
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 1

POWER EFFICIENT MODIFIED FIFO BASED HASH JOIN

ARCHITECTURE

Mr. M Vamsi Krishna Allu1 J. JONEY BETTILLOW2 K. MOUNIKA3 K.V.S.N. SUDHEER4 L. MEGHANA5

K.SANTHI KUMARI6

Assistant Professor Sir C.R Reddy college of Engineering [1]

UG Scholars, Sir C R Reddy College of Engineering [2,3,4,5,6]

Abstact- The main objective of this concept is to design a hash join operator with at-most efficiency. This project

presents a non-collision parallel static random-access memory (SRAM)-based hash join architecture. This architecture

utilizes multiple hash functions and content addressable memories (CAMs) to eliminate hash collision, thereby

ensuring a worst constant memory access for each phase in the hash join algorithm and consequently improving the

hash join throughput. These Hash joins are useful in the implementation of a relational database management system,

sorting, aggregation. In the era of Internet of Things (IOT) and Big Data, fast query processing is a crucial requirement

of the modern DBMS. The performance of the central processing unit (CPU) is not growing sufficiently quickly to

handle the rapidly increasing amount of data, leading to demands for new processing methods to speed up database

systems. A non-collision parallel hash join strategy is proposed. Proposed strategy addresses the hash collision and

provides insert and query operations of the hash join algorithm with a worst-case constant time. A parallel hash join

architecture comprising multiple channels and a CAM is constructed. This architecture distributes the tuples in

different hash channels and therefore, there is no need for duplicate storages. clock gating architecture to limit the

switching activity of the address decoder which improves the power efficiency of the proposed FIFO. Element

structure is adapted to evaluate the clock cycle to the present ring counter block and to release the clock pulse to the

next ring counter block. FIFO Memory accessing does not need write operations so data lines and read/write lines to

the SRAM memory architecture is omitted.

Index Terms— Database operation, hash join, hardware acceleration, FPGA, parallel pipeline.

INTRODUCTION

 A hash join is a database join operation used to combine two sets of data based on a common attribute or

join condition. In a hash join, both input datasets are first partitioned based on the join key, and then each partition is

hashed into a hash table.

Once the hash tables are constructed, the join operation is performed by matching the hash values of the join keys

between the two tables.

 Hash joins are often faster than other join algorithms, such as nested loop joins or merge joins, especially

when dealing with large datasets, as they typically have a time complexity of O(n), where n is the number of rows in

the input datasets.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 2

 They are commonly used in database systems to optimize join operations.

 Hash join is a widely used technique in database query processing for joining two large datasets efficiently.

It works by partitioning the rows of the two input datasets into buckets based on a hash function applied to the join

key, then matching rows with the same hash value across the datasets. This approach minimizes the need for sorting

and allows for parallel processing, making it particularly effective for large-scale data operations.

1.1 HASH JOIN ARCHITECTURE:

 Hash join architecture is a method used in database management systems to join tables efficiently. It involves

hashing the join columns from both tables and then comparing the hashed values to find matching rows. This method

is particularly effective for large datasets as it minimizes the need for sorting and allows for faster retrieval of data.

Hash join architecture typically involves two phases: build phase and probe phase. In the build phase, a hash table

is created by hashing the smaller of the two tables. In the probe

phase, the larger table is hashed and compared with the hash table created in the build phase to identify matching

rows

1. Input Data: Two input datasets that need to be joined based on a common attribute (join key).

2. Hash Function: A hash function is applied to the join key of each row in both input datasets to generate a

hash value. This hash value determines the partition to which the row belongs.

3. Partitioning: Rows from each input dataset are partitioned into buckets based on their hash values. This step

ensures that rows with the same hash value (and potentially the same join key) are grouped together.

4. Hash Tables: Hash tables are built for each partition or bucket of the smaller dataset. These hash tables store

the join key and corresponding values from the smaller dataset.

5. Probe Phase: For each row in the larger dataset, the hash function is applied to its join key to determine the

corresponding bucket. The hash table of that bucket is then probed to find matching rows from the smaller

dataset.

6. Join Operation: Matching rows found during the probe phase are combined to form the joined result. This

process continues until all rows from the larger dataset have been processed.

7. Output: The joined result is produced as the output of the hash join operation

 1.2 FIFO:

 FIFO stands for "First In, First Out." It's a method for organizing and manipulating a data buffer, where the

oldest (first) entry, or "head" of the queue, is processed first, and the newest (last) entry, or "tail" of the queue, is

processed last. The FIFO structure.

 In terms of memory, a FIFO structure is often implemented using a queue data structure. It's commonly used

in computing and electronic circuits to manage data flow between different parts of a system. For example, in

computer science, FIFO can be used in scheduling algorithms, caching systems, and network routing. In hardware,

FIFOs are used to buffer data between components that operate at different speeds or have different data processing

rates.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 3

 In essence, a FIFO memory operates like a line at a supermarket checkout: the first person to join the line is the

first one to be served, and as more people join, they line up behind the others in the order they arrived. Similarly, in

a FIFO memory, data items are stored and retrieved in the order they were added.

1.3 CONTENT ADDRESSABLE MEMORY (CAM):

 Using the hash join architecture, it utilizes multiple hash functions and content addressable memories (CAMs)

to eliminate hash collision, thereby ensuring a worst constant memory access for each phase in the hash join algorithm

and consequently improving the hash join throughput. Useful in the implementation of a relational database

management system sorting, aggregation. Further, this project is modified using clock gating technique to reduce

power consumption of FIFO. Content Addressable Memory (CAM) is a specialized type of computer memory that

allows data to be accessed based on its content rather than its storage address. It enables fast search and retrieval

operations by comparing the input data with the stored contents of the memory cells, making it useful for applications

like network routing tables and associative caching.

LITERATURE SURVEY

1. [12] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani, A. Di Blas, and P.

Dubey, “Sort vs. hash revisited: Fast join implementation on modern multi-core cpus,” Proc. VLDB Endow.,

2009.

 Join is an important database operation. As computer architectures evolve, the best join algorithm may change

hand. This paper re-examines two popular join algorithms – hash join and sort-merge join – to determine if the latest

computer architecture trends shift the tide that has favored hash join for many years. For a fair comparison, we

implemented the most optimized parallel version of both algorithms on the latest Intel Core i7 platform. Both

implementations scale well with the number of cores in the system and take advantages of latest processor features

for performance. Our hash-based implementation achieves more than 100M tuples per second which is 17X faster

than the best reported performance on CPUs and 8X faster than that reported for GPUs. Moreover, the performance

of our hash join implementation is consistent over a wide range of input data sizes from 64K to 128M tuples and is

not affected by data skew. We compare this implementation to our highly optimized sort-based implementation that

achieves 47M to 80M tuples per second. We developed analytical models to study how both algorithms would scale

with upcoming processor architecture trends. Our analysis projects that current architectural trends of wider SIMD,

more cores, and smaller memory bandwidth per core imply better scalability potential for sort-merge join.

Consequently, sort-merge join is likely to outperform hash join on upcoming chip multiprocessors. In summary, we

offer multicore implementations of hash join and sort-merge join which consistently outperform all previously

reported results. We further conclude that the tide that favours the hash join algorithm has not changed yet, but the

change is just around the corner.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 4

2. [13] S. Schuh, X. Chen, and J. Dittrich, “An experimental comparison of thirteen relational equi-joins in

main memory,” in SIGMOD, 2016.

 Relational equi-joins are at the heart of almost every query plan. They have been studied, improved, and re-

examined on a regular basis since the existence of the database community. In the past four years several new join

algorithms have been proposed and findings. This makes it surprisingly hard to answer a very simple question: what

is the fastest join algorithm in 2015? In this paper we will try to develop an answer. We start with an end-to-end black

box comparison of the most important methods. Afterwards, we inspect the internals of these algorithms in a white

box comparison. We derive improved variants of state of-the-art join algorithms by applying optimizations like

software write combine buffers, various hash table implementations, as well as NUMA-awareness in terms of data

placement and scheduling. We also inspect various radix partitioning strategies. Eventually, we are in the position to

perform a comprehensive comparison of thirteen different join algorithms. We factor in scaling effects in terms of

size of the input datasets, the number of threads, different page sizes, and data distributions. Furthermore, we analyze

the impact of various joins on an (unchanged) TPC-H query. Finally, we conclude with a list of major lessons learned

from our study and a guideline for practitioners implementing massive main-memory joins. As is the case with almost

all algorithms in databases, we will learn that there is no single best join algorithm. Each algorithm has its strength

and weaknesses and shines in different areas of the parameter space.

3. [14] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. Owens, and N. Amenta, “Building an

efficient hash table on the gpu,” in GEMS, 2011.

 This chapter describes a straightforward algorithm for parallel hash table construction on the graphical

processing unit (GPU). It constructs the table in global memory and use atomic operations to detect and resolve

collisions. Construction and retrieval performance are limited almost entirely by the time required for these

uncoalesced memory accesses, which are linear in the total number of accesses; so the design goal is to minimize the

average number of accesses per insertion or lookup. In fact, it guarantees a constant worst-case bound on the number

of accesses per lookup. Further, one alternative to using a hash table is to store the data in a sorted array and access it

via binary search. Sorted arrays can be built very quickly using radix sort because the memory access pattern of radix

sort is very localized, allowing the GPU to coalesce many memory accesses and reduce their cost significantly.

However, binary search, which incurs as many as lg (. N) probes in the worst case, is much less efficient than hash

table lookup. GPU hash tables are useful for interactive graphics applications, where they are used to store sparse

spatial data-usually 3D models that are voxelized on a uniform grid. Rather than store the entire voxel grid, which is

mostly empty, a hash table is built to hold just the occupied voxels.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 5

4. [4] Classification Framework for the Parallel Hash Join with a Performance Analysis on the GPU by KA

Wozniak, 2017.

 The hash join operator is one of the most important relational operators in database applications and a

prominent research topic in the domain of parallel processing. However, up to date, no consistent algorithm design

guidelines for high-performance implementations on parallel platforms have been derived from the available

experimental results. In this work we define a taxonomy of the parallel hash join operator landscape and categorize

state of the art research accordingly. Moreover, we implement and benchmark three taxonomy types: A sequential

implementation on the CPU, a hybrid CPU-GPU implementation as well as a fully parallel version on the GPU. The

results show that (1) the hybrid CPUGPU type outperforms the other two, showcasing the benefits of a good fit

between algorithm type and hardware platform choice, (2) the poor end-to-end performance of the GPU-only type

highlights the impact of GPU specific synchronization and contention issues that appear with an unfit design choice,

(3) parallelization improves runtime by a factor of 2.2X in the end-to-end algorithm, a factor of 83X in the join phase

and shows good scaling behaviour with increasing number of threads. This proves that the GPU is a valuable co-

processor option for computation offloading in database applications. We anticipate this classification framework to

be a starting-point for design decisions for parallel big data hash join operators on other heterogeneous systems.

5. [15] H. Pirk, S. Manegold, and M. Kersten, “Accelerating foreign-key joins using asymmetric memory

channels,” in ADMS, 2011.

 Indexed Foreign-Key Joins expose a very asymmetric access pattern: the Foreign-Key Index is sequentially

scanned whilst the Primary-Key table is target of many quasi-random lookups which is the dominant cost factor. To

reduce the costs of the random lookups the fact-table can be (re-) partitioned at runtime to increase access locality on

the dimension table, and thus limit the random memory access to inside the CPU’s cache. However, this is very hard

to optimize and the performance impact on recent architectures is limited because the partitioning costs consume most

of the achievable join improvement [3]. GPGPUs on the other hand have an architecture that is well suited for this

operation: a relatively slow connection to the large system memory and a very fast connection to the smaller internal

device memory.

EXISTING METHOD

3.1 OVERVIEW OF HASH JOIN TECHNIQUES:

Hash join (like merge join) can only be used if there is at least one equality clause in the join predicate. This is usually

not an issue because joins are typically used to reassemble relationships, expressed with an equality predicate between

a primary key and a foreign key. Let’s call the set of columns in the equality predicate the “hash key,” because these

are the columns that contribute to the hash function. Additional predicates are possible, and are evaluated as “residual

predicate” separately from the comparison of hash values. Note that the hash key can be an expression, as long as it

can be computed exclusively from column in a single row.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 6

3.2 HASH COLLISION:

In computer science, a hash collision is a random match in hash values that occurs when a hashing algorithm

produces the same hash value for two distinct pieces of data. Hashing algorithms are often used to prevent third parties

form intercepting digital messages.

In fact, hashing algorithms provide the extra layer of protection necessary to secure the transmission of a

message to its recipient.

Fig: 3.1

Represents how the hash collision occurs

In computer science, hashing is a common practice used for a variety of purpose including cryptography, data

indexing, and data compressing. Both hashing and cryptography protect data by transforming it into a secure format.

However, while cryptography protect data by transforming it into a secure format. However, while cryptography uses

a process called encryption, hashing uses a mathematical formula called as hash function to truncate one value into

another. The hash collision occurrence is shown in the Fig 3.1.

3.3 PREVENTION OF HASH COLLISION USING LINEAR PROBING TECHNIQUE:

Collision is occurred, when same index keys are placed on a hash table map on the same location. So, to avoid

these collisions we are using the linear probing technique to resolve this. Linear probing is a strategy for resolving

collisions. In this the new key is placed in the closest following empty cell. Here the elements are stored wherever the

hash function maps into a hash table, if that cell is filled then the next consecutive location is searched to store that

value. Here generally we use arrays. The Table-3.1 represents that how the linear probing is done to avoid the hash

collisions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 7

 Table-3.1: The collisions are prevented by using linear probing technique

SL.NO KEY HASH ARRAY INDEX AFTER LINEAR PROBING,

ARRAY INDEX

1 1 1%20 = 1 1 1

2 2 2%20 = 2 2 2

3 42 42%20 = 2 2 3

4 4 4%20 = 4 4 4

5 12 12%20 = 12 12 12

6 14 14%20 = 14 14 14

7 17 17%20 = 17 17 17

8 13 13%20 = 13 13 13

9 37 37%20 = 17 17 18

 The formula for the linear probing is = key % list_size. By using the division module, we will perform the

linear probing. In the above formula the term “key” is the value of which we need to take it on the numerator and then

the list_size is that it represents size of the list and it is placed on the denominator. At first the division operation is

performed, then after performing we take the remainder as the array index. If that array index of which we get form

the remainder is same as the value in which it is present in the above list, then it is called hash collision. Then by

using the linear probing technique we will increase the index value of +1 for each step until we get the new array

index which is not present in the table. By using this process, we are going to avoid the collisions. It’s possible to

cascade CAM up to eight levels without incurring a performance penalty but beyond this the cost/power return

becomes unfeasible.

3.4 HASH JOIN OPERATORS:

 Hash join operates in two phases:

• Build phase

• Probe phase

 In the former, the first table is scanned, and the hash function is used to populate a hash table with the tuples. In the

latter, the second table is scanned, and the hash table is probed to find matching results. In this paper, the first and

second tables are assumed to have N and M rows, respectively (N <M). The tuples are a part of the integrated

records, stream into the join architecture with a {rid, key} format.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 8

 The rid is used to distinctly identify a row, and the key is the join attribute. The join results {rid1, rid2, key}

are produced when the second table streams in.

3.4.1 BUILD PHASE:

During the build phase, the FPGA fetches the first table’s tuples in parallel. The FIFO in each channel is used

to cache the incoming tuples from the local storage or other channels. The key of the tuple is hashed in each channel

and the location of the tuple is saved in the corresponding address on the hash table calculated by each channel’s hash

function.

Tuples are stored in the hash tables in the {status, rid, key} format, and the status (1 bit) indicates whether

the row of the hash table is occupied. Conflicting hash values in each channel are shifted to the next channel; this shift

process is terminated until this tuple is inserted to one hash table successfully or reaches the shift threshold (the

channel number); then, it is moved to the CAM with a {rid, key} format.

 Fig.3.2: Example of a four-hash channel with a CAM hash join architecture.

The key in the hash tables and CAM will be compared to the key of the second table during the probe phase. As

shown in Fig.3.4, there are multiple hash channels, and each channel has dedicated resources allowing distribution in

the first table in parallel during the build phase. In each hash channel, non-conflicting tuples require two clock cycles

to update the hash table (i.e. to determine whether the corresponding address is available and to write data).

If a hash collision has occurred, conflicting tuples are pushed to the FIFO for further processing. Thus, the

memory access time of each hash channel remains constant during the build phase.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 9

It stores eight tuples (a–h), every row of the hash table has three members: {status, rid, key}. The status indicates

whether the row is occupied.

3.4.2 PROBE PHASE:

During the probe phase, the tuples in the second table are streamed in and compared with those of the first table

for matching results. When a match is found, the rows are joined together and formatted into a {rid1, rid2, key} style.

Tuples from the second table move through the hash channel in the pipeline, and multiple hash channels operate

in parallel until they are either invalidated or joined. Similar to the build phase, keys from the second table worked

through the multiple hash channels in parallel. In each hash channel, the tuple is routed to the corresponding address

calculated by each channel’s hash function to find a match.

This is performed on each channel concurrently in a pipeline. If a match is found in one channel, the join result is

generated for further processing; otherwise, this tuple shifts to the next channel for the next step lookup. If a tuple

cannot find a match in all channels, it would be sent to the CAM for query operation.

Mismatch in all channels and CAM results in the tuple being discarded. In this paper, we focus on the “N-to-1”

join relationship, such that once the key of the second table is matched, the search process is terminated. Certain

components during the probe phase of each channel require a constant number of cycles to complete and therefore

have no stall of the pipeline. Exact table matching operations on CAMs only use one clock cycle. Thus, the memory

access time during the probe phase is also constant.

3.5 DATA SHIFT STRATEGY:

The main idea behind our design is to provide multiple hash channels to distribute the first table with a

small CAM, thus ensuring that the tuples that cannot be inserted into all the hash tables can be moved to the CAM,

generating a non-collision hash join scheme. In Fig 3.5, an example of the timeline of memory access operations for

the data shift non-collision scheme is illustrated.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 10

Fig.3.3: Finite-state machines for the build phase and probe phase.

It can be seen that during the first time slot, items (K1, K2, K3, K4) stream and the item K2 is inserted (or probed)

simultaneously; in the second time slot, the remaining items (K1, K3, K4) are shifted, while a new item (K5)

substitutes the inserted (or probed) item, and items (K4, K5) are inserted (or probed) successfully; therefore, in the

third time slot can process two new items (K6, K7); in the fourth time slot, no item is successfully inserted (or probed);

in the fifth time slot, item (K1) is moved to the CAM because the shift threshold (the hash channel number) has been

reached.

And the worst-case access time occurs. This strategy operates similarly both in the build phase and probe phase,

and is developed by finite-state machines (FSMs), as shown in Fig.3.3.

Fig.3.4: Data shift strategy for build phase and probe phase.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 11

3.6 FIFO ARCHITECTURE:

Fig 3.5: Existing block of Memory organisation

In the existing method, the input data is taken as binary numbers and that data is sent to the mux. The mux is

also called as the selection input. It selects and gives one output data. Then after that output data is given to the

memory block of which it is used to store the data of which the multiplexer is sent. After that ring counter is a type

of counter composed of a circular shift register. A ring counter connects the output of the last shift register to the first

shift register input and circulates a single one (or zero) bit around the ring. For example, in a 4-register one-hot

counter, with initial register values of 1000, the repeating pattern is: 1000, 0100, 0010, 000, 1000. Note that one of

the registers must be pre-loaded with a 1 (or 0) in order to operate properly. This output data of the ring counter is

given to the memory block, This memory block is used to store the data which comes from the ring counter. After

that this total data is given to the demultiplexer of which it will take the single input and gives more number of outputs.

Based on type of mux we will take the demux. If mux is 4:1 then we take the demux as 1:4. This total operation is

shown in the below Fig 3.5.

3.6.1. MULTIPLEXER:

Input buffer is a multiplexer. The operation of the mux is used to select one of many input signals and forward

it to a single output line. There is another input line that is the selection line of which it is used to give the data more

efficiently for our given input data. These selection lines are depends on our number of inputs we had given to the

multiplexer. Ex: We had taken multiplexer of 2:1, of which it has only 2 input lines and 1 output line of which it has

only one selection line. Mainly these multiplexers are used in the data communication of which multiple data streams

into single channel. The Fig 3.6 represents the multiplexer and the Table 3.7 shows the truth table of the multiplexer.

MEMORY

BLOCK
MUX DE-

MUX

 RING

COUNTER

INPUT

DATA

OUTPU

T

DATA

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 12

Multiplexers can be implemented using logic gates such as AND gates, OR gates, and NOT gates, or using electronic

switches such as transmission gates or CMOS switches.

Fig 3.6: 2:1 MUX

Table 3.2: Truth Table for 2:1 mux

3.6.2. MEMORY BLOCK:

(RAM) Random-access memory (RAM) is a form of computer data storage. Today, it takes the form of

integrated circuits that allow stored data to be accessed in any order (that is, at random). "Random" refers to the idea

that any piece of data can be returned in a constant time, regardless of its physical location and whether it is related

to the previous piece of data.

The word "RAM" is often associated with volatile types of memory (such as DRAM memory modules),

where the information is lost after the power is switched off. Many other types of memory are RAM as well, including

most types of ROM and a type of flash memory called NOR-Flash.

Scan design has been the backbone of design for testability (DFT) in industry for about three decades because

scan-based design can successfully obtain controllability and observability for flip-flops. Serial Scan design has

dominated the test architecture because it is convenient to build.

In RAS, flip-flops work as addressable memory elements in the test mode which is a similar fashion as random

access memory (RAM). This approach reduces the time of setting and observing the flip-flop states but requires a

large overhead both in gates and test pins. Despite of these drawbacks, the RAS was paid attention by many

researchers in these years.

3.6.3 RING COUNTER:

A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is

fed to the input of the first register. There are two types of ring counters: A ring counter connects the output of the

last shift register to the first shift register input and circulates a single one (or zero) bit around the ring.

For example, in a 4-register one-hot counter, with initial register values of 1000, the repeating pattern is:

1000, 0100, 0010, 000, 1000. Note that one of the registers must be pre-loaded with a 1 (or 0) in order to operate

properly.

A twisted ring counter also called Johnson counter connects the complement of the output of the last shift

register to its input and circulates a stream of ones followed by zeros around the ring. For example, in a 4-register

S I0 I1 Y

1 A B A

0 A B B

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 13

counter, with initial register values of 0000, the repeating pattern is: 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001.

If the output of a shift register is fed back to the input.

Fig 3.7: Operation of Ring counter

The data pattern contained within the shift register will recirculate as long as clock pulses are applied. For

example, the data pattern will repeat every four clock pulses in the fig 3.7. However, we must load a data pattern. All

0's or all 1's doesn't count. 4-bit ring counter, which means it consists of 4 D flip-flops connected in a ring

configuration.

Initially, if all flip-flops are reset, all outputs are 0. When the clock pulse arrives, the value at the input of FF1

gets transferred to its output (Q1). The value at Q1 gets transferred to Q2 on the next clock pulse. Similarly, the value

at Q2 gets transferred to Q3, and Q3 to Q4. Finally, the value at Q4 gets transferred back to Q1, completing the loop.

This process continues with each clock pulse, causing the logic level to circulate around the ring. Each flip-flop in the

ring holds a different bit of the counter value. So, as the clock pulses, the counter effectively counts in binary from

0001 to 1111 (or in decimal from 1 to 15), with each clock pulse representing one count increment. Ring counters are

often used in applications where a cyclic sequence is needed, such as generating control signals for sequential circuits

or creating timing signals in digital systems. Fig 3.7 represents the operation of ring counter.

3.6.4 DEMUX:

 It is normally called as the “demultiplexer”. The operation of the demux is opposite to the multiplexer, by

taking a single input and gives many numbers of output lines based on control signals or selection signals. The

selection of the output line is controlled by a set of binary control inputs.

The number of control lines depends on the number of output lines. There are some of common sizes include

1:2, 1:4, 1:8, 1:16, etc. where the first number represents the number of output lines and the second number represents

the number of control lines. It is also to distribute a single incoming data stream to multiple output channels. It is used

for data routing and distribution.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 14

Fig 3.9: Representation of demux diagram and its truth table

Demultiplexers operate based on the principle of Boolean logic. The control inputs determine which output

line receives the input signal. For example, in a 1:4 demultiplexer, there are two control inputs (typically labelled as

A and B), and the combination of these inputs selects one of the four output lines to receive the input signal.

Each demultiplexer has a truth table that defines the output for every combination of input signals and control

inputs. Demultiplexers can be implemented using logic gates such as AND gates, OR gates, and NOT gates, or using

electronic switches such as transmission gates or CMOS switches. Demultiplexers introduce some delay in the signal

path due to the time taken to select and route the input signal to the selected output line. The Fig 3.10 represents

demux diagram and its truth table.

4. PROPOSED ARCHITECTURE

4.1 MEMORY ORGANISATION OF PROPOSED ARCHITECTURE:

 The memory organisation of the FIFO architecture in existing method can be implemented by using normal

RING COUNTER. During this process the power consumption is more due to the clock supply. By controlling this

issue, we can insert the modified RING COUNTER is also called as “CLOCK GATING RING COUNTER”.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 15

4.2 MODIFIED FIFO ARCHITECTURE:

Modified FIFO architecture can be organized with the replaced ring counter that is connected to the memory

block. In this architecture the total block cell is divided into two blocks, by insertion of two SR flipflops in each

memory block and the clock supply also divided into two clock pulses which is shown in Fig 4.1. However, this can

generate non-collision hash join architecture with efficient power supply.

Fig.4.1: Proposed block of Memory organisation

4.2.1. CLOCK GATING RING COUNTER:

In Fig.4.1, the modifications are held in the ring counter block and the working of the clock gating and the

ring counter that can be explained in the below process.

A clock gating ring counter is a sequential logic circuit used in digital design. It combines the concepts of

clock gating and ring counter.

Clock Gating: In digital circuits, clock gating is a technique used to reduce power consumption by disabling

the clock signal to certain parts of a circuit when they are not in use. This is achieved by using a gating signal to

enable or disable the clock signal.

Ring Counter: A ring counter is a type of counter in which the output of each flip-flop is connected to the

input of the next flip-flop in a circular arrangement. The counter advances by one count with each clock cycle, with

only one flip-flop being in the active state at any given time.

Combining these two concepts, a clock gating ring counter uses clock gating to enable or disable the clock

signal to individual stages of a ring counter. This can be useful for applications where power consumption needs to

be minimized or where clock signals need to be dynamically controlled based on certain conditions.

For example, in a system where certain operations are only performed periodically, the clock gating ring

counter can disable the clock signal to those parts of the system during idle periods, thus saving power. When those

operations are needed, the clock gating can be enabled to allow the clock signal to propagate through the ring counter

and perform the necessary tasks.

MEMORY

BLOCK
MUX

DE-MUX

Clock Gating RING COUNTER

INPUT

DATA

OUTPUT

DATA

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 16

4.3. NON-COLLISON PARALLEL HASH JOIN STRATEGY WITH CLOCK GATING FIFO:

 Non-collision parallel hash join strategy with Clock gating FIFO is implemented in given Fig.4.2 that divided

the ring counter of D flipflops block into two equal parts and the AND gate is inserted in between the SR flipflop and

the D flip flops in the equal manner.

 Fig.4.2: Modified Ring Counter with SR Flip-Flops

 The output of the last D flip flop is given the input to OR gate and the gate output is given input to the first

SR flipflop and the output 1 of d-ff and the input of the half block of first d-ff is given the inputs to the second SR

flipflop.

 The clock pulse is supply to the both SR flipflops and AND gate, when the half of the ring counter is in active

state and other half is in disable state because of the ring counter is allow only single 1, if the logic 1 is applied to the

first half, then the clock supply is given to the particular block only remaining block is off state.

 The above block diagram Fig.4.2 shows the Power controlled Ring counter. First, total block is

divided into two blocks. Each block is having one SR FLIPFLOP controller.

Table 4.1: SR Flip Flop Truth Table

 S R Q(t-1) Q

 0 0 0 0

 0 0 1 1

 0 1 1 0

 0 1 1 0

 1 0 1 1

 1 0 1 1

 1 1 0 X

 1 1 1 X

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 17

It is a Flip Flop with two inputs, one is S and other is R. S here stands for Set and R here stands for Reset. Set

basically indicates set the flip flop which means output 1 and reset indicates resetting the flip flop which means output

0. Here clock pulse is supplied to operate this flip flop, hence it is clocked flip flop shown in Table 4.3. During this

process the entire power is reduced compare to the existing method and the non-collision hash join architecture is

implemented.

RESULTS AND DISCUSSIONS

6.1. EXISTING METHOD:

 The simulation results of existing method is implemented by using Xilinx Vivado software tool. In each

method power synthesis is generated and the total on-chip power and the dynamic and static powers are designed in

the implementation. The power delayed products are shown in the table 5.1 and four memory locations.

Fig.5.1: Simulation results of existing architecture.

The hash join architecture can be implemented by using the FIFO architecture, in this memory organisation RING

COUNTER is used. It is consists a set of flip-flops connected in a circular manner. In this simulation any two hash

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 18

tables (hash1, hash2, hash3, hash4) can be joined and the combined memory locations are generated in the output as

shown in (fig.5.1).

 Fig 5.2: Power generated in exiting method

 The total On-Chip power that can be optimised in this design is 4.078 W as shown in Fig 5.2. The dynamic

power is 3.892 W and the static power is 0.186 W are simulated in run synthesis which are given in Table 5.1.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 19

6.2 PROPOSED METHOD:

 The simulation results of the proposed method is implemented by using Xilinx Vivado software tool. In each

method power synthesis is generated and the total on-chip power and the dynamic and static powers are designed in

the implementation. The power delayed products are shown in the Table 6.1 and four memory locations.

 Fig.5.5: Simulation results of proposed architecture.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 20

 The above simulation results are same as in the existing method but in this design ring counter that can be

modified.

The modified “RING COUNTER using Clock Gating” technique is used and the power consumption can be reduced

by this clock gating technique.

 The total on chip power that can be reduced as compare to existing method is 2.836W as shown in Fig 5.5.

The dynamic power is 0.141 W and the static power is 2.713 W are simulated in run synthesis which are given in

Table 5.1.

 Fig 5.6: Total on chip power in proposed method

 The area and the time delay in proposed method are generated as 508 gates are used

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 21

And the time is taken as 7.738ns as shown in Fig.5.7 and Fig 5.8.

 Fig 5.7: Area in Proposed Method

 Fig 5.8: Time Delay in Proposed Method

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 22

6.3 SYNTHESIS RESULTS:

It is observed from the synthesis results, it seems the proposed solution significantly reduces the total on-chip

power consumption from 4.078 W to 2.836 W. The area is same in existed and proposed methods. The total no. of

gates required are 508 gates in both methods, total time delay in existing is 5.377ns and the total time delay in proposed

is 7.738ns.

 Table 5.1: Comparison of Area, Power, Time delay.

AREA

DELAY

POWER

EXISTING

Total no. of gates

required: 508 gates

Total delay: 5.377ns

Total on chip power:

4.078W

 PROPOSED

Total no. of gates

required: 508 gates

Total delay: 7.738ns

Total on chip power:

2.836W

CONCLUSION:

 In this project, multiple hash channels are provided to distribute the same table, tuples are processed in each channel

in a pipeline, and each hash channel operates in parallel. A small CAM is used to resolve the hash collision by storing

the tuples that cannot be inserted to all the channels. A data shift strategy is used in the build and probe phases to

reduce the stalling of FPGA. Our design achieves a O (1) memory access time of the hash table for each phase, a

constant time of the CAM insert operation in the build phase, and one clock cycle of the CAM search operation in the

probe phase to improve the hash join throughput and ensure a deterministic worst case query time. Extended modified

memory accessing scheme yields parameter optimisation when compare with existing method. The power has reduced

by 1.242 watts in proposed architecture. So, non-Collision-based hash join architecture with power optimized

architecture is concluded.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 23

FUTURE SCOPE:

The other enhancement of this project is that the analysis of the critical parameters of the system

characteristics to the performance gives insights to the architectural improvements for future hardware. Memory

bandwidth for FPGA will grow by taking advantage of the improved frequency of FPGA and number of memory

channels as well as the utilization of High Bandwidth Memory (HBM). The size of the on-chip RAMs can be even

bigger according to its development over the last decade. For example, Xilinx Ultra Scale+ devices can have total

62.5MB on-chip RAMs. The Open CL SDK for FPGA can be much stronger providing better timing results and

resource utilization.

 REFERENCES

 [1] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander, “Relational joins on graphics

processors,” in SIGMOD, 2008.

[2] J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins on the coupled cpu-gpu architecture,” Proc.

VLDB Endow., 2013.

[3] R. Rui, H. Li, and Y. C. Tu, “Join algorithms on gpus: A revisit after seven years,” in ICBD, 2015.

[4] R. Rui and Y.-C. Tu, “Fast equi-join algorithms on gpus: Design and implementation,” in SSDBM, 2017.

[5] M. Yabuta, A. Nguyen, S. Kato, M. Edahiro, and H. Kawashima, “Relational joins on gpus: A closer look,” TPDS,

2017.

[6] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “Gpu join processing revisited,” in DaMoN, 2012.

[7] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel weaver: Automatically fusing database primitives

for efficient gpu computation,” in MICROArch, 2012. [8] J. He, S. Zhang, and B. He, “In-cache query co-processing

on coupled cpu-gpu architectures,” Proc. VLDB Endow., 2014. [9] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R.

Appuswamy, and A. Ailamaki, “Hardware-conscious Hash-Joins on GPUs,” ICDE, 2019.

[10] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main memory hash join algorithms for multi-core

cpus,” in SIGMOD, 2011.

[11] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu, “Main-memory hash joins on multi-core cpus: Tuning to

the underlying hardware,” in ICDE, 2013.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36906 | Page 24

[12] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani, A. Di Blas, and P. Dubey,

“Sort vs. hash revisited: Fast join implementation on modern multi-core cpus,” Proc. VLDB Endow., 2009.

[13] S. Schuh, X. Chen, and J. Dittrich, “An experimental comparison of thirteen relational equi-joins in main

memory,” in SIGMOD, 2016.

[14] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. Owens, and N. Amenta, “Building an efficient

hash table on the gpu,” in GEMS, 2011.

[15] H. Pirk, S. Manegold, and M. Kersten, “Accelerating foreign-key joins using asymmetric memory channels,” in

ADMS, 2011.

[16] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate cpu vs. gpu performance without the

answer,” in ISPASS, 2011.

[17] Y. Yuan, R. Lee, and X. Zhang, “The yin and yang of processing data warehousing queries on gpu devices,”

Proc. VLDB Endow., 2013.

[18] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl, “Hardwareoblivious parallelism for in-memory

column-stores,” Proc. VLDB Endow., 2013.

[19] J. Krueger, et. al. “Fast Updates on Read Optimized Databases Using MultiCore CPUs,” Proceedings of the

VLDB Endowment, Vol. 5, No. 1, August 2012.

[20] B. Low, B. Ooi, and C. Wong, “Exploration on Scalability of Database Bulk Insertion with Multi-threading” Int.

J. New Computer Architectures and Their Applications, 2011.

[21] R. Johnson, V. Raman, R. Sidle, and G Swart,“Rowwise Parallel Predicate Evaluation” Proc. Int. Conf on

VLDB’08.

[22] R. Mueller, J. Teubner, and G. Alonso, “Glacier: a query-tohardware compiler”, In ACM SIGMOD.

[23] J. Teubner and R. Mueller, “How soccer players would do stream joins,” SIGMOD ’11.

[24] M. Sadoghi et al, "Multi-Query Stream Processing on FPGAs", IEEE Int. Conference on Data Engineering

(ICDE), 2012.

 [25] B. Sukhwani, et. al. “Database Analytics Acceleration using FPGAs,” Proceedings of the 21st International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2012.

http://www.ijsrem.com/

