

Pothole Detection and Alert System

Navnath Bolij¹, Shrikant chavan², Nilesh Cholke³, Suryaraj Shinde⁴, Saurabh Aher⁵

¹Assistant Professor of Department of Mechanical, Santosh N. Darade Polytechnic, Yeola, Nashik

²Student of Department of Mechanical, Santosh N Darade Polytechnic, Yeola

³Student of Department of Mechanical, Santosh N Darade Polytechnic, Yeola

⁴Student of Department of Mechanical, Santosh N Darade Polytechnic, Yeola

⁵Student of Department of Mechanical, Santosh N Darade Polytechnic, Yeola

Abstract - Road transportation plays a vital role in daily life, but poor road conditions such as potholes lead to accidents, vehicle damage, and traffic congestion. Manual road inspections are inefficient and cannot ensure timely maintenance. To address this issue, the Pothole Detection and Alert System is developed using camera vision and ultrasonic sensors. The system continuously monitors road surfaces, detects potholes through real-time image processing and distance measurement, and alerts drivers using visual or audio signals. Additionally, the module records the location of detected potholes and uploads it to a cloud-based IoT platform for centralized monitoring by authorities. This smart system aims to improve road safety, reduce vehicle damage, and assist in data-driven road maintenance through automation and IoT integration.

Key Words: Pothole Detection, Ultrasonic Sensor, Camera Vision, Image Processing, IoT, Road Safety, Alert System, Smart Transportation

1. INTRODUCTION

Road transportation is one of the most widely used modes of transport, providing accessibility and convenience for both people and goods. However, in many regions, the quality of road infrastructure is affected by environmental conditions, heavy vehicle movement, and lack of regular maintenance. One of the most common road surface issues is the formation of potholes, which occur due to the degradation of asphalt layers caused by water seepage, temperature variations, and continuous vehicle stress. These potholes create discomfort for drivers, increase travel time, and, more importantly, pose serious risks to vehicle safety and passenger well-being. In recent years, several accidents and vehicle breakdowns have been directly linked to undetected potholes. Manual inspection of roads

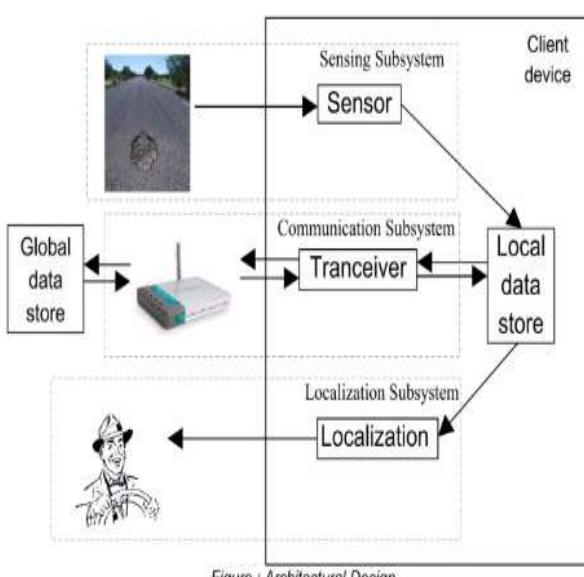
by authorities remains the traditional approach to road maintenance, but it is inefficient, time-consuming, and labor-intensive. Moreover, these inspections cannot ensure continuous monitoring of the ever-expanding road networks. As a result, there is a growing need for an intelligent and automated system capable of detecting potholes accurately and in real time. The Pothole Detection and Alert System aims to address this issue by combining modern sensing technology with computer vision. The system utilizes ultrasonic sensors to measure the relative height variations of the road surface and a camera module to capture real-time images of the road ahead. By analyzing the collected data, the system determines the presence and size of potholes. When a pothole is identified, an alert signal is immediately provided to the driver through an audio or visual interface, allowing timely corrective action to avoid damage or accidents. This approach leverages advancements in image processing and embedded systems to make road condition monitoring more reliable and autonomous. It can be implemented in vehicles to continuously assess the condition of the roads during travel. The collected data can later be used by transportation authorities to plan maintenance schedules effectively. The system's low-cost, real-time operation, and integration of multiple sensors make it suitable for large-scale deployment in both urban and rural areas. By automating the detection and alert process, this project aims to enhance road safety, minimize vehicle damage, and contribute to smarter, transportation systems. The implementation of such technology represents an important step toward building intelligent road infrastructure that ensures safer and more efficient travel for all users.

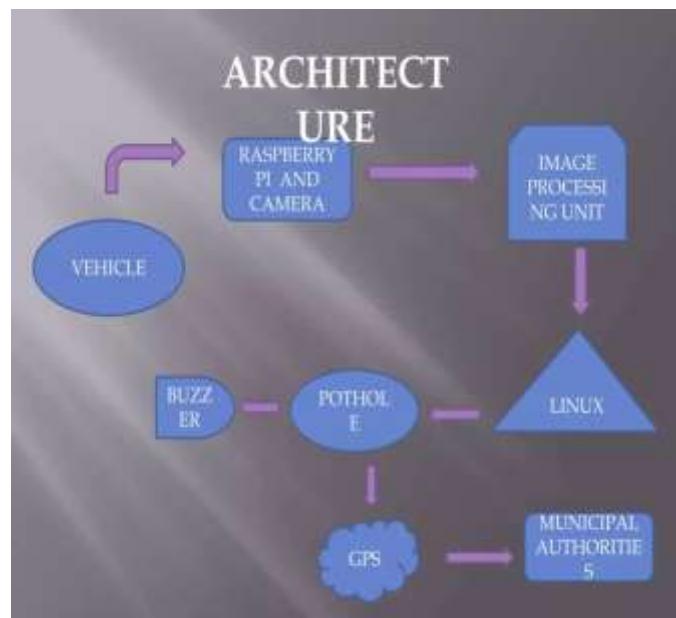
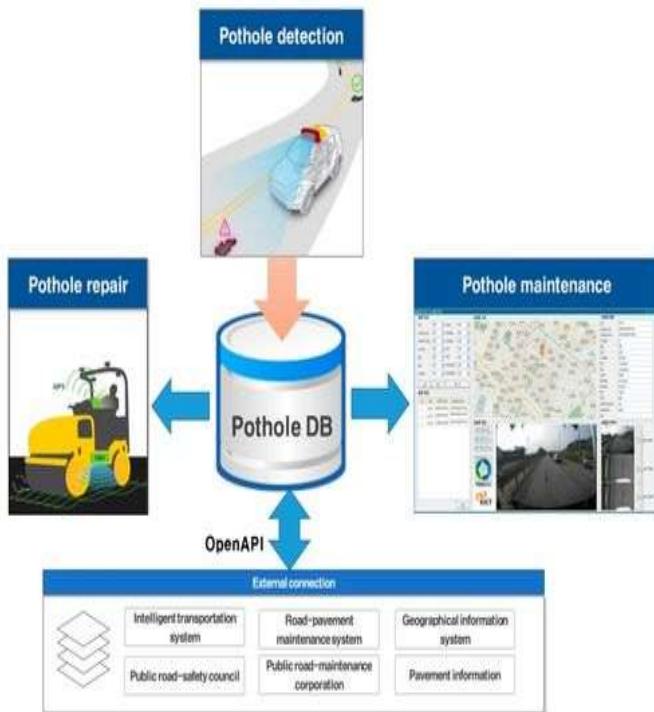
2. Name of Component

Microcontroller / Processing Unit (Arduino Uno or ESP32) Used as the central control unit to process input data from sensors and camera, and to trigger alerts based on detection results. Ultrasonic Sensor (HC-SR04)

Measures the distance between the sensor and the road surface. Sudden changes in measured distance indicate the presence of potholes. Camera Module captures real-time images or video of the road surface for visual analysis and image processing to confirm pothole presence.

- Power Supply Module (Battery or DC adapter 5v/12)
- Provides regulated power to all components, ensuring stable operation of sensors, controller, and camera.
- Buzzer / Speaker • Generates an audible alert to warn the driver when a pothole is detected ahead.
- LED Indicator / Display Module • Provides a visual alert or status indication for system operation and pothole detection.
- Motor Driver Module (optional for testing movement setup) • Controls the motion of a small prototype vehicle or testing platform during experimentation.
- Connecting Wires and Breadboard • Used for circuit connections and testing of different components during the prototype phase.
- Chassis / Mounting Frame • Physical support for mounting sensors and camera at appropriate angles for accurate detection.
- Laptop / Computer (for image processing and data analysis) • Used to run image processing algorithms (e.g., using Python and OpenCL) and to analyze sensor data in real-time.


TOOLS AND TECHNOLOGY USED



Programming Languages: J2EE, Python SDKs: Dialog Flow Framework: Spring Boot. Tools: Eclipse IDE, pycharm, SQLYog.

3. LITERATURE SURVEY

The problem of potholes on roads has been a serious concern for both drivers and road maintenance authorities. Many researchers have proposed different techniques to identify and report potholes to improve road safety and maintenance efficiency.

1. Kumar et al. (2018): Developed a pothole detection system using an ultrasonic sensor mounted on vehicles. The sensor measured road surface irregularities and detected potholes based on depth variation. However, the system faced limitations in accuracy during high-speed driving or rough terrain.
2. Sharma et al. (2020): Used a camera-based image processing method to detect potholes by analyzing road surface images. Although it provided good accuracy, the method was affected by lighting conditions and required high processing power.
3. Reddy and Singh (2021): Proposed a smartphone-based application that used the accelerometer sensor to detect road vibrations caused by potholes. The data was uploaded to a cloud server with GPS coordinates. However, the accuracy depended on the mobile phone's positioning of the vehicle.
4. Mehta et al. (2022): Introduced an IoT- enabled pothole detection system using sensors and GPS modules. The system could send real-time alerts to authorities about the location of potholes, improving road maintenance response.
5. Proposed System (2025): In this project, a Pothole Detection and Alert System developed using ultrasonic sensors and GPS technology integrated with IoT. The system detects potholes based on surface depth, records their coordinates, and sends alerts to a central database. This helps drivers avoid damaged roads and assists government authorities in timely repairs.

ACKNOWLEDGEMENT

The Pothole Detection and Alert System operates on the principle of combining sensor based depth measurement and camera- based image analysis to accurately identify irregularities on the road surface. The system continuously monitors the road in front of moving vehicle using an ultrasonic sensor and a camera. The ultrasonic sensor measures the distance between the sensor and the road surface. Under normal conditions, this distance remains almost constant. However, when a pothole appears, the surface level suddenly drops, causing a noticeable increase in the measured distance. This change in distance indicates the possible presence of a pothole. Simultaneously, the camera captures real-time video or images of the road. The captured frames are processed using image processing techniques (such as edge detection, contour mapping, and thresholding) to analyze surface texture and confirm the presence of a pothole. When both the ultrasonic and image processing data align, the system classifies the surface irregularity as a pothole. Once a pothole is detected, the microcontroller immediately activates an alert mechanism—such as a buzzer sound or LED indication—to warn the driver. This allows the driver to slow down or change direction safely, reducing the risk of accidents and vehicle damage. The system can operate in real time and can be installed in vehicles for continuous road condition monitoring.

APPLICATION

1. Vehicle Safety Systems: Can be integrated into vehicles to warn drivers about upcoming potholes, improving safety and reducing accident risks.
2. Smart Transportation Infrastructure: Forms a part of intelligent agent transport systems (ITS) to enhance road monitoring and traffic management efficiency.
3. Municipal Road Maintenance: Useful for collecting data on road surface conditions, enabling local authorities to plan maintenance and repairs effectively.
4. Autonomous Vehicles: Can assist self-driving vehicles in detecting uneven road surfaces and adjusting their navigation accordingly.
5. Public Transportation: Can be implemented in buses or government vehicles to continuously monitor and report poor road conditions during daily operation.

CONCLUSION

The Pothole Detection and Alert System provides an efficient and innovative approach to addressing one of the most common problems in road safety and maintenance. By integrating camera-based image analysis with ultrasonic sensor data, the system can accurately identify potholes in real time and alert drivers immediately. This proactive warning mechanism helps prevent accidents, reduces vehicle maintenance costs, and ensures safer driving conditions. The project demonstrates how affordable technology can be used to improve everyday transportation systems. With further development, such systems can be extended for large-scale deployment, contributing to smarter and safer road infrastructure. Overall, this project highlights the potential of combining embedded systems and computer vision to create reliable, automated solutions.

for pub ice safety and infrastructure improvement. We have described a problem that currently exist with potholes and the issues they pose, as well as presented a solution in the forum of comprehensive pothole detection. We believe that this system could be great asset to both motorists and city official for quickly detection and reporting potholes.

REFERENCE

1. Kumar, A., & Gupta, R. (2018). Pothole detection using ultrasonic sensors and microcontroller. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), 7(5), 450–453.
2. Sharma, N., & Patel, S. (2020). Image processing based pothole detection for road safety improvement. International Journal of Computer Applications, 176(32), 25–30.
3. Reddy, V., & Singh, M. (2021). Smartphone-based pothole detection using accelerometer bandgaps. IEEE International Conference on Smart Technologies for Smart Nation, 1 12–1 17.
4. Mehta, D., & Kaur, P. (2022). IoT-based pothole detection and reporting system. International Research Journal of Engineering and Technology (IRJET), 9(4), 1020–1025.
5. . Proposed Work (2025). Pothole Detection and Alert System using IoT and GPS. Student Project Report, Diploma in Mechanical/Computer Engineering, 2025.