPDF2

B. System Architecture and Workflow

 The system architecture and workflow in Fig.2, shows how

the secure portal manages certificate creation and certificate

verification, and how the individual modules interact.

Fig. 2. System architecture and workflow

C. Functional Demonstration

 This section demonstrates the complete workflow of the

proposed prototype using real execution outputs and certificate

samples. Demonstration includes key generation, certificate

creation, verification of genuine certificates, tampering, and

verification results of tampered certificates.

1. Key Generation – Key generation module generates a

unique Dilithium2 keypair for the certificate issuer.

The following files are generated:

a. Public Key (.pub),

b. Secret Key (.sk),

c. PEM encoded public key (.pub.pem).

Fig. 3. Files Generated by Key Generation

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55357 | Page 4

2. Certificate Generation – Certificate Generation

module produces a digital certificate with:

a. Complete visual content,

b. Metadata fields,

c. Visual text-hash,

d. Payload,

e. Dilithium2 digital signature.

Fig. 4. Files Generated by Certificate Generation

Fig. 5. Certificate Generated by Certificate Generation

3. Verification of Genuine Certificate – The signed

certificate is validated using the issuer’s public key.

As expected, the verification process confirms the

authenticity and integrity of the certificate.

a. Signature verification: Successful

b. Payload hash: Matched

c. Verdict: VALID

Fig. 6. Terminal Output of Verifying a Genuine Certificate

4. Tampering a Genuine Certificate – An attacker may

attempt various forms of tampering:

a. Modifying only the visual text,

b. Modifying both visual text and metadata,

c. Removing embedded payload/signature

metadata.

Fig. 7. Tampered Certificate

5. Verification of Tampered Certificate – For all

tampering attempts like,

a. Visual text only tampering,

b. Visual and metadata tampering,

c. Removing required embedded metadata.

The verification system detects inconsistence in

signature, payload hash, or missing metadata. For

those tampered certificates,

a. Signature verification: Failed,

b. Payload has: Mismatched,

c. Missing metadata: Error reported,

d. Verdict: INVALID

Fig. 8. Terminal Output of Verifying a Tampered

Certificate

D. QR-Based Physical-Digital Link

 Each certificate can be issued in both physical and digital

formats. For physical certificates, the QR code in the certificate

will point to the digital copy stored in the issuer’s portal. The

verification can be performed by the same process to check

authenticity and integrity of those certificates. This approach

creates a bidirectional trust link between physical and digital

format certificates.

E. Performance Evaluation

 This framework is evaluated based on execution time, file

size, and verification accuracy.

TABLE II

PERFORMANCE DETAILS

Parameter RSA-2048 ECDSA-P256 Dilithium2

(Proposed)

Key Size
(Public/Private)

256 bytes /
1190 bytes

64 bytes / 96
bytes

1312 bytes /
2528 bytes

Signature Size 256 bytes 64 bytes 2420 bytes

Signing Time 1.45 ms 0.95 ms 1.73 ms

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55357 | Page 5

Verification

Time

1.02 ms 0.88 ms 1.21 ms

Quantum

Resistance

No No Yes

Tamper

Detection

Yes Yes Yes

Tamper

Detection Post-

Quantum

No No Yes

Final signed
PDF size

4.8-5.0 MB 4.8 MB 4.8-5.2 MB

F. Experimental Results

 The experiment results confirm that the proposed prototype

successfully:

1) Generates post-quantum key pairs using Dilithium2

algorithm,

2) Creates digital certificates with verifiable metadata,

3) Embeds payload, hash and post-quantum signature in

PDF,

4) Detects any modification or alteration of content, or

metadata accurately.

 Verification accuracy is 100% and tampered certificates are

marked as INVALID in verification.

CONCLUSION

 The proposed Post-Quantum-Ready prototype provides

secure and scalable framework for certificate creation and

verification in the quantum era. It uses Dilithium2 signature

algorithm and ensures long term resistance against quantum

threats [1], [2].

 This prototype achieves full document integrity and

authenticity by implementing modules like key generation,

certificate creation, hashing and signing, and certificate

verification with tamper detection.

 The system detects any form of tampering in the certificate

content, or metadata and ensures authenticity, and integrity.

Experimental results also confirm that the proposed system is

quantum resistant. The use of SHA-256 for hashing and

Dilithium2 for signature generation strengthens security and

follows FIPS 204 and NIST PQC standards [2], [5], [6].

 This makes it a step forward toward quantum secure

certification systems. As quantum computing is growing

rapidly, frameworks like this help to preserve the authenticity,

integrity, and trust in the certification ecosystem.

 The QR code in the certificate connects the physical and

digital versions of each certificate, allows quick and unified

verification across formats.

REFERENCES

[1] C. Dang, J. Hoffstein, T. Poppelmann, et al, “CRYSTALS-Dilithium:

Digital Signatures from Module Lattices,” Proceedings of the NIST Post-

Quantum Cryptography Standardization Conference, 2020.
[2] National Institute of Standards and Technology (NIST), “FIPS 204:

CRYSTALS-Dilithium Digital Signature Algorithm (Draft),” Federal

Information Processing Standard (FIPS), Aug. 2023.
[3] Open Quantum Safe (OQS) Project, “liboqs: Open Quantum Safe

Library,” 2024.

[4] P.W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring,” Proceedings 35th Annual Symposium on Foundations of

Computer Science, Santa Fe, NM, USA, 1994, pp.124-134.

[5] National Institute of Standards and Technology (NIST), “Post-Quantum
Cryptography Standardization Process,” NIST Computer Security

Resource Center (CSRC), 2022.

[6] G. Bertoni, J. Daeman, M. Peeters, and G.Van Assche, “The Keccak
Reference: SHA-3 Hash Algorithm,” NIST Computer Security Division,

2015.
[7] M. Mosca and D. Stebila, “Quantum-Safe Cryptography and Security: An

Introduction, Benefits, and Impact,” ETSI White Paper No, 8, June 2015.

[8] C. Adams and S. Lloyd, “Understanding PKI: Concepts, Standards, and
Deployment Considerations,” 2nd ed, Addison-Wesley Professional, 2003.

[9] A. Hulsing, J. Rijneveld, F. Schwabe, and D. Butin, “XMSS: Extended

Hash-Based Signatures,” IETF RFC 8391, May 2018.
[10] B. Kaliski and Y. Liao, “Public Key Infrastructure and Certificate

Management in the Post-Quantum Era,” IEEE Security & Privacy, vol. 20,

no. 4, pp. 56-65, July-Aug. 2022.
[11] P. Schwabe, T. Oder, and S. Gueron, “Efficient Implementation of Post-

Quantum Signatures: A Case Study on CRYSTALS-Dilithium,” IEEE

Transactions on Computers, vol. 69, no. 11, pp. 1659-1670, Nov. 2020.

https://ijsrem.com/

