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Abstract

As multi-agent Al systems transition from research prototypes to production deployments, practitioners face critical
decisions about model selection, agent configuration, and resource allocation that directly impact business outcomes.
However, existing evaluation approaches focus narrowly on accuracy metrics without considering latency, cost, and
scalability constraints that dominate real-world deployments. This paper presents PRAXIS (Production Real-world
Agent eXecution Intelligence Suite), a systematic benchmarking framework designed to evaluate multi-agent system
performance across the accuracy-latency-cost Pareto frontier under realistic production conditions. We introduce
standardized task suites spanning reasoning, tool use, and collaboration scenarios, along with measurement
methodologies that capture cold-start behavior, streaming latency, and throughput under load. Evaluation of 12 agent
configurations across 5 foundation models reveals that optimal configurations vary significantly by task type, with
accuracy-latency tradeoffs following predictable patterns amenable to intelligent routing. We demonstrate production
impact through a Fortune 500 enterprise deployment achieving 68% reduction in operational costs while
maintaining service-level agreements. Our framework enables practitioners to make informed deployment decisions:
analysis identifies a 3.2x cost reduction opportunity through adaptive model selection without sacrificing accuracy.
PRAXIS is released as open-source software with an interactive benchmarking dashboard.

Keywords: Multi-Agent Systems, Benchmarking, Large Language Models, Performance Evaluation, Accuracy-
Latency Tradeoffs, Production Al, Enterprise Deployment

1. Introduction

The emergence of agentic Al systems—autonomous agents powered by large language models (LLMs) capable of
reasoning, planning, and executing complex tasks—has generated significant interest in enterprise applications. These
systems promise to automate knowledge work ranging from customer support to data analysis. However, translating
research demonstrations into production deployments requires navigating complex tradeoffs between accuracy, latency,
cost, and reliability that directly impact business outcomes and user experience.

Current evaluation practices suffer from several limitations that impede production deployment decisions:

o Accuracy Myopia: Academic benchmarks prioritize task completion rates without measuring
response time or resource consumption—metrics that determine production viability
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o Idealized Conditions: Evaluations assume unlimited resources, ignoring cold-start delays, rate limits,
and concurrent load that characterize real deployments

o Single-Model Focus: Comparisons evaluate individual models rather than heterogeneous agent
configurations and routing strategies

. Reproducibility Gaps: Inconsistent evaluation protocols make cross-study comparisons unreliable,
forcing practitioners to re-benchmark for their specific use cases

o Missing Business Context: No connection between benchmark results and actual deployment impact
(cost savings, SLA compliance, throughput capacity)

This paper addresses these gaps through PRAXIS, a comprehensive framework for evaluating multi-agent systems
under realistic production constraints. Unlike existing benchmarks that treat evaluation as an academic exercise,
PRAXIS is designed to directly inform deployment decisions with quantifiable business impact.

Our contributions are as follows:

1. Production-Oriented Benchmark Suite: A standardized benchmark of 500 tasks covering reasoning,
tool use, and multi-agent collaboration, designed to reflect enterprise workload distributions with complexity
scoring for routing research.

2. Multi-Dimensional Measurement Framework: Comprehensive methodologies capturing latency
distributions (TTFT, E2E, percentiles), throughput curves under load, cost efficiency, and cold-start
behavior—metrics critical for capacity planning and SLA design.

3. Pareto Frontier Analysis: Techniques for identifying optimal accuracy-latency-cost operating points,
enabling principled configuration selection based on application requirements.

4. Validated Production Impact: Empirical demonstration through a Fortune 500 enterprise
deployment achieving 68% cost reduction while maintaining accuracy SLAs—bridging the gap between
benchmark results and real-world outcomes.

5. Open-Source Implementation: Complete framework release including task definitions, measurement
harness, analysis tools, and interactive dashboard for reproducible evaluation.

2. Related Work
2.1 LLM Evaluation Benchmarks

Traditional LLM benchmarks focus on capability assessment. MMLU evaluates broad knowledge across academic
subjects. HumanEval measures code generation ability. More recently, benchmarks like GAIA and AgentBench target
agentic capabilities including tool use and multi-step reasoning.

However, these benchmarks evaluate accuracy under idealized conditions without latency or cost constraints relevant
to production deployments. A system achieving 95% accuracy with 10-second latency may be unusable for interactive
applications, yet benchmarks treat it equivalently to a 95% accuracy system with sub-second response times.

2.2 Efficiency Evaluation

Prior work has examined LLM efficiency from various angles. Frugal GPT demonstrated cost reduction through model
cascading. RouteLLM explored intelligent routing between models of varying capability. These approaches optimize
specific metrics but lack comprehensive frameworks for multi-objective evaluation that practitioners can apply directly.
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2.3 Production ML Evaluation

The MLPerf benchmark suite established standards for ML system performance evaluation, including latency,
throughput, and energy metrics. Our work extends these principles to the unique characteristics of agentic Al systems,
including variable-length interactions, tool call dependencies, and the combinatorial space of agent configurations.

2.4 Positioning of PRAXIS

PRAXIS differentiates from prior work through: - Multi-objective optimization vs. single-metric focus - Production
conditions (cold starts, rate limits, concurrent load) vs. idealized evaluation - Configuration space exploration
vs. single-model comparison - Business impact validation vs. abstract metric reporting

3. Framework Design

3.1 Design Goals

PRAXIS is designed around five principles:

1. Comprehensiveness: Evaluate accuracy, latency, cost, and reliability jointly with explicit tradeoff
analysis

2. Realism: Simulate production conditions including cold starts, rate limits, concurrent load, and failure
injection

3. Reproducibility: Standardized protocols enabling cross-study comparison with published baselines

4. Extensibility: Modular architecture supporting new tasks, metrics, and agent configurations

5. Actionability: Results directly inform deployment decisions with quantified business impact

3.2 Architecture Overview

Table 1: PRAXIS Architecture Components

Component Responsibility

Task Suite Standardized evaluation tasks with complexity scoring
Harness Execution environment, orchestration, failure injection
Metrics Engine Multi-dimensional measurement collection and aggregation
Analysis Tools Pareto optimization, routing simulation, cost modeling
Dashboard Interactive visualization and comparison interface

3.3 Task Suite
The benchmark includes 500 tasks across three categories, designed to reflect enterprise workload distributions:
Reasoning Tasks (200 tasks)

Multi-step reasoning problems requiring logical inference:

o Mathematical word problems with chain-of-thought reasoning
o Constraint satisfaction and planning puzzles
o Causal reasoning and counterfactual analysis

Complexity distribution: 40% simple (1-2 steps), 35% moderate (3-5 steps), 25% complex (6+ steps)
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Tool Use Tasks (200 tasks)

Tasks requiring interaction with external tools:

. Database queries with SQL generation
o API orchestration across multiple services
o File system operations and data transformation

Complexity distribution: 30% single-tool, 45% multi-tool sequential, 25% multi-tool parallel
Collaboration Tasks (100 tasks)

Multi-agent scenarios requiring coordination:

. Debate and consensus-building
o Divide-and-conquer problem decomposition
o Reviewer-author interaction patterns

3.4 Metrics Framework

Accuracy Metrics

o Task Completion Rate (TCR): Binary success/failure per task
o Partial Credit Score (PCS): Continuous score for partially correct responses
o Reasoning Quality (RQ): Human-evaluated explanation quality (1-5 scale)

Reasoning Quality (RQ) was evaluated by two independent annotators blinded to model configuration. Scores were
averaged across annotators, with inter-rater agreement of k = 0.69 (Cohen’s kappa) averaged across task categories,
indicating substantial agreement.

Latency Metrics

o Time to First Token (TTFT): Initial response latency (critical for perceived responsiveness)
o End-to-End Latency (E2E): Total task completion time
o Percentile Distribution: P50, P90, P95, P99 latencies (SLA-relevant)
Cost Metrics
o Token Consumption: Input and output tokens per task
o API Cost: Dollar cost based on provider pricing
o Cost per Success: Amortized cost including failures (true deployment cost)
Throughput Metrics
o Queries per Second (QPS): Maximum sustainable throughput
o Concurrent Capacity: Tasks handled simultaneously without degradation
o Degradation Curve: Latency vs. load relationship (capacity planning)

Production Metrics

o Cold Start Penalty: Additional latency for first request after idle
o Error Rate Under Load: Failure rate at various throughput levels
o Recovery Time: Time to return to baseline after saturation
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4. Measurement Methodology

4.1 Latency Measurement Protocol

Accurate latency measurement requires careful attention to measurement points:
E2E =T _queue + T _cold+ T inference + T tool + T network

where: - T_queue: Time waiting in request queue - T _cold: Cold-start initialization (if applicable) - T inference: LLM
inference time - T tool: External tool execution time - T network: Network round-trip overhead

Cold Start Measurement

Cold start behavior is measured by: 1. Allowing the system to idle for 5 minutes 2. Issuing a single request and
measuring response time 3. Comparing against warm-state baseline 4. Repeating 10 times for statistical validity

Streaming Latency

For streaming responses, we measure: - TTFT: Time until first token received - Inter-token latency: Average time
between tokens - Time to completion: Full response generation time

4.2 Throughput Measurement Protocol
Algorithm 1: Throughput Measurement

INPUT: Target QPS range [q_min, q_max], step size Aq
OUTPUT: Throughput curve C

1. C«[]

2. FOR q =q_min to q_max step Aq:

3. Configure load generator for q QPS

4. Run for 5 minutes, collecting metrics

5. metrics < {latency p50, latency p99, error rate}
6.  C.append((qg, metrics))

7. IF error_rate > 0.05 OR latency p99 > threshold:
8 BREAK // System saturated

9. RETURN C

4.3 Statistical Considerations

All measurements are repeated with sufficient samples for statistical validity:

o Minimum 100 samples per task category

o 95% confidence intervals reported for all metrics

o Outlier handling via winsorization at 1st/99th percentiles

o Statistical significance testing (McNemar’s test for completion rates)

Differences below 1.5% in completion rate were generally not statistically significant at p < 0.05 given our sample
sizes, informing the precision of comparative claims throughout this paper.

5. Experimental Evaluation

5.1 Agent Configurations

We evaluated 12 agent configurations spanning 5 foundation models:
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Table 2: Evaluated Agent Configurations

Config Model Strategy Cost/1K tokens
Al GPT-4-Turbo ReAct $0.030
A2 GPT-4-Turbo Plan-Execute  $0.030
A3 GPT-40 ReAct $0.015
A4 GPT-40 Plan-Execute  $0.015
A5 GPT-40-mini ReAct $0.002
A6 GPT-40-mini Plan-Execute  $0.002
A7 Claude-3-Opus  ReAct $0.045
A8 Claude-3-Sonnet ReAct $0.009
A9 Claude-3-Haiku  ReAct $0.001
Al10 Llama-3-70B ReAct $0.003
All Llama-3-8B ReAct $0.001
Al12 Mixtral-8x7B ReAct $0.002

5.2 Accuracy Results

Table 3: Task Completion Rates by Category (%)

Config Reasoning Tool Use Collab. Overall

Al 91.5 88.0 82.0 88.2
A2 93.0 90.5 85.0 90.4
A3 89.5 86.0 79.0 86.0
A4 91.0 88.5 82.0 88.4
AS 78.0 74.5 65.0 74.2
A6 80.5 77.0 68.0 76.6
A7 92.0 89.5 84.0 89.4
A8 86.0 82.5 75.0 82.6
A9 71.5 68.0 58.0 67.4
Al0 83.5 79.0 71.0 79.2
All 62.0 555 45.0 56.0
Al2 75.0 70.5 62.0 70.6

5.3 Latency Results

Table 4: Latency Distribution by Configuration (seconds)

Config P50 P90 P95 P99
Al 28 54 72 121
A2 41 7.8 103 16.5
A3 1.9 36 48 82
A4 28 53 70 114
A5 08 15 20 34
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Config P50 P90 P95 P99
A6 1.2 23 3.0 51
A7 34 65 8.6 142
A8 1.6 31 41 69
A9 06 11 15 25
A10 14 27 3.6 60
All 05 09 12 20
Al12 09 1.7 23 38

5.4 Cost Efficiency Analysis

Table 5: Cost per Successful Task (USD)

Config Avg. Tokens

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
All
Al2

3,240
4,890
2,980
4,520
2,450
3,780
3,560
2,890
2,120
2,780
1,950
2,340

5.5 Pareto Analysis

$0.097
$0.147
$0.045
$0.068
$0.005
$0.008
$0.160
$0.026
$0.002
$0.008
$0.002
$0.005

Raw Cost

Cost/Success

$0.110
$0.163
$0.052
$0.077
$0.007
$0.010
$0.179
$0.031
$0.003
$0.010
$0.004
$0.007

Table 6: Pareto-Optimal Configurations

Config Accuracy P50 Latency Cost/Success Recommended Use Case

A2 90.4% 4.1s $0.163 Maximum  accuracy  (complex
analysis)

A4 88.4% 2.8s $0.077 Balanced (general enterprise)

A3 86.0% 1.9s $0.052 Low latency premium (interactive)

AS 74.2% 0.8s $0.007 High-volume, cost-sensitive

A9 67.4% 0.6s $0.003 Minimum latency (real-time)

5.6 Throughput Under Load

Table 7: Throughput Characteristics

Config Max QPS Concurrent
35
55

Al
A3

12
28

Saturation P99

18.5s
12.2s
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Config Max QPS Concurrent Saturation P99

AS 85 70 5.8s
A9 120 75 4.1s
All 180 95 3.2s

6. Enterprise Case Study: Financial Services Deployment

To validate PRAXIS beyond synthetic benchmarks, we report results from a production deployment at a Fortune 500
financial services firm (anonymized as “FinCorp”). This case study demonstrates how benchmark insights translate to
real-world business impact.

6.1 Deployment Context

FinCorp Background: - Global financial services company with 50,000+ employees - Deployed Al agents for
internal knowledge work automation - Initial deployment: Uniform GPT-4-Turbo (Al equivalent) for all tasks -
Monthly volume: ~2.1 million agent invocations - Previous monthly cost: $231,000

Business Requirements: - SLA: 95% of requests completed within 5 seconds - Accuracy: Minimum 85% task
completion for business-critical tasks - Cost: Executive mandate to reduce Al operational costs by 40%

6.2 PRAXIS-Guided Optimization
Using PRAXIS analysis, we implemented a three-tier routing strategy:

Table 11: FinCorp Routing Strategy

Task Category Volume Selected Config Rationale

Simple queries 62% A5 (GPT-40-mini) High volume,
acceptable accuracy

Standard workflows 28% A3 (GPT-40) Balanced performance

Complex analysis 10% A2 (GPT-4-Turbo) Maximum accuracy
required

Implementation Details: - Deployed lightweight complexity classifier (fine-tuned DistilBERT, 50ms overhead) -
Gradual rollout over 6 weeks with A/B testing - Continuous monitoring via PRAXIS dashboard integration

6.3 Production Results (90-Day Evaluation)

Table 12: FinCorp Deployment Outcomes

Metric Before After Change
Monthly Cost $231,000 $74,200 —68%
Avg. Latency (P50) 2.8s 1.4s —50%
SLA Compliance 91% 97% +6 pts

Task Completion 88.2% 86.4%  —1.8 pts
User Satisfaction 3.8/5 4.2/5 +10%

Key Findings:

1. Cost savings exceeded target: 68% reduction vs. 40% mandate, saving $1.88M annually
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2. Latency improved dramatically: Routing simple tasks to faster models improved overall
responsiveness

3. Accuracy tradeoff minimal: 1.8% completion rate decrease was acceptable given cost/latency gains

4, User satisfaction increased: Faster responses improved perceived quality despite slightly lower
accuracy

6.4 Lessons from Production
Several insights emerged that extend beyond PRAXIS benchmarks:

1. Task distribution matters: FinCorp’s 62% simple task ratio was higher than anticipated—accurate
workload profiling is essential

2. Cold starts in practice: API-based models (A1-A9) showed negligible cold start issues; self-hosted
alternatives would have required keep-warm infrastructure

3. Failure cascade risk: Circuit breaker patterns from Nexus architecture prevented cost spikes during
model provider outages

4, Monitoring is essential: Real-time PRAXIS dashboard enabled rapid response to accuracy
degradation events

7. Analysis and Insights

7.1 Accuracy-Latency Tradeoff Patterns

Our analysis reveals consistent patterns across configurations:

Accuracy = a - log(Latency) +

where o and B are model-family dependent. Log-linear regression achieved R? values between 0.62—0.78 across model
families, confirming the logarithmic relationship. This suggests diminishing returns: doubling latency budget yields
approximately 5-8% accuracy improvement.

Implication: Beyond a threshold (approximately 3s for current models), additional latency budget provides minimal

accuracy gains—useful for SLA design.

7.2 Task-Specific Optimal Routing

Table 8: Optimal Configuration by Task Type

Task Type

Simple reasoning
Complex reasoning
Single tool call
Multi-tool orchestration
Two-agent collaboration

Multi-agent coordination

Optimal

A5 (74%, 0.8s)
A2 (93%, 4.1s)
A5 (75%, 0.8s)
A4 (89%, 2.8s)
A8 (75%, 1.6s)
A2 (85%, 4.1s)

Runner-up

A9 (67%, 0.6s)
A7 (92%, 3.4s)
A8 (83%, 1.6s)
Al (88%, 2.8s)
A3 (79%, 1.9s)
AT (84%, 3.4s)

Routing Signal

Low complexity score
High complexity score
Tool count = 1

Tool count > 2

Agent count = 2

Agent count > 2
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7.3 Cost Optimization Opportunity

Table 9: Cost Optimization via Intelligent Routing

Strategy Accuracy Avg. Cost/Task Annual Cost (1M tasks)
Always Al (GPT-4-Turbo) 88.2% $0.110 $110,000

Always AS (GPT-40-mini) 74.2% $0.007 $7,000

Intelligent Routing 86.8% $0.034 $34,000

Savings vs. Al -1.4% 3.2x $76,000/year

7.4 Cold Start Impact

Table 10: Cold Start Latency Overhead

Config Cold Start Overhead vs. Warm

Al 4.2s +50%

AS 1.8s +125%
Al0 8.5s +507%
All 3.2s +540%

Self-hosted models (A10, Al1l) exhibit the largest cold start penalties, making them less suitable for sporadic
workloads without keep-warm infrastructure investment.

Deployment Guidance: In practice, these penalties suggest that self-hosted models are best suited for sustained, high-
throughput workloads where cold starts are amortized across many requests, while API-based models are more
economical for bursty or unpredictable traffic patterns.

8. Discussion
8.1 Implications for Practitioners

Our findings suggest several actionable deployment strategies:

1. Implement Task Routing: Use lightweight classifiers to route tasks to appropriate configurations—
PRAXIS provides training data and baseline accuracy

2. Set Latency Budgets: Choose configurations based on application latency requirements; the
logarithmic accuracy-latency relationship enables principled tradeoffs

3. Monitor Cost per Success: Raw API costs understate true costs when including failures and retries;
PRAXIS cost metrics reflect production reality

4. Consider Cold Start: Serverless architectures may require keep-warm strategies for self-hosted
models; API-based models generally have acceptable cold start behavior

5. Profile Your Workload: The FinCorp case study demonstrates that workload distribution
significantly impacts optimal configuration, PRAXIS dashboard helps characterize task complexity
distribution
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8.2 Architectural Implications for Agent Design
Beyond configuration selection, PRAXIS results inform fundamental agent architecture decisions:

. Planner Depth vs. Latency: Plan-and-Execute strategies (A2, A4, A6) consistently outperform
ReAct on complex tasks but add 40-60% latency overhead. Use Plan-and-Execute when task complexity
exceeds 4 steps; default to ReAct otherwise.

o When Multi-Agent Adds Value: Two-agent configurations showed diminishing returns beyond
debate/review patterns. Multi-agent coordination (3+ agents) is only justified for tasks requiring genuine
specialization—not as a general accuracy boost.

o Collapsing Agent Flows: Many production deployments over-engineer agent interactions. Our data
suggests that 62% of enterprise tasks (per FinCorp) are handled optimally by single-turn or simple ReAct
loops. Reserve complex orchestration for the tail.

o Model Heterogeneity in Pipelines: Consider using fast/cheap models (A5, A9) for initial triage and
routing decisions, reserving expensive models (A1, A2, A7) for final synthesis. This “funnel” pattern underlies
the 3.2x cost savings.

8.3 Limitations
Several limitations should be acknowledged:

1. Model Evolution: Results reflect specific model versions (January 2026); capabilities and pricing
evolve rapidly

2. Task Coverage: Our benchmark may not represent all production use cases; organizations should
supplement with domain-specific evaluation

3. Provider Variability: Latency varies by time of day, region, and provider load; PRAXIS
measurements represent controlled conditions

4. Cost Volatility: API pricing changes frequently; cost projections require periodic recalibration
8.4 Reproducibility and Open Science

To support reproducibility and community advancement, we provide:

o Complete task definitions: 500 tasks with ground truth and complexity labels

. Measurement harness: Standardized protocols for latency, throughput, and cost measurement
o Analysis tools: Pareto optimization, routing simulation, and cost modeling

o Raw results: All configuration measurements for independent verification

. Interactive dashboard: Web-based comparison and visualization tool

Repository: https://github.com/sandeepnutakki/praxis-bench

9. Conclusion

This paper presented PRAXIS, a systematic framework for evaluating multi-agent Al systems across accuracy,
latency, cost, and throughput dimensions under realistic production conditions. Our evaluation of 12 agent
configurations revealed significant variation in optimal configurations by task type, with a 3.2x cost reduction
achievable through intelligent routing without meaningful accuracy sacrifice.
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Key findings include:

1. Accuracy-latency tradeoffs follow logarithmic patterns with diminishing returns beyond ~3s
latency budget

2. Optimal configuration varies dramatically by task complexity, motivating intelligent routing as a
first-class deployment concern

3. Cold start penalties significantly impact self-hosted deployment economics, favoring API-based
models for variable workloads

4, Cost per successful task is the appropriate metric for production planning, often 10-20% higher than
raw API costs

Production validation through the FinCorp case study demonstrates that PRAXIS insights translate directly to
business impact: 68% cost reduction ($1.88M annual savings) while improving latency SLA compliance from 91%
to 97%.

We release PRAXIS as open-source software to enable practitioners to make informed deployment decisions and to
advance community understanding of production agentic Al system performance. Results are representative of current
model generations and pricing as of January 2026; we commit to maintaining updated benchmarks as the landscape
evolves.

9.1 Companion Materials

To maximize impact beyond the academic paper, PRAXIS includes:

o GitHub Repository: Complete source code, task definitions, and measurement infrastructure
(https://github.com/sandeepnutakki/praxis-bench)
o Interactive Dashboard: Web-based benchmarking results viewer with custom comparison tools
o Practitioner Guide: Medium/Substack explainer series covering deployment best practices
o Benchmark Results API: Programmatic access to all measurement data for integration into MLOps
pipelines

9.2 Future Work

Future research directions include:

o Continuous benchmark updates tracking model evolution

o Domain-specific task suites (legal, medical, financial)

o Multi-provider routing strategies for reliability

o Energy efficiency metrics for sustainability reporting

o Integration with CI/CD pipelines for continuous evaluation
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