Volume: 08 Issue: 05 | May - 2024

Pothole and Road Hump Detection using Deep Learning

Sukeshini Chemate, SCSMCOE Engineering College, Nepti, Ahmednagar, Shubhangi Ghongade, SCSMCOE Engineering College, Nepti, Ahmednagar, Gaurav Nawale, SCSMCOE Engineering College, Nepti, Ahmednagar, Prof.Pallavi Kohakade, SCSMCOE Engineering College, Nepti, Ahmednagar

"border" is usually impossible to determine, we can give them

Abstract — Every vehicle, whether manual or automatic, a general idea, but we can be more specific about how deep they go. and potholes. Consequently, accidents and vehicle damage make it a difficult object-detection task. can be lessened by identifying and describing these outliers. Due to large quantities of duplicated data and significantly utilized. To acquire the maximum amount of data possible, highlights the critical nature of keeping roads in good repair. we employed the standard stride and pooling processes. Because of this, the created model can detect potholes better The COVID-19 epidemic has hit the globe hard. Road maintenance is previous studies in this area.

Pothole detection, Road hump detection.

IINTRODUCTION

distress, such as cracks, potholes, or changes in texture, that maintenance. warrant repair. Being traffic-relevant is the defining characteristic of macro-scale road characteristics. As an additional traffic-relevant feature, speed bumps necessitate identification in order to facilitate driver assistance.

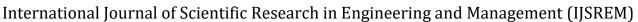
In the context of road hardship, a pothole is unique. The road's geometry is determined arbitrarily, and its exact

relies on the quality of the roads they travel on to reach their Cars, people, cyclists, dogs, and cats all have clearly defined shapes destination safely. Damage to vehicles and even death can that can be identified using deep learning's appearance properties. In result from imperfections in the road, such as speed bumps contrast, a pothole's complex geometric structure and random shape

Automated systems have emerged in many different industries in polluted measurement noise, street photographs are recent years, and technology has been crucial to their development. inherently multivariate, making the identification of street Life has gotten much easier for humans since the introduction of irregularities more challenging. Using a YOLO Deep autonomous technology. A lot of good has come out of automating learning model, this research provides automated color transportation and surveillance systems. When it comes to image processing of road potholes from video frames or transportation, highways are crucial because they make up the largest smartphone images. In order to make training and usage go network. Autonomous systems must operate without endangering their more smoothly, a lightweight architecture was selected. It users, and potholes are a major problem for transportation networks on has seven interwoven layers that work together well. With roads. There were 4,869 fatal incidents in 2015 due to potholes, no scaling at all, each and every pixel of the source image is according to official statistics given by the Indian government. This

and warn drivers to be careful. The proposed method one of several industries hit hard by the lockdowns. Road conditions gathers vital data for pothole detection by reviewing have worsened as a result of this. Therefore, a system that can monitor road conditions autonomously is needed. This research presents a method for pothole identification and dimension estimate that utilizes Deep Learning Image Processing. There and Keywords: Deep learning model, YOLO neural network, have been a slew of new object detection methods created recently that rely on Convolutional Neural Networks to glean features. The YOLO (You Only Look Once) principle is suggested as a method for detecting potholes in this article. Intersection over Union (IoU) and mean average precision (mAP) are used to evaluate the outcomes after Worldwide, poor road conditions are a major contributor to training multiple iterations of the YOLO algorithm using a bespoke accidents, but distracted driving, speeding, and other driver dataset that includes both dry and waterlogged craters of different mistakes also play a major role. Flooding, rain, damages (e.g., shapes and sizes. With respectable precision, the model can identify from overloaded large vehicles), and lack of physical numerous types of potholes. In addition, the suggested pothole size maintenance are only a few of the many reasons why a road estimator, which is based on image processing, uses triangular might become unsafe. When evaluating the state of a road, it is similarity to provide somewhat precise dimensions of the discovered important to look for and identify specific signs of surface potholes, significantly lowering the total time needed for road

© 2024. IISREM | www.ijsrem.com DOI: 10.55041/IJSREM34690 Page 1

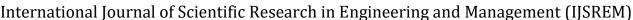


Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

- [1] In this paper, P. A. Chitale et al. hope to lessen the and Discussions section. This study endeavor concludes with the reliance on human labor for road maintenance, particularly in conclusions and future scope contained in section 5. the event of a pandemic. The study demonstrates that in terms of accurate pothole detection, the YOLOv4 based model performs better than the YOLOv3 based model. Pothole dimensions are II RELATED WORKS computed with high precision and a significantly low error rate. As YOLOv4 improves its IoT, it offers an accurate estimate of the potholes' proportions. Subsequent efforts will involve planning and inspection can be completed remotely.
- more accurately detect environmental information by combining areas are represented by a quadratic surface. data from several cars. The author focuses on locating and identifying potholes on multi-lane roads using such data. Undersampling sensors, sensor mobility, asynchronous sensor [5] potholes in multi-lane situations.
- data gathering for road maintenance or real-time control of a achieving. vehicle (for driver assistance or autonomous driving) by providing strategies for the offline or real-time detection of potholes. For these reasons, pothole detection techniques have [6] According to Dharneeshkar J. et al., When compared to other concluded.

Section 2 of this paper reviews relevant prior work, [7] whereas Section 3 describes in depth the current implementation enhances the bounding box's precision for of the idea utilizing the phrase proposed technique. Examine the outcomes in Section 4 of the Results

- [4] B. Hosking et al. explain One of the most crucial parts of expanding the system to include surveillance vehicles so that road maintenance is finding potholes. Generally speaking, computer exact automated road condition monitoring is possible, vision techniques are predicated on either 3D road surface modeling or Additionally, a GPS module would be installed in these 2D road image analysis. These two groups are, nevertheless, always surveillance trucks so that the precise location of the potholes applied separately. Additionally, the precision of pothole detection is could be noted. The estimated dimensions of the potholes would still far fromacceptable. As a result, the authors of this work provide a be useful in determining the amount of road damage as well as reliable pothole detecting technique that is effective in terms of the amount of raw materialsneeded to fill them. As a result, most computing. Initially, a detailed disparity map is created to help distinguish between sections of damaged and undamaged roads. Golden section search and dynamic programming are used to estimate [2] A. Fox along et al. Explains With the increasing ubiquity the transformation parameters in order to obtain higher disparity of smart automobiles, it is now possible to identify transformation efficiency. The possible undamaged road areas are then environmental road elements (potholes, road inclination angle, extracted from the altered disparity map using Otsu's thresholding etc.) from embedded sensor data. Crowdsourcing can be used to technique. Using least squares fitting, the differences in the extracted
- An effective stereo vision-based road surface 3-D reconstruction operation, sensor noise, vehicle and road heterogeneity, and and pothole detection system was demonstrated by R. Fanet al. The PT GPS position error make it difficult to extract information from algorithm [4] was originally made more broad by the author by using aggregated vehicle data. Since GPS position error is typically the stereo rig roll angle in the PT parameter calculation procedure. The greater than standard lane widths, it is especially problematic in potholes were clearly visible from the intact road surface thanks to multi-lane situations. In this study, the authors look into these DT. The modified discrepancies were clustered by SLIC into a set of problems and create a crowdsourced system that uses super pixels. Ultimately, by identifying the super pixels—pixels with accelerometer data from embedded vehicle sensors to locate values below an adaptive threshold established by k-means clustering-potholes were found. Using an RTX 2080 Ti GPU, the suggested pothole detecting method was constructed using CUDA. [3] The techniques described by A. Dhiman et al. for The experimental findings demonstrated the 98.7% successful identifying potholes on road surfaces are intended to helpoffline detection rate and 89.4% F-score that the author's method is capable of
- been thoroughly investigated in studies conducted globally. This item detections, such human, automobile, airplane, and so forth, report divides developed strategies into multiple categories after pothole detection is distinct. Potholes are not shaped like other objects providing a quick overview of the area. Next, author showcase are. It is harder to detect as a result. Because of the aforementioned the author's contributions to this subject by putting tactics for constraint, it is challenging to increase the mean average precision for pothole identification that are automatically detected into pothole identification. This research uses different versions of YOLO practice. The author constructed two models for deep learning- to train a newly produced dataset of 1500 images. Furthermore, based pothole detection and researched and produced two appropriate architectural modifications improve the mean average methods based on stereo-vision analysis of road conditions precision. In the future, a raspberry pi with a camera will be used to ahead of the car. These four created strategies are evaluated implement the system in real-time in a car's dashboard. The road repair experimentally, and specific advantages of these methods are crew can greatly benefit from the system's ability to trace the position of potholes that are recognized thanks to an inbuilt GPS.
 - The pothole detection system, which has excellent accuracy and



Volume: 08 Issue: 05 | May - 2024

SJIF Rating: 8.448

avoidance system, which is capable of successfully avoiding (AMDTO). potholes. Furthermore, these systems may be operated in real time and are installed on an energy-efficient edge platform.

- suggested design.
- organizations to identify different types of road damage.
- [10] In order to enable autonomous driving under unstructured road conditions, M. Rasib et al. introduce a unique pipeline com [14] B.-h. Kang et al. created a pothole detecting system with a result, the technique the author has suggested improves the data performs more accurately. ability of level-5 autonomous vehicles to maneuver in unstructured road environments without lane lines or in areas where they have faded over time.
- vehicles ought to have the ability to adjust their driving style in response to the real-time identification of potholes in the road. This issue is being addressed in a number of ways, such as by reporting findings to the relevant authorities, utilizing vibrationbased sensors, and 3D laser imaging. However, these approaches were limited by issues including high setup costs and the risk of detection. As a result, the identification of potholes must be done quickly and precisely by automation. This work presents a novel approach

pothole representation, was proposed by C.-W. Kuan et al. and for feature selection and optimization of the random forest (RF) improved the deep reinforcement learning-based pothole classier, based on adaptive mutation and dipper throated optimization

ISSN: 2582-3930

- [12] Storytelling by D. Chen et al. For smart cities, vehicle- road collaboration is crucial, and one of the key pillars of this collaboration [8] Extracting accurate features from the input image is the is the detection of potholes. Road pothole detection accuracy has first stage in creating a successful machine learning model for increased recently due to advancements in mapping and surveying image segmentation, according to H. K. I. S. Lakmal et al. The technologies. Unfortunately, the convenience of use and real-time research that is being presented focuses on the application of observation capabilities of the historical detection technologies computer vision as a driver aid device for water-filled pothole prevent the timely mapping of potholes in the road. The author detection. In order to identify the water surfaces and segment the suggested a reflectometry method with vibration signal analysis and water region in an input image, this study presents a number of spatial-temporal trajectory fusion to provide real-time pothole spotting different attributes. In addition, the author trained a model for in order to address this important problem. The author went on to the segmentation of the water surface using the Random Forest construct a number of prototype gadgets for testing. These prototype Classifier and ranked features. Authors were able to get testing devices use geminal processing and spatiotemporal formation fusion. accuracy of 0.877 and training accuracy of 0.998 with the They measure the acceleration signal that is mounted on the wheel steering lever.
- [9] M. Omar et al. explain how the YOLOv4 algorithm, which [13] A novel virtual environment was created by J.-C. Tsai et al. to is based on deep learning, is the primary tool used in the train pothole identification. The author's system incorporates a number Intelligent Transport system paradigm for pothole detection. of contemporary VR and simulation techniques, such as deep learning This work achieves an average IoU of 38.38% by training a interface, 3D modeling, VR simulation, and automobile simulation. dataset of roughly 200 photos for pothole identification. Video The author proved that virtual images can in fact improve the accuracy samples are also successfully used to detect potholes using the of a real pothole detector through a series of tests done on real pothole trained model based on picture datasets. This idea may be used in datasets. under subsequent study, the author plans to experiment with the future by the auto industry and road maintenance deep reinforcement learning using Carim and train an artificial intelligence agent to automatically modify the suspension system of a car under a variety of weather and road situations.
- binning deeplabV3 based road region recognition and steering camera and 2D LiDAR. A large portion of the road surface can be angle estimation mechanism for the self-driving automobile. To more precisely scanned by employing two LiDARs. The author then accomplish the generalization, the author also created a sizable created an algorithm for detecting potholes that included line road-based dataset with 15,000 photos and pixel-by-pixel extraction, gradient of data function, filtering, and clustering. The annotations. After that, using a dataset that they had created pothole detecting system's error rate provides insight on the system's themselves, the author conducted tests to assess the developed performance. The author also demonstrated how 2D performance of the suggested pixel level segmentation road LiDAR may be used for 3D pothole detection. When 2D LiDAR and identification and steering angle estimation approach. As a video data are integrated, pothole identification utilizing the combined
- [15] According to M. Omar et al., the YOLOv4 algorithm, which is based on deep learning, is the primary tool used in the Intelligent According to A. A. Alhussan et al., An essential Transport System paradigm for pothole detection. This work achieves component of traffic intelligence implementation is the self- an average IoU of 38.38% by training a dataset of roughly 200 photos driving car. The safety and comfort of self-driving cars are for pothole identification. Video samples are also successfully used to significantly impacted by the smoothness of the road in front of detect potholes using the trained model based on picture datasets. This them. Potholes in the roadway can cause a number of issues, idea may be used in the future by the auto industry and road such as crashes and vehicle damage. As a result, autonomous maintenance organizations to identify different types of road damage.

III PROPOSED METHODOLOGY

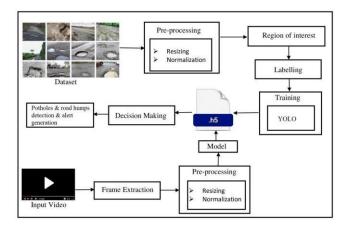


Figure 1: Overview of the proposed model

The method that has been proposed to successfully implement Yolov8's pothole detection capabilities is shown in figure 1. What follows is a detailed description of the many stages that make up the offered method.

Step 1: YOLO V8 Pothole Image Training — In order to successfully identify the pothole in the image, the system is using the image. In order to generate an alert, the initial phase of the approach is to identify the pothole in the image. In order to successfully identify potholes, the pothole identification module employs the Yolov8 method. Prior to using this model for pothole recognition, it must be trained.

Downloading the roboflow dataset and installing the Yolov8 model's ultralytics are the first steps in the training process. To link Roboflow to your API key, go to https://public.roboflow.com/object-detection/pothole and get the dataset for pothole recognition. It efficiently scans the downloaded dataset to retrieve the directory's file list. After that, we may find out how many files are in the directory by using the file list. In all, 465 files will be used for training purposes. After sorting the files alphabetically, the 46 files are transferred to the destination directory and jumbled. Recalculating the number of files in the directory yields 419 for training and 179 for the other directory.

We can start the yolov8 model for the yolo object identification challenge after you've successfully integrated the roboflow data and effectively shuffled the potholes dataset. With a batch size of 32 and an image size of 640, the detection model is trained for 200 epochs using the trained weights. After training the yolov8 model, the project runs are saved as a zip file in the provided directory.

A Convolutional Neural Network (CNN) variant, the YOLOv8 is its offspring. It achieves object identification with improved accuracy by using the CNN technique components in a unique and effective manner. To prevent overfitting and regularize the model, the Yolo design uses 24 convolutional layers with different parameters, a max pooling layer, and a number of dropout and batch normalizations. Two fully connected layers are the model's apex.

The channels are max-pooled after the first convolutionallayers decompose and reduce them; the kernel size is 2x2 andthe stride is 2. All of the model's layers use the same maxpooling algorithm. To handle the increase in data, the kernelsizes of the succeeding convolutional layers get progressivelylarger. This layer architecture makes use of the ReLUactivation function. With the exception of the fully connectedlayers, which use a linear activation function to generate the.ptfile—Yolo8's trained data file—all of the layers' activation functions are same. In the following steps, this.pt file will beutilized to notify the presence of the pothole. The sameprocedure is applied on the road humps dataset also which isobtained from

ISSN: 2582-3930

https://universe.roboflow.com/detection-system/humps-bumpspotholes-detection/dataset/8. Table 2 provides details about the Yolov8 model.

S. no	Layer Type	Parameters
1	Convolutional Layer	7x7x64 Stride-2
2	Maxpool Layer	2x2 Stride 2
3	Convolutional Layer	3x3x192
4	Maxpool Layer	2x2 Stride 2
5	Convolutional Layer	1x1x128
6	Convolutional Layer	3x3x256
7	Convolutional Layer	1x1x256
8	Convolutional Layer	3x3x512
9	Maxpool Layer	2x2 Stride 2
10	Convolutional Layer	1x1x256
11	Convolutional Layer	3x3x512
12	Convolutional Layer	1x1x256
13	Convolutional Layer	3x3x512
14	Convolutional Layer	1x1x256
15	Convolutional Layer	3x3x512
16	Convolutional Layer	1x1x256
17	Convolutional Layer	3x3x512
18	Convolutional Layer	1x1x512
19	Convolutional Layer	3x3x1024
20	Maxpool Layer	2x2 Stride 2
21	Convolutional Layer	1x1x512
22	Convolutional Layer	3x3x1024
23	Convolutional Layer	1x1x512
24	Convolutional Layer	3x3x1024
25	Convolutional Layer	3x3x1024
26	Convolutional Layer	3x3x1024 Stride 2
27	Convolutional Layer	3x3x1024
28	Convolutional Layer	3x3x1024
29	Fully Connected Layer	
30	Fully Connected Layer	

Figure 2: Model Summary for YOLOv8

Step 2: Testing the model for pothole: Here, we've provided the video input for the pothole and are extracting frames to feed in realtime. To find the pothole in the live streaming frames, we use the trained model file.pt. We get their upper left rectangular locations from this file. At this vantage point, we can see the frames' stability being monitored; we can also see the red and white markings of road humps and potholes. The confidence values of red potholes imply that they are more extensive, while those of white potholes indicate that they are shallower.

Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

IV RESULTS AND DISCUSSIONS

To test the developed model, we use a Windows PC with an Intel expresses the confusion matrix's accuracy score parameter, which is utilities Road humps. The following equation shows the values of Precision and F

$$Precision(P) = \frac{TP}{TP + FN} - (1)$$

$$Recall(R) = \underline{TP} - (2)$$

$$TP + FP$$

Here, TP is True positive cases, TN is True Negative cases, FPis False positive cases and FN is False Negative cases. Below we can see the precision and Accuracy graphs that we obtained during the process of training the model in figure 3 and 4 along with the snaps of obtained results in figure 5 and 6.

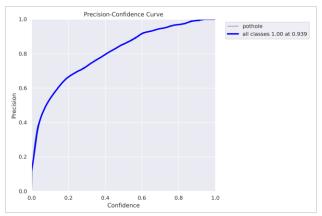


Figure 3: Precision Curve

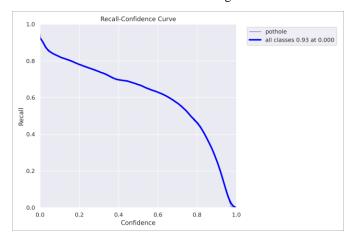
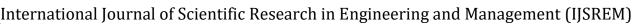




Figure 5: Obtained results for Road humps detection

The obtained graphs in figure 3 and 4 indicates that system is yielding good precision of almost 100% and recall of 93%, this eventually indicates the model is deployed in best way to detect Figure 4: Recall Curve potholes and road humps.



Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

V. CONCLUSION AND FUTURE SCOPE

In order to train the YOLO model, the first step of the resized and normalized by the YOLO module to expedite the preprocessed, these images are utilized to assess potential areas 10.1109/ICICT48043.2020.9112424. of interest that can be labeled to extract potholes from the potholes and road humps efficiently. Less dense potholes and road humps are denoted as white color, on the other hand bit [8] distinguish both of them clearly.

A future expansion of the system will include surveillance India, cars, allowing for precise autonomous road condition ECE52138.2020.9398036. monitoring. Additionally, these monitoring vehicles would have GPS modules installed so that they could pinpoint precisely [9] M. Omar and P. Kumar, "Detection of Roads Potholes using where the potholes and roadhumps were. By estimating the sizes of the holes, we can estimate the amount of road damage and the quantity of raw materials needed to repair the potholes. 2020, pp. 1-6, doi: 10.1109/ICISCT50599.2020.9351373. As a result, most inspections and planning may be done remotely.

REFERENCES

- [1] P. A. Chitale, K. Y. Kekre, H. R. Shenai, R. Karani and J. using Deep Learning (YOLO) and Image Processing," 2020 New Zealand (IVCNZ), Wellington, New Zealand, 2020, pp. 1- pp. 84188-84211, 2022, doi: 10.1109/ACCESS.2022.3196660. 6, doi: 10.1109/IVCNZ51579.2020.9290547.
 - Vehicle Sensor Data," in IEEE Transactions on Mobile Sensing, Computing, vol. 16, no. 12, pp. 3417-3430, 1 Dec. 2017, doi: 10.1109/JSTARS.2022.3200147. 10.1109/TMC.2017.2690995.
 - Intelligent Transportation Systems, vol. 21, no. 8, pp. 3536- Taiwan, 2020, pp. 1-5, doi:10.1109/CACS50047.2020.9289740. 3550, Aug. 2020, doi: 10.1109/TITS.2019.2931297.
 - vol. 29, pp. 897-908, 2020, doi:10.1109/TIP.2019.2933750.
 - [5] R. Fan, U. Ozgunalp, Y. Wang, M. Liu and I. Pitas, "Rethinking Road Surface 3-D Reconstruction and Pothole Detection: From Perspective Transformation to Disparity Map Segmentation," in IEEE Transactions on Cybernetics, vol. 52,

- 5799-5808. no. 7, July 2022. doi: pp. 10.1109/TCYB.2021.3060461.
- process is to realize the input dataset. Following its creation, the [6] D. J. S. D. V. A. S. A. K. R. and L. Parameswaran, "Deep dataset will undergo shuffling program. The input images are Learning based Detection of potholes in Indian roads using YOLO," 2020 International Conference on Inventive Computation training of the neural network model. After they've been Technologies (ICICT), Coimbatore, India, 2020, pp. 381-385, doi:
- original images. Prior to providing the model with the images to [7] C.-W. Kuan, W.-H. Chen and Y.-C. Lin, "Pothole Detection train on, they will be efficiently tagged with the regions of and Avoidance via Deep Learning on Edge Devices," 2020 interest. Training is taking place on the YOLO network, while International Automatic Control Conference (CACS), Hsinchu, testing is taking place in real-time input video to detect the Taiwan, 2020, pp. 1-6, doi: 10.1109/CACS50047.2020.9289701.
- H. K. I. S. Lakmal and M. B. Dissanayake, "Pothole Detection heavy potholes and road humps are shown in red color to with Image Segmentation for Advanced Driver Assisted Systems," 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, 308-311, 10.1109/WIECON-2020, doi:
 - YOLOv4," 2020 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan,
 - [10] M. Rasib, M. A. Butt, F. Riaz, A. Sulaiman and M. Akram, "Pixel Level Segmentation Based Drivable Road Region Detection and Steering Angle Estimation Method for Autonomous Driving on Unstructured Roads," in IEEE Access, vol. 9, pp. 167855-167867, 2021, doi: 10.1109/ACCESS.2021.3134889.
- [11] A. A. Alhussan, D. S. Khafaga, E. -S. M. El-Kenawy, A. P. Gala, "Pothole Detection and Dimension Estimation System Ibrahim, M. M. Eid and A. A. Abdelhamid, "Pothole and Plain Road Classification Using Adaptive Mutation DipperThroated Optimization 35th International Conference on Image and VisionComputing and Transfer Learning for Self DrivingCars," in IEEE Access, vol. 10,
- [12] D. Chen, N. Chen, X. Zhang and Y. Guan, "Real-Time Road [2] A. Fox, B. V. K. V. Kumar, J. Chen and F. Bai, "Multi- Pothole Mapping Based on Vibration Analysis in Smart City," in IEEE Lane Pothole Detection from Crowdsourced Undersampled Journal of Selected Topics in Applied Earth Observations and Remote 6972-6984, pp. 2022, doi:
- [13] J.-C. Tsai, K.-T. Lai, T.-C. Dai, J.-J. Su, C.-Y. Siao and Y.-[3] A. Dhiman and R. Klette, "Pothole Detection Using C. Hsu, "Learning Pothole Detection in Virtual Environment," 2020 Computer Vision and Learning," in IEEE Transactions on International Automatic Control Conference (CACS), Hsinchu,
- [4] R. Fan, U. Ozgunalp, B. Hosking, M. Liu and I. Pitas, [14] B.-h. Kang and S.-i. Choi, "Pothole detection system using 2D "Pothole Detection Based on Disparity Transformation and Road LiDAR and camera," 2017 Ninth International Conference on Surface Modeling," in IEEE Transactions on Image Processing, Ubiquitous and Future Networks (ICUFN), Milan, Italy, 2017, pp. 744-746, 10.1109/ICUFN.2017.7993890 doi: