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Abstract 

Predicting how long patients will stay in the ICU is 

truly critical to hospitals from a budgeting and 

cutting costs perspective. We considered applying a 

straightforward machine learning technique named 

K-Nearest Neighbors (KNN) in an effort to forecast 

ICU stays. The good thing about KNN is that 

physicians actually get to see how it is forecasted, as 

opposed to other sophisticated techniques which are 

a black box . 

Our method operates by discovering similar patients 

for the current patient and predicting based on the 

duration they were hospitalized. We used an 

algorithm called GridSearchCV to discover the best 

parameters for our model. Through trials and 

combinations, we discovered that our method 

performs nearly as well as advanced algorithms but 

with a massive benefit - doctors can simply know 

why a prediction was made. 

The findings indicate that straightforward, easy-to-

communicate approaches are just as effective as 

advanced approaches in medicine. This is relevant 

because physicians must be confident and familiar 

with computer predictions before applying them for 

patient benefits. Our research indicates you do not 

necessarily require advanced algorithms to generate 

precise results. 
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1. Introduction 

One of the largest challenges hospitals are facing 

right now is an estimate of how long they are going 

to have a person in the ICU. This is very costly to 

guess wrongly and will cause issues for hospitals and 

patients alike. If hospitals can't anticipate how long 

someone will be, they can't prepare. They may not 

have beds ready for new patients, or they may leave 

beds open up when they could be operating on other 

individuals. 

Historical methods for estimating hospital stays have 

not been very accurate. Physicians commonly use 

their experience and some simple scoring  

mechanisms, but these are frequently in error. They 

may estimate a person will be there 3 days, but then 

the patient is there for a week. This causes actual 

difficulties for hospital administration and patient 

care . 

Computers have become much more accurate at 

these predictions lately. There are a few computer 

programs out there that can go through a lot of 

patient information and pretty reasonably well 

predict how long someone's going to stay. The catch 

is that most of these programs are black boxes - they 

spit out the answer, but they don't explain to you why 

they believe that is correct[1]. 

This is a serious issue for hospitals since doctors 

ought to be able to see why a computer is going to 

consider something[2]. Doctors should not be told by 

a computer "this patient will stay 5 days" without 

explanation. Doctors are trained and experienced 

heavily, and they must be in a position to discern 

whether or not computer logic is rational. 

Our research attempts to answer this question using 

a technique known as K-Nearest Neighbors, or 

simply KNN. The best thing about KNN is that it 

actually makes sense how it works[3]. Rather than 

using complicated math that no one can decipher, 

KNN simply looks for patients who are most like the 

patient being analyzed and takes a look at how long 

they lingered. It's essentially asking "what did other 

patients who were exactly like this one do?" 

This strategy has a number of strengths. One, it's 

transparent - physicians are aware who their patient 

is being matched with by the computer and why it 

reached its conclusion[4]. Two, it's understandable to 

physicians since physicians already think in terms 

like this. When a physician looks at a patient, they 

will typically think about similar cases that they've 

seen previously. Three, it is flexible and can be used 

with a broad spectrum of patient data. 

Our ultimate aim is to demonstrate that simple and 

direct mechanisms can function in exactly the same 

way as complex computer programs in predicting 

ICU stay. 
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2. Literature Review 

2.1 Traditional Approaches to LOS 

Prediction 

Hospitals have been attempting for decades to 

forecast how long a patient would remain in the 

hospital with easy scoring systems. The score 

models consider things such as how ill a patient is 

when they arrive, how old they are, and what kind 

of medical issues they have. APACHE II, SOFA, 

and SAPS II are the most widely used. Though 

physicians are very familiar with these systems, 

they're not very good at being precise. They 

maintain that tests indicate they're correct only 65-

70% of the time, and that is not acceptable in 

today's hospitals [5]. 

The primary issue with those older models is that 

they're too simple. They can't account for all the 

advanced factors that influence how long a person 

remains in the ICU. A patient will have the same 

score as another, but one will remain for 2 days 

and another 10. Those models simply can't take 

into account all the variations between patients 

that matter. 

The second issue is that these scoring systems 

were designed years ago when medicine was not 

the same. Treatment has changed, patients have 

changed, and the hospitals have changed the way 

they work today. But these scoring systems have 

not been updated to accommodate these changes. 

It's like using an old map to drive with new roads. 

 

 

2.2 Machine Learning Applications in 

Healthcare 
In the last 10 years, computers have become 

significantly smarter at interpreting medical 

information. Modern computer techniques can 

examine thousands of patients and discover 

patterns that may go unnoticed by people. Some 

of these techniques, such as XGBoost and deep 

learning, can estimate ICU stays with around 80-

85% accuracy, which is much improved over the 

previous scoring mechanisms[6]. 

But here's the catch. These new computer 

techniques are extremely advanced. They 

incorporate high-level math and make choices 

based on complex mathematical calculations that 

even computer programmers may not be able to 

understand. So, for instance, a deep learning 

program might run hundreds of computations in 

order to make a single prediction, and nobody can 

explain to you what parts of those computations 

were the most significant[7]. 

This is a huge issue within the hospital setting. 

Physicians are educated to know why they make a 

choice. They must notify patients and families 

why they believe something will occur. But if a 

computer  

program spits out "this patient will stay 7 days" 

without a reason, doctors won't know if they 

should believe it. 

There have been efforts by some researchers to 

address this by creating "explanation" methods 

that try to find out why high-level models make 

particular decisions. 

 

2.3 The Need for Explainable AI in 

Healthcare 

Health care is different from any other industry in 

the case of computer predictions. If a computer 

mispredicts that you'll like a particular movie or 

not, it does not make any difference. However, if 

it mispredicts your health, then it might be bad. 

That's why doctors need to know how computer 

systems make decisions. 

Rules and laws are coming to mandate greater 

transparency from medical computer systems. On 

the continent of Europe, people are required by 

law to be informed as to how computers end up 

making decisions for them. The FDA in the US is 

also requiring more understandable systems 

within medical devices. 

This isn't about obeying orders - it's about trust. 

Physicians have learned for many years how to 

work with patients. They've worked with 

thousands of patients and learned from their 

errors. If a computer tells them something they 

know doesn't align with what they have seen, they 

must know why. Otherwise, they will simply 

disregard the computer entirely, which is throwing 

away all the effort that went into creating it. 

Some of these hospitals have attempted to 

implement such sophisticated models with 

explanation frameworks derived from them. 

These systems are usually difficult to browse and 

do not provide the type of knowledge that doctors 

require[8]. It is like explaining a car engine in a 

very sophisticated way when all one needs to 

know is if the car will begin functioning tomorrow 

morning. 

 

2.4 K-Nearest Neighbors in Medical 

Applications 

K-Nearest Neighbors isn't new - it's been around 

for years. But it has a few characteristics that 

make it very well-suited to medicine. The concept 
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is straightforward: to try to predict what will occur 

with a patient, look and observe what occurred 

with patients who are similar in the past. 

This is precisely what physicians are actually 

already doing. When they see a patient, they tend 

to remember past cases they've encountered. They 

may think about "this reminds me of Mrs. Johnson 

last year" or "I've seen this kind of case before, 

and typically.". KNN is an algorithm that does the 

same but has the capacity to remember thousands 

of patients rather than the ones a physician can 

hold in mind[9]. 
The unique feature of KNN is that it is fully 

transparent. When it makes a prediction, you can 

look and actually see who the similar patients are. A 

physician can examine the similar patients and 

determine for himself if the analogy works. He can 

determine whether the similar patients are actually 

similar in significant ways, or whether the computer 

isn't picking up on something important. This could 

be an important advance in healthcare. 

KNN has found successful application in numerous 

health-related uses[10]. It's been used to assist in the 

diagnosis of disease, to predict the patient's response 

to therapy, and to determine which drugs would be 

most appropriate for certain patients. In all instances, 

physicians appreciated seeing the logic behind the 

computer's recommendations. 

3. Methodology 

3.1 Dataset Description 

We had data for 10,000 ICU patients. We collected 

data over a period of three years from a big health 

system. This wasn't completely primitive data - we 

had very rich records of everything that happened to 

these patients during their stays in the hospital. The 

patients stayed between 1 day and 45 days, but most 

stayed for about 4 days [11]. 

Data we gathered included all that physicians would 

normally check for: age of the patient, male or 

female, weight and height. We monitored their vital 

signs such as heartbeat rate, blood pressure, 

respiratory rate, and temperature. Blood tests were 

also extremely important - such as blood cell count, 

kidney function tests, and liver function tests. 

We also looked at how ill the patients were when 

they arrived, by using routine medical scoring 

systems physicians already employ. We also tracked 

other illnesses they had, such as diabetes, high blood 

pressure, heart disease, or kidney disease. And lastly, 

we tracked if they arrived in the ICU as an 

emergency case or as a planned case, and where they 

arrived from (emergency room, regular hospital 

room, etc.). 

Sifting through all of this data was a large 

undertaking. Hospitals gather a great deal of data, 

but it's not necessarily computer-readable. We had to 

standardize everything and get it clean before we 

could use it for our research. 

 

3.2 Data Preprocessing 

Before we could even do anything with our data, it 

had to be cleaned and ready. It's the most critical 

step, but not that glamorous. Actual hospital data is 

messy stuff - occasionally it contains missing data, 

occasionally it's obviously incorrect, and 

occasionally there are blatant outliers that would 

skew our findings. 

For anything with missing data, we did the simplest 

but reasonable thing. If the number was missing, we 

used the mean of all the other patients. If it was a 

yes/no type of response missing, we used the modal 

response. It isn't ideal, but it's better than having to 

exclude patients with some missing data. 

We also had to address extreme values. 

Occasionally, a patient's blood pressure would read 

was obviously not correct (e.g., 500/300), 

presumably because of a measurement mistake. We 

had found such outliers and reduced them to more 

reasonable levels so they would not overly skew our 

conclusions . 

One of the biggest steps was that we ensured all our 

measurements were in the same units. Age is in 

years, weight is in pounds, and blood pressure is in 

mmHg. These various scales can fool computer 

programs, so we made everything uniform. What 

this does is that we converted all the numbers so that 

they have similar scales, which means the algorithm 

is able to treat all the factors equally. 

For non-numeric items (such as male/female or 

yes/no responses), we convert them into a form that 

computers love to manipulate. This is "one-hot 

encoding" - essentially, we make individual yes/no 

columns for each label. 

 

3.3 K-Nearest Neighbors Algorithm 

The key to our method is the K-Nearest Neighbors 

algorithm, and it's really not that difficult to grasp. 

Suppose that you're trying to make a prediction  

about how many days your new patient will spend in 

the ICU. What KNN does is that it runs through all 

of the previous patients and selects the ones that are 

closest to your new patient [12]. 

"Similar" shares values close to one another for 

attributes such as age, diseases, disease severity, lab 

results, and so on. The algorithm determines how 

much alike the new patient is to each past patient in 

each of these aspects. Then it selects the k closest 

patients (k is merely some number we get to pick, 

such as 5 or 7), and checks for how long they lived. 

After it has the stays of these similar patients, it 

averages their lengths to make a prediction. So, if the 

5 nearest neighbors stayed 3, 4, 5, 6, and 7 days in 
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the hospital, the algorithm would predict around 5 

days for the new patient. 

What is so attractive about this method is that it is 

transparent. If a physician wishes to know why the 

algorithm suggested 5 days, they can just go look at 

those 5 similar patients. They can look at their ages, 

disease, and treatments, and decide for themselves if 

the analogy holds. If they think one of the "similar" 

patients is really not very similar in some essential 

way, they can account for that in their decision. 

 

3.4 Distance Metrics 

Maybe the most important choice in KNN is 

deciding what to employ as "similarity" or 

"distance" among patients. We experimented with 

numerous different approaches and established 

which one worked best on our data. 

The most popular way is known as Euclidean 

distance. It is similar to finding the straight-line 

distance between two points on a map, but we are not 

concerned with merely two dimensions (east-west 

and north-south), but with many (age, blood 

pressure, heart rate, etc.). It gives more importance 

to large differences than small differences. 

We also attempted Manhattan distance, which is 

analogous to the distance you'd travel in a city with 

grid-like streets - you can't go diagonally, only 

north-south or east-west. In our case, this is the sum 

of all the differences between patients before 

squaring them. 

The third possibility was Minkowski distance, which 

is really a generalized formula that you can either 

have Euclidean or Manhattan distance based on how 

you've established it. It's more helpful but also more 

complicated . 

Our analysis determined Euclidean distance was best 

suited for our data, but that will be a long way from 

true for another hospital or patient population. 

 

 

3.5 GridSearchCV Optimization 
 

The tricky thing about KNN is getting the 

parameters right. How many neighbors do we want 

to include? Do we want to give more weight to 

neighbors closer by? How do we define proximity? 

These choices can make a big difference in the 

algorithm's quality . 

Rather than just guessing, we used a methodical 

approach known as GridSearchCV. "Grid search" is 

that we experimented with lots of various parameters 

and gave them all a try. "CV" for "cross-validation," 

which is an honest method of assessing how good 

each combination performed. 

What we experimented with: 

Number of neighbors: We experimented with 

between 3 and 15 neighbors 

Distance metric: Euclidean, Manhattan, and 

Minkowski 

Weighting: Are the neighbors all equally weighted, 

or are more proximal neighbors weighted more? 

Algorithm details: Various computational strategies 

to reduce the computations 

For every combination, we tested it on our data using 

a technique that prevents us from cheating. We split 

our data into 5 sets, trained the program on 4 sets and 

tested on the 5th set. We repeated this process 5 

times, testing on a different set each time.  

 

 

This provides a good indication of how well each 

setting combination performs. 

altogether, we ran 168 combinations and conducted 

a total of 840 tests (5 cross-validation rounds each 

on 168 combinations). Sounds like a lot of effort, 

perhaps, but computers are quick and it guarantees 

that we get the best settings for our model. 

 

3.6 Model Evaluation 

To know if our model is any good, we must test how 

well it performs with respect to metrics for 

predicting length of stay. We employed a range of 

different measurements because each reveals 

something a bit different. 

Mean Absolute Error (MAE) tells us, on average, 

how far off our projections are from reality. If MAE 

is 1.2 days, our projections are, on average, 1.2 days 

away from the actual length of stay. Lower is better. 

Root Mean Square Error (RMSE) is just like MAE 

but it imposes more penalties to large errors. If we 

typically have 1 day's error but sometimes commit 

10 day's error, RMSE will be higher than MAE since 

it does not appreciate those large errors much. 

R-squared is telling us the proportion of variation in 

length of stay that is explained by our model. If R-

squared were 0.74, then our model accounts for 74% 

of why some patients have longer lengths of stay 

than others. 

 An R-squared of 1.0 would be perfect predictions 

(which aren't made in practice), and an R-squared of 

0.0 would be that our model isn't really better at 

prediction than sheer chance. 

Mean Absolute Percentage Error (MAPE) states the 

error in percentage terms, sometimes more 

intuitively natural. 

 

 If MAPE is 25%, then our estimates are roughly 

25% from the actual length of stay. 

We also compared our results with the other methods 

and how well KNN does compared to others. In 

comparison to normal regression, random forest, 

scoring system commonly used in hospitals. 
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SYSTEM ARCHITECTURE:

 

Figure 1: Architecture 

4. Results and Discussion 

4.1 Optimal Hyperparameter 

Configuration 

After trying out all those various sets of parameters, 

we determined our best set of parameters for our 

data. The combination that came out on top was: 

● Number of neighbors: 7 patients 

● Distance metric: Euclidean distance (the 

"straight-line" method) 

● Weighting: Weight closer neighbors more 

● Algorithm: Let the computer choose the 

fastest calculation method 

The fascinating aspect is that 7 neighbors performed 

better than 3 or even 15.  

Intuitively, it makes sense - with not enough 

neighbors, you may lose critical patterns, but with 

too many, you may admit patients that are not 

actually as similar  

The distance-weighting also made sense. This is the 

concept that if one similar patient is much closer to 

your patient now than the rest, their stay has more 

influence on the prediction. It's like saying "this 

patient is really, really similar, so pay more attention 

to what happened to them." 

Of all 168 combinations we tried, this was the lowest 

average error of prediction when we tried it 

reasonably across our 5 data groups. The average 

was 1.23 days, and the result was quite consistent 

across all the test groups. 

 

4.2 Model Performance Metrics 

Our old model wasn't so terrible on all our metrics: 

● Average error of prediction: 1.18 days 

(what this is saying is if someone actually 

did stay 5 days, we'd likely guess between 

4 and 6 days) 

● Root mean square error: 1.89 days 

● Variance explained: 74% (our model 

accounts for roughly 3/4 of why some 

patients stay longer than others) 

● Percentage error: Roughly 25% on average 

These figures are actually not bad whatsoever for 

medical prognostication. It is very hard to predict the 

precise length of time a patient will be in the ICU 

because there are just too many variables, some of 

which are un-predictable such as how an individual 

will react to therapy or if they will develop 

complications. 

That we explain 74% of the variance is comforting. 

It means that most of the time we're in the vicinity 

with our estimates. We're not correct every time, but 

we're catching the large variables that affect length 

of stay. 

 

4.3 Comparison with Other Methods 

We wanted to compare our KNN approach to other 

approaches that could be used by hospitals. Here's 

what we found: 
 Table 1: comparison with other methods 

The old scoring system used by most hospitals 

performed the worst, with nearly 2 days of mean 

error and accounting for just half of patient stay 

variability. This verifies our suspicions - the old 

techniques just aren't up to the task of today's 

healthcare. 

The more sophisticated computer algorithms 

(Random Forest) did marginally better than our 

KNN model, but just barely. Random Forest was 

only by an average of 0.06 days more accurate, and 

These small gains come at the expense of being 

considerably more difficult to interpret and 

understand. 

What matters is that our intuitive, simple approach 

performed nearly as well as these complicated 

algorithms. For most hospitals, the slight 

Method Average Error 

(days) 

Explained 

Variance 

Our KNN 

Method 

1.18 74% 

Simple Linear 

Model 

1.45 64% 

Random Forest 1.12 75% 
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improvement in precision would not be worth the 

trade of transparency and trust that comes with 

black-box approaches. 

 

4.4 Understanding What Matters Most 

One of the advantages of KNN is that we can 

observe which patient characteristics were most 

significant to forecast[13]. By looking at which 

characteristics were generated most frequently when 

the model was searching for similar patients, we 

established the strongest determinants: 

● KNN Score - This was generated in 74% of 

the similar patient matchups, showing us 

that general severity of illness does count 

● Patient Age - Older patients stayed longer, 

as clinical experience would predict 

● Need for Mechanical Ventilation - 

Ventilator patients stayed longer almost by 

definition 

● Kidney Function (Creatinine Levels) - 

Abnormal kidney function was a very good 

predictor of longer stays 

● Number of Other Medical Problems - 

Multiple medical problems were associated 

with longer stays 

This is just good clinical sense. Physicians 

understand that sicker patients (higher  scores) stay 

in the hospital longer [14]. Physicians understand that 

patients who need help breathing (need ventilators) 

take longer to recover. The fact that our algorithm 

has identified the same relationships has us 

optimistic that it's identifying significant 

relationships, and not simply noise. 

 

 

4.5 Performance by Length of Stay 
We also examined how well our model performed 

for various types of stays: 

Short stays (1-3 days): Average error = 0.89 days, 

accounted for 70% of variation 

These would typically be patients who recover 

rapidly or were admitted for observation 

Medium stays (4-7 days): Average error = 1.21 days, 

accounted for 75% of variation 

This is the largest group and where our model did 

best 

Long stays (8+ days): Mean error = 1.67 days, 

accounted for 70% of the variation 

These are usually the most complicated cases with 

numerous complications 

The model performed fairly well in all three groups, 

but best fit the medium-length stays that comprise 

the bulk of the ICU patients. This is really the most 

optimal for hospitals, as these are the patients where 

precise predictions can be most helpful for planning 

and utilization. 

For lengths of stay that are very short, it is not as 

crucial to estimate 1 vs 2 vs 3 days because the 

patient is leaving anyway. For extremely extended 

lengths of stay, there are always unexpected 

complications to prevent accurate estimates, but at 

least knowing the patient will probably have an 

extended stay is useful information. 

 

 

4.6 Comparison with Baseline Methods 
Comparison with the machine learning and 

traditional methods indicated competitive 

performance of the optimized KNN model: 

 

Method MAE 

(days) 

RMSE 

(days) 

R² MAPE 

(%) 

KNN 

Optimized 

1.18 1.89 0.7

38 

24.7 

Linear 

Regression 

1.45 2.23 0.6

42 

31.2 

Random 

Forest 

1.12 1.82 0.7

51 

23.1 

  

Table 2: comparison with baseline methods 

 

While Random Forest was slightly superior, KNN 

model output was comparable with the advantage of 

full interpretability. 

 

4.7  Prediction Accuracy by LOS 

Categories 

Performance analysis by LOS categories revealed 

varying accuracy levels: 

Short stays (1-3 days): MAE = 0.89 days, R² = 0.695 

Medium stays (4-7 days): MAE = 1.21 days, R² = 

0.748 

Long stays (8+ days): MAE = 1.67 days, R² = 0.701 

The model performed best for medium-length stays, 

which comprised the majority of the dataset, while 
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maintaining reasonable accuracy for both short and 

extended stays. 

 

4.8 Real Examples of How It Works 

To show how the interpretability works in practice, 

let's look at two real examples from our testing: 

Example 1: A 67-year-old woman with diabetes and 

heart failure was predicted to stay 6 days. When we 

looked at her 5 most similar patients from our 

training data, they had stayed 5, 6, 6, 7, and 7 days. 

All five were also older patients with diabetes and 

heart problems, and they had similar blood test 

results and severity scores. Our prediction of 6 days 

was the average of these five cases. The actual 

patient ended up staying 7 days, so we were pretty 

close. 

What's powerful about these examples is that a 

doctor can look at the similar patients and 

immediately understand why the algorithm made its 

prediction. They can see if the comparison makes 

sense, and they can factor in any important 

differences they notice. For instance, if the doctor 

knows that the current patient has a particular 

condition that the similar patients didn't have, they 

can adjust their expectations accordingly . 

This is completely different from a black-box 

algorithm that might spit out a prediction of "5.7 

days" with no explanation. Doctors can work with 

our approach because it matches how they already 

think about patients. Model Performance Metrics 

The optimized KNN model demonstrated strong 

predictive performance across all evaluation 

metrics: 

● Mean Absolute Error (MAE): 1.18 ± 0.08 

days 

● Root Mean Square Error (RMSE): 1.89 ± 

0.12 days 

● R-squared (R²): 0.738 ± 0.025 

● Mean Absolute Percentage Error (MAPE): 

24.7 ± 1.8% 

These results indicate that the model explains 

approximately 74% of the variance in ICU length of 

stay, with an average prediction error of 

approximately 1.2 days. The relatively low standard 

deviations across metrics suggest consistent 

performance across different patient populations. 

4.9 Clinical Interpretability  

Examples 

Case studies illustrated the interpretability of the 

model in real-life applications: 

 

Case 1: The 67-year-old patient with congestive 

heart failure and diabetes was projected to stay for 6 

days. The five closest neighbors stayed 5, 6, 6, 7,  

and 7 days, respectively, and were quite similar in 

age and comorbidities. 

 

Case 2: A healthy 45-year-old male admitted to 

trauma was forecasted to remain 3 days. The closest 

neighbors were also similar young, healthy patients 

with brief, uneventful stays. 

These examples illustrate how clinicians can 

interpret and confirm predictions by analyzing the 

characteristics of similar past patients. 

 

 

5. Advantages and Disadvantages 

5.1 Implications for Clinical Practice 

The creation of an interpretable KNN-based model 

for ICU LOS prediction has important implications 

for clinical practice. In contrast to black-box 

prediction models that make predictions without 

explanation, our method enables clinicians to see the 

underlying cause for each prediction from 

comparable prior cases. Transparency is of great 

importance to enable clinical acceptability and 

provides practitioners with the mechanism of 

effectively combining model predictions with their 

medical knowledge. 

The capacity to recognize which patients best 

resemble the case at hand with clinical decision-

making. Physicians can look at treatment patterns 

and outcomes for comparable patients, and perhaps 

disclose effective treatments or foretell 

complications[15]. This kind of strategy is most 

naturally intuitive to clinical reasoning approaches, 

in which the clinician relies on past experience with 

comparable cases as a model to direct treatment. 

Second, model interpretability also improves quality 

improvement. By examining nearest neighbor 

patterns, health care teams are able to identify 

longer-stay patterns and intervene selectively. For 

example, if particular comorbid combinations have 

chronically longer stays, it is possible to design paths 

to automate their care to optimize pathways in the 

best possible way. 

 

5.2 Advantages of the KNN Approach 

The KNN algorithm has a number of unique 

strengths in the field of medicine. Since it's a non-

parametric algorithm, it doesn't have any idea about 

how data would be distributed, and as such, it is an 

ideal choice for complicated medical data that could 

have potentially non-standard statistical 

distributions. With its local pattern discovery in data 

space, the algorithm can identify underlying 

relationships that could lie outside the reach of 

global models. 
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The native explainability of KNN offers a 

tremendous benefit over cutting-edge algorithms. 

Each prediction can be traced back to individual 

prior patients, and clinicians can see not just what the 

model is predicting, but why. Transparency 

facilitates trust in the system and allows for 

integration into clinical workflows. 

Moreover, KNN models fit naturally in dealing with 

numerical and categorical data, like in the case of 

health setups. Outlier resistance provided by the 

algorithm and preprocessing guarantee that the 

model is capable of performing well with actual 

medical data that will feature mostly anomalous or 

extreme values. 

 

5.3 Limitations and Challenges 

Under its advantage, the KNN algorithm has several 

drawbacks that must be addressed. The algorithm's 

performance greatly depends on the choice of 

distance metric and performance can be discouraged 

by the curse of dimensionality as the feature set 

increases. In high-dimensional space, all points will 

be equidistant from one another, which tends to 

decrease the performance of the algorithm. 

Computational complexity is also an issue, since 

KNN has to maintain the entire training data in 

memory and compute distances to all the training 

samples for each prediction. On big healthcare 

datasets, this translates to high memory demands and 

slow prediction times in comparison with parametric 

models . 

The accuracy of the predictions is as good as the 

representativeness and quality of the training data. If 

a patient like a new case is not part of the training 

set, predictions by the model may not be as good. 

This is especially true in health care settings where 

rare cases or rare patient presentation may rarely 

appear in previous data. 

 

5.4 Future Research Directions 

A number of directions for future research could 

potentially enhance the KNN methodology for LOS 

prediction. Creating dynamic similarity measures 

that are variable- and context-dependent could 

enhance accuracy. Various distance measures, for 

example, could be more appropriate for different 

patient groups or disease states. 

Integration with real-time streams of clinical data 

could allow predictions to be dynamically updated 

as new information are received in the progression 

of a patient's admission. This would offer more 

timely and pertinent predictions that are responsive 

to changing clinical scenarios. 

Investigation of ensemble methods that integrate 

KNN with other explainable methods could more 

effectively enhance performance without 

compromising on interpretability. Hybrid methods 

could benefit from local trends (via KNN) as well as 

global patterns (via other methods) in the data. 

 

6. Conclusion 

This research effectively proves that GridSearchCV-

tuned K-Nearest Neighbors regression provides an 

interpretable and viable solution to ICU length of 

stay forecasting. The model also exhibited 

competitive performance values (MAE: 1.18 days, 

R²: 0.738) with utmost transparency during the 

prediction process. Optimal hyperparameter tuning 

through GridSearchCV ensured that it resulted in an 

efficient and generalized model. 

The strength of this method lies largely in its 

interpretability. Clinicians are able to examine 

similar patients in the past to see what motivates the 

predictions. This aspect captures the age-old gap in 

machine learning in healthcare today, wherein 

black-box models often fall short of the 

explainability required for clinical uptake and 

regulatory clearance. 

The results indicate that interpretable machine 

learning advanced techniques can be as good as 

advanced algorithms with the level of transparency 

needed to be applied in healthcare. KNN is a 

practical option for a trade-off between clinical 

interpretability and prediction accuracy, and hence 

can be used in real-world healthcare systems. 

Future work would involve scaling the method to 

larger, more heterogeneous datasets, and exploring 

hybrid methods that could enable the interpretability 

of KNN while achieving the performance benefits of 

ensemble methods. Finally, deployment studies in 

real-world settings would be of tremendous value in 

understanding real-world advantages and challenges 

of implementing interpretable machine learning 

models to healthcare applications. 
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