

Potato Leaf Disease Identification Using Deep Learning: Implementation

Radhika S K¹, Manoj R², Pragna C H³, Prathibha Chilukuri⁴, Rachana R Kagatur⁵

^{2,3,4,5}UG students, Department of Computer Science and Engineering, JNNCE, Visvesvaraya Technological University, Karnataka, India ¹Assistant Professor, Department of Computer Science and Engineering, JNNCE, Visvesvaraya Technological University, Karnataka, India

Abstract— Agricultural productivity is increasingly threatened by foliar pathologies, which can devastate potato yields if left unchecked. This paper proposes an integrated Potato Leaf Disease Monitoring System that transitions from traditional manual inspection to automated, AI-driven diagnostics. By utilizing state-of-the-art Convolutional Neural Networks (CNNs), specifically VGG16 and EfficientNetB0, the system classifies digital leaf images into categories of Early Blight, Late Blight, or Healthy. Beyond simple identification, the proposed framework integrates a web-based interface and IoT compatibility to provide real-time intervention strategies and pesticide recommendations. Experimental results demonstrate a classification accuracy of up to 98.94%, offering a scalable and cost-effective tool for precision agriculture and global food security.

Keywords— Precision Agriculture, Deep Learning, CNN, EfficientNetB0, Crop Pathology, Image Processing.

I. INTRODUCTION

Potatoes (*Solanum tuberosum*) represent a cornerstone of global food security, ranked as one of the most vital non-cereal crops. However, their cultivation is frequently compromised by fungal and bacterial pathogens, most notably Early Blight and Late Blight. Traditionally, farmers have relied on visual surveys to identify these threats—a process that is notoriously subjective, labor-intensive, and prone to diagnostic errors.

The emergence of Computer Vision and Deep Learning (DL) provides a transformative path forward. Unlike standard machine learning, which requires manual feature engineering, Convolutional Neural Networks (CNNs) automatically learn spatial hierarchies and intricate patterns directly from raw pixel data. This paper introduces a comprehensive monitoring framework that leverages transfer learning to identify potato diseases with high precision. By deploying these models via a Streamlit-based web application, we bridge the gap between complex laboratory AI and practical, on-field utility for farmers.

II. LITERATURE REVIEW

Recent scholarship has extensively explored deep learning architectures for botanical diagnostics. Kumar et al. (2023) established a baseline using standard CNNs for three-class potato leaf classification. Subsequent studies shifted toward pre-trained architectures; for example, Durai et al. (2023) utilized ResNet50 to achieve 98.28% accuracy, though their model faced challenges with environmental variability in the field.

Further advancements introduced hybrid models, such as the UNet-EfficientNetB7 architecture proposed by Bogireddy and Murari (2024), which achieved high precision but required significant computational overhead. Current trends emphasize the trade-off between model depth and real-time efficiency. Our research builds on these findings by comparing the established VGG16 architecture—known for its deep feature extraction capabilities—with the more modern EfficientNetB0 to find the optimal balance for mobile and IoT deployment.

III. PROBLEM STATEMENT

Global potato yields suffer significant annual losses due to delayed or inaccurate disease identification. While various AI models exist, many remain confined to research environments and lack a user-friendly deployment channel. Farmers need a system that not only identifies a disease with high confidence but also provides actionable treatment advice. There is a critical need for a unified platform that handles image preprocessing, high-

accuracy classification, and immediate recommendation delivery to mitigate crop waste effectively.

IV. PROPOSED METHODOLOGY

The proposed system follows a modular architecture: Image Acquisition, Preprocessing, Deep Learning Classification, and Recommendation.

A. Data Preparation and Preprocessing

The model was trained using a diverse dataset of healthy and infected leaf images. To ensure numerical stability, all images are normalized to a [0,1] range and resized to 224*224 pixels. Data augmentation—including random rotations, flips, and brightness adjustments—was applied to enhance the model's ability to generalize across different lighting and field conditions.

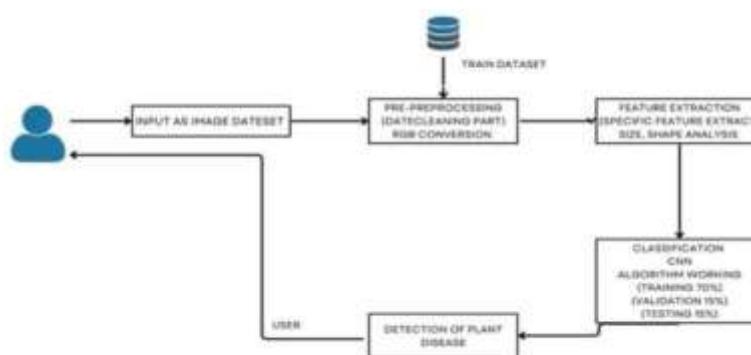


Fig1. System Architecture

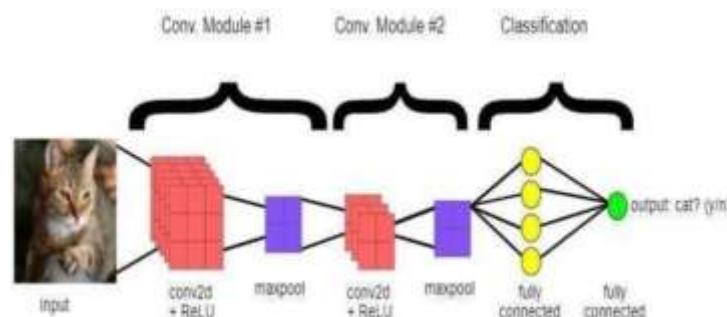


Fig 2. CNN Architectural Model

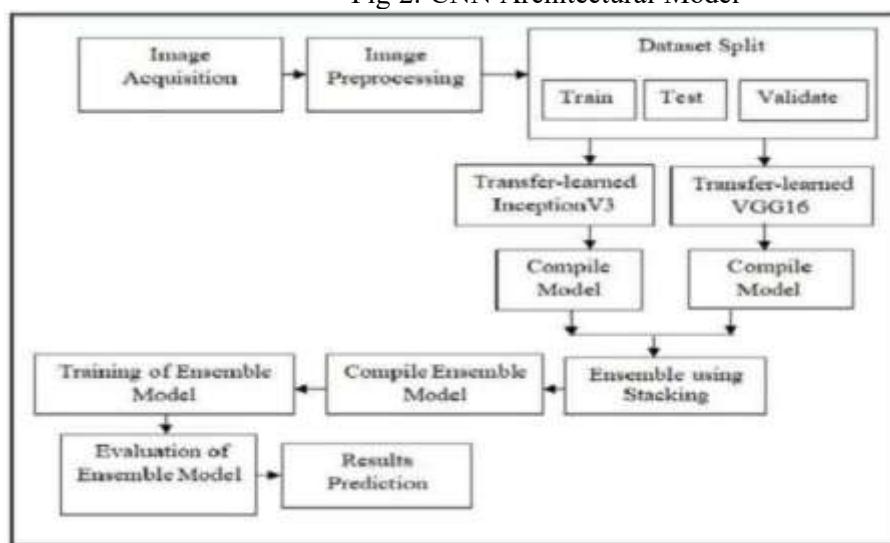
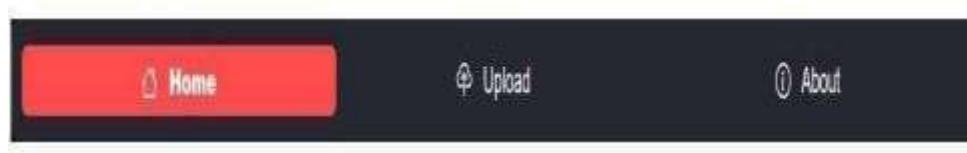


Fig 3. Work Flow block diagram for the deep learning model

B. Convolutional Neural Network Architecture

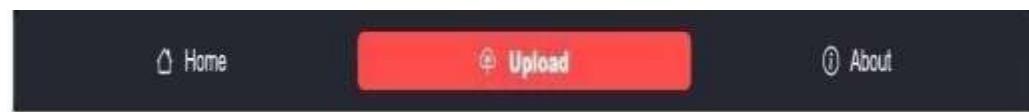
The system utilizes Transfer Learning, specifically the VGG16 architecture pre-trained on ImageNet.


- **Feature Extraction:** The base convolutional layers are frozen to retain pre-learned textures and edge-detection filters.
- **Custom Classification Head:** The output from the base model is flattened and passed through two dense layers (512 and 256 neurons) with ReLU activation.
- **Regularization:** Dropout layers (50%) are implemented to prevent overfitting by randomly deactivating neurons during training.
- **Output Layer:** A Softmax activation function provides the final probability distribution for the three classes: Healthy, Early Blight, and Late Blight.

C. System Integration and Deployment

The backend is powered by Python and TensorFlow, while the user interface is developed using Streamlit. When a user uploads a leaf image, the system processes it in real-time and displays the predicted status alongside a confidence score. If a disease is detected, the system pulls specific recommendations from a predefined database, such as "Apply neem oil" for Early Blight or "Use metalaxyl" for Late Blight.

V. RESULTS AND ANALYSIS


The performance was evaluated over 50 epochs using standard metrics: Accuracy, Precision, and Recall. The VGG16 model reached a training accuracy of 98.94% and a validation accuracy of 97.64%. Comparison with EfficientNetB0 showed that while VGG16 is robust for feature extraction, EfficientNetB0 offers a slight advantage in classification speed for edge devices. Real-time testing showed the model could identify a "Healthy" leaf with over 99.9% confidence in approximately 520ms.

Potato Disease Identification

Welcome to the Potato Disease Identification app. Use the Upload tab to classify an image.

Fig 4. Home page

Upload an Image

Fig 5. Output Interface for Upload page

Fig 6. About us page

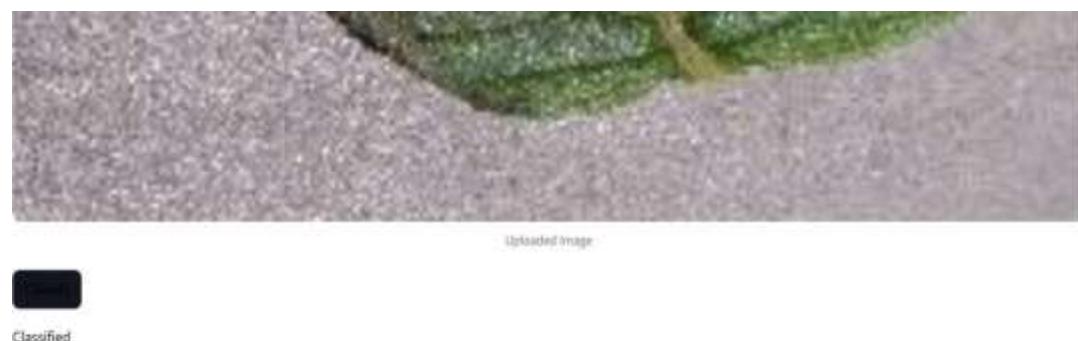


Fig 7. Predicted result of given sample input image

VI. CONCLUSION AND FUTURE SCOPE

This study successfully demonstrates an AI-integrated monitoring system that provides reliable, real-time diagnostics for potato crops. By combining deep learning with a scalable web interface, the system empowers farmers to move beyond subjective visual checks to data-driven decision-making.

Future work will focus on integrating real-time data from drone-mounted cameras for large-scale farm monitoring. Additionally, we aim to expand the diagnostic database to include a wider range of crops and soil health parameters via IoT sensors to create a holistic precision agriculture platform.

REFERENCES

- [1] R. Kumar, M. Gupta, and R. Kathait, "Deep Learning Based Analysis and Detection of Potato Leaf Disease," *J. for Artificial Intelligence and Data Science Research*, 2023.
- [2] S. Durai, T. Sujithra, and M.M. Iqbal, "Image Classification for Potato Plant Leaf Disease Detection Using Deep Learning," *IEEE Xplore*, 2023.
- [3] A. Walid, M. Hasan, T. Roy, and M.S. Hossain, "Deep Learning-Based Potato Leaf Disease Detection Using CNN," *Int. J. of Engineering and Technology*, 2023.
- [4] S.R. Bogireddy and H. Murari, "Hybrid Deep Learning Model for Accurate Potato Leaf Disease Detection," *IEEE Xplore*, 2024.
- [5] R. Verma, R. Mishra, and P. Gupta, "CNN-Based Leaves Disease Detection in Potato Plant," *IEEE Xplore*, 2023.
- [6] S. Ghosh, A. Mial, and S. Kumar Jha, "Potato Diseases Detection Using Image Classification Models," *Springer*, 2024.
- [7] J. Pasalkar, G. Gorde, and C. More, "Potato Leaf Disease Detection Using Machine Learning," *Current Agriculture Research Journal*, 2023.
- [8] T.S. Shiffa and M.S. Suchithra, "Potato Leaf Diseases Detection Using Machine and Deep Learning," *IEEE Xplore*, 2023.
- [9] M. Ashikuzzaman, K. Roy, and A. Lamon, "Potato Leaf Disease Detection by Deep Learning: A Comparative Study," *IEEE Conference*, 2024.
- [10] B. Goyal, A.K. Pandey, and R. Kumar, "Disease Detection in Potato Leaves Using an Efficient Deep Learning Model," *IEEE Conference on Data Science and Applications*, 2023.