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Abstract 

As multi-agent AI systems transition from research prototypes to production deployments, practitioners face critical 

decisions about model selection, agent configuration, and resource allocation that directly impact business outcomes. 

However, existing evaluation approaches focus narrowly on accuracy metrics without considering latency, cost, and 

scalability constraints that dominate real-world deployments. This paper presents PRAXIS (Production Real-world 

Agent eXecution Intelligence Suite), a systematic benchmarking framework designed to evaluate multi-agent system 

performance across the accuracy-latency-cost Pareto frontier under realistic production conditions. We introduce 

standardized task suites spanning reasoning, tool use, and collaboration scenarios, along with measurement 

methodologies that capture cold-start behavior, streaming latency, and throughput under load. Evaluation of 12 agent 

configurations across 5 foundation models reveals that optimal configurations vary significantly by task type, with 

accuracy-latency tradeoffs following predictable patterns amenable to intelligent routing. We demonstrate production 

impact through a Fortune 500 enterprise deployment achieving 68% reduction in operational costs while 

maintaining service-level agreements. Our framework enables practitioners to make informed deployment decisions: 

analysis identifies a 3.2x cost reduction opportunity through adaptive model selection without sacrificing accuracy. 

PRAXIS is released as open-source software with an interactive benchmarking dashboard. 

Keywords: Multi-Agent Systems, Benchmarking, Large Language Models, Performance Evaluation, Accuracy-

Latency Tradeoffs, Production AI, Enterprise Deployment 

 

1. Introduction 

The emergence of agentic AI systems—autonomous agents powered by large language models (LLMs) capable of 

reasoning, planning, and executing complex tasks—has generated significant interest in enterprise applications. These 

systems promise to automate knowledge work ranging from customer support to data analysis. However, translating 

research demonstrations into production deployments requires navigating complex tradeoffs between accuracy, latency, 

cost, and reliability that directly impact business outcomes and user experience. 

Current evaluation practices suffer from several limitations that impede production deployment decisions: 

• Accuracy Myopia: Academic benchmarks prioritize task completion rates without measuring 

response time or resource consumption—metrics that determine production viability 
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• Idealized Conditions: Evaluations assume unlimited resources, ignoring cold-start delays, rate limits, 

and concurrent load that characterize real deployments 

• Single-Model Focus: Comparisons evaluate individual models rather than heterogeneous agent 

configurations and routing strategies 

• Reproducibility Gaps: Inconsistent evaluation protocols make cross-study comparisons unreliable, 

forcing practitioners to re-benchmark for their specific use cases 

• Missing Business Context: No connection between benchmark results and actual deployment impact 

(cost savings, SLA compliance, throughput capacity) 

This paper addresses these gaps through PRAXIS, a comprehensive framework for evaluating multi-agent systems 

under realistic production constraints. Unlike existing benchmarks that treat evaluation as an academic exercise, 

PRAXIS is designed to directly inform deployment decisions with quantifiable business impact. 

Our contributions are as follows: 

1. Production-Oriented Benchmark Suite: A standardized benchmark of 500 tasks covering reasoning, 

tool use, and multi-agent collaboration, designed to reflect enterprise workload distributions with complexity 

scoring for routing research. 

2. Multi-Dimensional Measurement Framework: Comprehensive methodologies capturing latency 

distributions (TTFT, E2E, percentiles), throughput curves under load, cost efficiency, and cold-start 

behavior—metrics critical for capacity planning and SLA design. 

3. Pareto Frontier Analysis: Techniques for identifying optimal accuracy-latency-cost operating points, 

enabling principled configuration selection based on application requirements. 

4. Validated Production Impact: Empirical demonstration through a Fortune 500 enterprise 

deployment achieving 68% cost reduction while maintaining accuracy SLAs—bridging the gap between 

benchmark results and real-world outcomes. 

5. Open-Source Implementation: Complete framework release including task definitions, measurement 

harness, analysis tools, and interactive dashboard for reproducible evaluation. 

2. Related Work 

2.1 LLM Evaluation Benchmarks 

Traditional LLM benchmarks focus on capability assessment. MMLU evaluates broad knowledge across academic 

subjects. HumanEval measures code generation ability. More recently, benchmarks like GAIA and AgentBench target 

agentic capabilities including tool use and multi-step reasoning. 

However, these benchmarks evaluate accuracy under idealized conditions without latency or cost constraints relevant 

to production deployments. A system achieving 95% accuracy with 10-second latency may be unusable for interactive 

applications, yet benchmarks treat it equivalently to a 95% accuracy system with sub-second response times. 

2.2 Efficiency Evaluation 

Prior work has examined LLM efficiency from various angles. FrugalGPT demonstrated cost reduction through model 

cascading. RouteLLM explored intelligent routing between models of varying capability. These approaches optimize 

specific metrics but lack comprehensive frameworks for multi-objective evaluation that practitioners can apply directly. 
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2.3 Production ML Evaluation 

The MLPerf benchmark suite established standards for ML system performance evaluation, including latency, 

throughput, and energy metrics. Our work extends these principles to the unique characteristics of agentic AI systems, 

including variable-length interactions, tool call dependencies, and the combinatorial space of agent configurations. 

2.4 Positioning of PRAXIS 

PRAXIS differentiates from prior work through: - Multi-objective optimization vs. single-metric focus - Production 

conditions (cold starts, rate limits, concurrent load) vs. idealized evaluation - Configuration space exploration 

vs. single-model comparison - Business impact validation vs. abstract metric reporting 

3. Framework Design 

3.1 Design Goals 

PRAXIS is designed around five principles: 

1. Comprehensiveness: Evaluate accuracy, latency, cost, and reliability jointly with explicit tradeoff 

analysis 

2. Realism: Simulate production conditions including cold starts, rate limits, concurrent load, and failure 

injection 

3. Reproducibility: Standardized protocols enabling cross-study comparison with published baselines 

4. Extensibility: Modular architecture supporting new tasks, metrics, and agent configurations 

5. Actionability: Results directly inform deployment decisions with quantified business impact 

3.2 Architecture Overview 

Table 1: PRAXIS Architecture Components 

Component Responsibility 

Task Suite Standardized evaluation tasks with complexity scoring 

Harness Execution environment, orchestration, failure injection 

Metrics Engine Multi-dimensional measurement collection and aggregation 

Analysis Tools Pareto optimization, routing simulation, cost modeling 

Dashboard Interactive visualization and comparison interface 

3.3 Task Suite 

The benchmark includes 500 tasks across three categories, designed to reflect enterprise workload distributions: 

Reasoning Tasks (200 tasks) 

Multi-step reasoning problems requiring logical inference: 

• Mathematical word problems with chain-of-thought reasoning 

• Constraint satisfaction and planning puzzles 

• Causal reasoning and counterfactual analysis 

Complexity distribution: 40% simple (1-2 steps), 35% moderate (3-5 steps), 25% complex (6+ steps) 
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Tool Use Tasks (200 tasks) 

Tasks requiring interaction with external tools: 

• Database queries with SQL generation 

• API orchestration across multiple services 

• File system operations and data transformation 

Complexity distribution: 30% single-tool, 45% multi-tool sequential, 25% multi-tool parallel 

Collaboration Tasks (100 tasks) 

Multi-agent scenarios requiring coordination: 

• Debate and consensus-building 

• Divide-and-conquer problem decomposition 

• Reviewer-author interaction patterns 

3.4 Metrics Framework 

Accuracy Metrics 

• Task Completion Rate (TCR): Binary success/failure per task 

• Partial Credit Score (PCS): Continuous score for partially correct responses 

• Reasoning Quality (RQ): Human-evaluated explanation quality (1-5 scale) 

Reasoning Quality (RQ) was evaluated by two independent annotators blinded to model configuration. Scores were 

averaged across annotators, with inter-rater agreement of κ = 0.69 (Cohen’s kappa) averaged across task categories, 

indicating substantial agreement. 

Latency Metrics 

• Time to First Token (TTFT): Initial response latency (critical for perceived responsiveness) 

• End-to-End Latency (E2E): Total task completion time 

• Percentile Distribution: P50, P90, P95, P99 latencies (SLA-relevant) 

Cost Metrics 

• Token Consumption: Input and output tokens per task 

• API Cost: Dollar cost based on provider pricing 

• Cost per Success: Amortized cost including failures (true deployment cost) 

Throughput Metrics 

• Queries per Second (QPS): Maximum sustainable throughput 

• Concurrent Capacity: Tasks handled simultaneously without degradation 

• Degradation Curve: Latency vs. load relationship (capacity planning) 

Production Metrics 

• Cold Start Penalty: Additional latency for first request after idle 

• Error Rate Under Load: Failure rate at various throughput levels 

• Recovery Time: Time to return to baseline after saturation 
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4. Measurement Methodology 

4.1 Latency Measurement Protocol 

Accurate latency measurement requires careful attention to measurement points: 

E2E = T_queue + T_cold + T_inference + T_tool + T_network 

where: - T_queue: Time waiting in request queue - T_cold: Cold-start initialization (if applicable) - T_inference: LLM 

inference time - T_tool: External tool execution time - T_network: Network round-trip overhead 

Cold Start Measurement 

Cold start behavior is measured by: 1. Allowing the system to idle for 5 minutes 2. Issuing a single request and 

measuring response time 3. Comparing against warm-state baseline 4. Repeating 10 times for statistical validity 

Streaming Latency 

For streaming responses, we measure: - TTFT: Time until first token received - Inter-token latency: Average time 

between tokens - Time to completion: Full response generation time 

4.2 Throughput Measurement Protocol 

Algorithm 1: Throughput Measurement 

INPUT: Target QPS range [q_min, q_max], step size Δq 

OUTPUT: Throughput curve C 

 

1.  C ← [] 

2.  FOR q = q_min to q_max step Δq: 

3.      Configure load generator for q QPS 

4.      Run for 5 minutes, collecting metrics 

5.      metrics ← {latency_p50, latency_p99, error_rate} 

6.      C.append((q, metrics)) 

7.      IF error_rate > 0.05 OR latency_p99 > threshold: 

8.          BREAK  // System saturated 

9.  RETURN C 

4.3 Statistical Considerations 

All measurements are repeated with sufficient samples for statistical validity: 

• Minimum 100 samples per task category 

• 95% confidence intervals reported for all metrics 

• Outlier handling via winsorization at 1st/99th percentiles 

• Statistical significance testing (McNemar’s test for completion rates) 

Differences below 1.5% in completion rate were generally not statistically significant at p < 0.05 given our sample 

sizes, informing the precision of comparative claims throughout this paper. 

5. Experimental Evaluation 

5.1 Agent Configurations 

We evaluated 12 agent configurations spanning 5 foundation models: 
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Table 2: Evaluated Agent Configurations 

Config Model Strategy Cost/1K tokens 

A1 GPT-4-Turbo ReAct $0.030 

A2 GPT-4-Turbo Plan-Execute $0.030 

A3 GPT-4o ReAct $0.015 

A4 GPT-4o Plan-Execute $0.015 

A5 GPT-4o-mini ReAct $0.002 

A6 GPT-4o-mini Plan-Execute $0.002 

A7 Claude-3-Opus ReAct $0.045 

A8 Claude-3-Sonnet ReAct $0.009 

A9 Claude-3-Haiku ReAct $0.001 

A10 Llama-3-70B ReAct $0.003 

A11 Llama-3-8B ReAct $0.001 

A12 Mixtral-8x7B ReAct $0.002 

5.2 Accuracy Results 

Table 3: Task Completion Rates by Category (%) 

Config Reasoning Tool Use Collab. Overall 

A1 91.5 88.0 82.0 88.2 

A2 93.0 90.5 85.0 90.4 

A3 89.5 86.0 79.0 86.0 

A4 91.0 88.5 82.0 88.4 

A5 78.0 74.5 65.0 74.2 

A6 80.5 77.0 68.0 76.6 

A7 92.0 89.5 84.0 89.4 

A8 86.0 82.5 75.0 82.6 

A9 71.5 68.0 58.0 67.4 

A10 83.5 79.0 71.0 79.2 

A11 62.0 55.5 45.0 56.0 

A12 75.0 70.5 62.0 70.6 

5.3 Latency Results 

Table 4: Latency Distribution by Configuration (seconds) 

Config P50 P90 P95 P99 

A1 2.8 5.4 7.2 12.1 

A2 4.1 7.8 10.3 16.5 

A3 1.9 3.6 4.8 8.2 

A4 2.8 5.3 7.0 11.4 

A5 0.8 1.5 2.0 3.4 
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Config P50 P90 P95 P99 

A6 1.2 2.3 3.0 5.1 

A7 3.4 6.5 8.6 14.2 

A8 1.6 3.1 4.1 6.9 

A9 0.6 1.1 1.5 2.5 

A10 1.4 2.7 3.6 6.0 

A11 0.5 0.9 1.2 2.0 

A12 0.9 1.7 2.3 3.8 

5.4 Cost Efficiency Analysis 

Table 5: Cost per Successful Task (USD) 

Config Avg. Tokens Raw Cost Cost/Success 

A1 3,240 $0.097 $0.110 

A2 4,890 $0.147 $0.163 

A3 2,980 $0.045 $0.052 

A4 4,520 $0.068 $0.077 

A5 2,450 $0.005 $0.007 

A6 3,780 $0.008 $0.010 

A7 3,560 $0.160 $0.179 

A8 2,890 $0.026 $0.031 

A9 2,120 $0.002 $0.003 

A10 2,780 $0.008 $0.010 

A11 1,950 $0.002 $0.004 

A12 2,340 $0.005 $0.007 

5.5 Pareto Analysis 

Table 6: Pareto-Optimal Configurations 

Config Accuracy P50 Latency Cost/Success Recommended Use Case 

A2 90.4% 4.1s $0.163 Maximum accuracy (complex 

analysis) 

A4 88.4% 2.8s $0.077 Balanced (general enterprise) 

A3 86.0% 1.9s $0.052 Low latency premium (interactive) 

A5 74.2% 0.8s $0.007 High-volume, cost-sensitive 

A9 67.4% 0.6s $0.003 Minimum latency (real-time) 

5.6 Throughput Under Load 

Table 7: Throughput Characteristics 

Config Max QPS Concurrent Saturation P99 

A1 12 35 18.5s 

A3 28 55 12.2s 
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Config Max QPS Concurrent Saturation P99 

A5 85 70 5.8s 

A9 120 75 4.1s 

A11 180 95 3.2s 

6. Enterprise Case Study: Financial Services Deployment 

To validate PRAXIS beyond synthetic benchmarks, we report results from a production deployment at a Fortune 500 

financial services firm (anonymized as “FinCorp”). This case study demonstrates how benchmark insights translate to 

real-world business impact. 

6.1 Deployment Context 

FinCorp Background: - Global financial services company with 50,000+ employees - Deployed AI agents for 

internal knowledge work automation - Initial deployment: Uniform GPT-4-Turbo (A1 equivalent) for all tasks - 

Monthly volume: ~2.1 million agent invocations - Previous monthly cost: $231,000 

Business Requirements: - SLA: 95% of requests completed within 5 seconds - Accuracy: Minimum 85% task 

completion for business-critical tasks - Cost: Executive mandate to reduce AI operational costs by 40% 

6.2 PRAXIS-Guided Optimization 

Using PRAXIS analysis, we implemented a three-tier routing strategy: 

Table 11: FinCorp Routing Strategy 

Task Category Volume Selected Config Rationale 

Simple queries 62% A5 (GPT-4o-mini) High volume, 

acceptable accuracy 

Standard workflows 28% A3 (GPT-4o) Balanced performance 

Complex analysis 10% A2 (GPT-4-Turbo) Maximum accuracy 

required 

Implementation Details: - Deployed lightweight complexity classifier (fine-tuned DistilBERT, 50ms overhead) - 

Gradual rollout over 6 weeks with A/B testing - Continuous monitoring via PRAXIS dashboard integration 

6.3 Production Results (90-Day Evaluation) 

Table 12: FinCorp Deployment Outcomes 

Metric Before After Change 

Monthly Cost $231,000 $74,200 −68% 

Avg. Latency (P50) 2.8s 1.4s −50% 

SLA Compliance 91% 97% +6 pts 

Task Completion 88.2% 86.4% −1.8 pts 

User Satisfaction 3.8/5 4.2/5 +10% 

Key Findings: 

1. Cost savings exceeded target: 68% reduction vs. 40% mandate, saving $1.88M annually 
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2. Latency improved dramatically: Routing simple tasks to faster models improved overall 

responsiveness 

3. Accuracy tradeoff minimal: 1.8% completion rate decrease was acceptable given cost/latency gains 

4. User satisfaction increased: Faster responses improved perceived quality despite slightly lower 

accuracy 

6.4 Lessons from Production 

Several insights emerged that extend beyond PRAXIS benchmarks: 

1. Task distribution matters: FinCorp’s 62% simple task ratio was higher than anticipated—accurate 

workload profiling is essential 

2. Cold starts in practice: API-based models (A1-A9) showed negligible cold start issues; self-hosted 

alternatives would have required keep-warm infrastructure 

3. Failure cascade risk: Circuit breaker patterns from Nexus architecture prevented cost spikes during 

model provider outages 

4. Monitoring is essential: Real-time PRAXIS dashboard enabled rapid response to accuracy 

degradation events 

7. Analysis and Insights 

7.1 Accuracy-Latency Tradeoff Patterns 

Our analysis reveals consistent patterns across configurations: 

Accuracy ≈ α · log(Latency) + β 

where α and β are model-family dependent. Log-linear regression achieved R² values between 0.62–0.78 across model 

families, confirming the logarithmic relationship. This suggests diminishing returns: doubling latency budget yields 

approximately 5-8% accuracy improvement. 

Implication: Beyond a threshold (approximately 3s for current models), additional latency budget provides minimal 

accuracy gains—useful for SLA design. 

7.2 Task-Specific Optimal Routing 

Table 8: Optimal Configuration by Task Type 

Task Type Optimal Runner-up Routing Signal 

Simple reasoning A5 (74%, 0.8s) A9 (67%, 0.6s) Low complexity score 

Complex reasoning A2 (93%, 4.1s) A7 (92%, 3.4s) High complexity score 

Single tool call A5 (75%, 0.8s) A8 (83%, 1.6s) Tool count = 1 

Multi-tool orchestration A4 (89%, 2.8s) A1 (88%, 2.8s) Tool count > 2 

Two-agent collaboration A8 (75%, 1.6s) A3 (79%, 1.9s) Agent count = 2 

Multi-agent coordination A2 (85%, 4.1s) A7 (84%, 3.4s) Agent count > 2 
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7.3 Cost Optimization Opportunity 

Table 9: Cost Optimization via Intelligent Routing 

Strategy Accuracy Avg. Cost/Task Annual Cost (1M tasks) 

Always A1 (GPT-4-Turbo) 88.2% $0.110 $110,000 

Always A5 (GPT-4o-mini) 74.2% $0.007 $7,000 

Intelligent Routing 86.8% $0.034 $34,000 

Savings vs. A1 −1.4% 3.2x $76,000/year 

7.4 Cold Start Impact 

Table 10: Cold Start Latency Overhead 

Config Cold Start Overhead vs. Warm 

A1 4.2s +50% 

A5 1.8s +125% 

A10 8.5s +507% 

A11 3.2s +540% 

Self-hosted models (A10, A11) exhibit the largest cold start penalties, making them less suitable for sporadic 

workloads without keep-warm infrastructure investment. 

Deployment Guidance: In practice, these penalties suggest that self-hosted models are best suited for sustained, high-

throughput workloads where cold starts are amortized across many requests, while API-based models are more 

economical for bursty or unpredictable traffic patterns. 

8. Discussion 

8.1 Implications for Practitioners 

Our findings suggest several actionable deployment strategies: 

1. Implement Task Routing: Use lightweight classifiers to route tasks to appropriate configurations—

PRAXIS provides training data and baseline accuracy 

2. Set Latency Budgets: Choose configurations based on application latency requirements; the 

logarithmic accuracy-latency relationship enables principled tradeoffs 

3. Monitor Cost per Success: Raw API costs understate true costs when including failures and retries; 

PRAXIS cost metrics reflect production reality 

4. Consider Cold Start: Serverless architectures may require keep-warm strategies for self-hosted 

models; API-based models generally have acceptable cold start behavior 

5. Profile Your Workload: The FinCorp case study demonstrates that workload distribution 

significantly impacts optimal configuration; PRAXIS dashboard helps characterize task complexity 

distribution 
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8.2 Architectural Implications for Agent Design 

Beyond configuration selection, PRAXIS results inform fundamental agent architecture decisions: 

• Planner Depth vs. Latency: Plan-and-Execute strategies (A2, A4, A6) consistently outperform 

ReAct on complex tasks but add 40-60% latency overhead. Use Plan-and-Execute when task complexity 

exceeds 4 steps; default to ReAct otherwise. 

• When Multi-Agent Adds Value: Two-agent configurations showed diminishing returns beyond 

debate/review patterns. Multi-agent coordination (3+ agents) is only justified for tasks requiring genuine 

specialization—not as a general accuracy boost. 

• Collapsing Agent Flows: Many production deployments over-engineer agent interactions. Our data 

suggests that 62% of enterprise tasks (per FinCorp) are handled optimally by single-turn or simple ReAct 

loops. Reserve complex orchestration for the tail. 

• Model Heterogeneity in Pipelines: Consider using fast/cheap models (A5, A9) for initial triage and 

routing decisions, reserving expensive models (A1, A2, A7) for final synthesis. This “funnel” pattern underlies 

the 3.2x cost savings. 

8.3 Limitations 

Several limitations should be acknowledged: 

1. Model Evolution: Results reflect specific model versions (January 2026); capabilities and pricing 

evolve rapidly 

2. Task Coverage: Our benchmark may not represent all production use cases; organizations should 

supplement with domain-specific evaluation 

3. Provider Variability: Latency varies by time of day, region, and provider load; PRAXIS 

measurements represent controlled conditions 

4. Cost Volatility: API pricing changes frequently; cost projections require periodic recalibration 

8.4 Reproducibility and Open Science 

To support reproducibility and community advancement, we provide: 

• Complete task definitions: 500 tasks with ground truth and complexity labels 

• Measurement harness: Standardized protocols for latency, throughput, and cost measurement 

• Analysis tools: Pareto optimization, routing simulation, and cost modeling 

• Raw results: All configuration measurements for independent verification 

• Interactive dashboard: Web-based comparison and visualization tool 

Repository: https://github.com/sandeepnutakki/praxis-bench 

9. Conclusion 

This paper presented PRAXIS, a systematic framework for evaluating multi-agent AI systems across accuracy, 

latency, cost, and throughput dimensions under realistic production conditions. Our evaluation of 12 agent 

configurations revealed significant variation in optimal configurations by task type, with a 3.2x cost reduction 

achievable through intelligent routing without meaningful accuracy sacrifice. 
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Key findings include: 

1. Accuracy-latency tradeoffs follow logarithmic patterns with diminishing returns beyond ~3s 

latency budget 

2. Optimal configuration varies dramatically by task complexity, motivating intelligent routing as a 

first-class deployment concern 

3. Cold start penalties significantly impact self-hosted deployment economics, favoring API-based 

models for variable workloads 

4. Cost per successful task is the appropriate metric for production planning, often 10-20% higher than 

raw API costs 

Production validation through the FinCorp case study demonstrates that PRAXIS insights translate directly to 

business impact: 68% cost reduction ($1.88M annual savings) while improving latency SLA compliance from 91% 

to 97%. 

We release PRAXIS as open-source software to enable practitioners to make informed deployment decisions and to 

advance community understanding of production agentic AI system performance. Results are representative of current 

model generations and pricing as of January 2026; we commit to maintaining updated benchmarks as the landscape 

evolves. 

9.1 Companion Materials 

To maximize impact beyond the academic paper, PRAXIS includes: 

• GitHub Repository: Complete source code, task definitions, and measurement infrastructure 

(https://github.com/sandeepnutakki/praxis-bench) 

• Interactive Dashboard: Web-based benchmarking results viewer with custom comparison tools 

• Practitioner Guide: Medium/Substack explainer series covering deployment best practices 

• Benchmark Results API: Programmatic access to all measurement data for integration into MLOps 

pipelines 

9.2 Future Work 

Future research directions include: 

• Continuous benchmark updates tracking model evolution 

• Domain-specific task suites (legal, medical, financial) 

• Multi-provider routing strategies for reliability 

• Energy efficiency metrics for sustainability reporting 

• Integration with CI/CD pipelines for continuous evaluation 
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