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Abstract— Climate variability and water scarcity severely 

threaten agricultural productivity in drought- prone regions. 

This paper explores the development of an intelligent 

system for predicting crop growth under drought conditions, 

enhanced by Brain-Computer Interface (BCI) alignment to 

support precision agriculture through human-computer 

collaboration. The proposed solution integrates remote 

sensing data, soil health metrics, and climatic variables with 

machine learning models to forecast crop growth and stress 

responses. By incorporating BCI technology, the system 

enables real-time, cognitive feedback-driven decision-

making for farmers and researchers, facilitating proactive 

interventions in irrigation scheduling, crop selection, and 

stress management. The model leverages convolutional 

neural networks (CNNs) and long short-term memory 

(LSTM) networks for spatial-temporal data analysis and 

incorporates reinforcement learning for adaptive crop 

management strategies. The result is a robust, scalable, and 

user-aware system designed to optimize yield and 

sustainability in vulnerable agricultural ecosystems. 
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IX. INTRODUCTION 

Agriculture is not only the foundation of food security and 

rural livelihoods, but also a major driver of socio- economic 

development in many parts of the world. As the global 

population steadily increases, the pressure to boost 

agricultural productivity while preserving natural resources 

becomes more urgent. Yet, this challenge is complicated by 

the intensifying effects of climate  change,  which has  

manifested  in  erratic 

weather patterns, frequent floods, and above all, prolonged 

and severe droughts. Among the most vulnerable crops to 

these climatic disruptions is paddy, a staple food for billions 

that demands significant water throughout its growth cycle 

 

Drought conditions, characterized by insufficient rainfall 

and reduced soil moisture, have a direct and often 

devastating impact on crop viability. These stressors 

compromise physiological processes such as germination, 

tillering, and photosynthesis, leading to stunted growth and 

yield losses. Unfortunately, conventional crop monitoring 

systems often rely on static schedules and do not adapt to 

evolving stress indicators in real time, which severely limits 

their effectiveness in drought-prone regions. 

 

This calls for smarter, more context-aware technologies 

capable of dynamically assessing risk and recommending 

targeted interventions. In response to this challenge, the 

emerging field of precision agriculture leverages 

technologies such as remote sensing, Internet of Things 

(IoT) devices, artificial intelligence (AI), and machine 

learning (ML) to improve agricultural decision-making. 

These systems are designed to collect and analyze data from 

soil, climate, and crop growth parameters, offering 

predictive insights that help optimize irrigation, fertilization, 

and harvesting schedules. However, most of these 

technologies lack integration with human intuition and 

decision-making capabilities, which are often critical in 

agricultural settings. For instance, a farmer may observe 

subtle changes in crop behavior or environmental conditions 

that are not yet evident in sensor data—but there is currently 

no mechanism to incorporate such insights into AI systems. 

 

To  overcome  this  limitation,  the  present  study 
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proposes a Brain-Computer Interface (BCI)-driven crop 

viability prediction system. BCIs are wearable systems that 

capture electrical brain activity, typically via 

electroencephalography (EEG), and translate cognitive 

states into machine-readable signals. In this work, BCIs are 

used to capture the farmer’s mental responses—such as 

stress, attentiveness, and perceived urgency—during field 

observation or digital monitoring. These signals serve as 

dynamic feedback to complement traditional sensor data, 

enabling a more adaptive and personalized prediction 

engine. 

 

The proposed system integrates Convolutional Neural 

Networks (CNNs) for analyzing spatial features such as 

satellite images or multispectral maps, and Long Short-Term 

Memory (LSTM) networks to model temporal patterns in 

sequential data like weather forecasts and soil sensor logs. 

These models work in synergy to produce a Crop Viability 

Score, which reflects the expected health and yield potential 

of the crop under current and forecasted drought conditions. 

Moreover, a Reinforcement Learning (RL) agent is 

employed to continuously adapt irrigation schedules and 

management strategies based on real-time feedback, 

including EEG-derived insights from the user. By 

combining multi-modal data sources— environmental, 

physiological, and cognitive—this approach goes beyond 

traditional automation to create a human-in-the-loop 

intelligent agriculture system. 

 

This paradigm allows AI to not only process data but also 

respond to human perception and intuition, creating a 

feedback cycle that enhances both system learning and user 

trust. The framework supports actionable decision-making 

in high-stakes environments, especially where resource 

constraints and unpredictable climate behavior demand 

rapid and flexible responses. 

 

In summary, this paper presents an innovative, scalable, and 

user-aware system that leverages the power of deep learning 

and cognitive computing to predict and improve crop 

viability in drought-prone regions. It represents a pioneering 

step toward climate- smart agriculture that not only reacts to 

environmental inputs but also evolves with human cognition 

and field knowledge. 

 

X. LITERATURE REVIEW 

1. Climate Change and Drought Impact on Agriculture 

 

Climate change has exacerbated the frequency and intensity 

of droughts, directly impacting crop viability, especially in 

water-dependent crops like paddy. According to Lesk et 

al., droughts and extreme 

weather events have caused over 30% of global crop losses 

in recent decades, disproportionately affecting developing 

nations [1]. This has underscored the need for predictive and 

adaptive systems to mitigate risk in drought-prone regions. 

 

2. Technological Interventions in Precision Agriculture 

 

Precision agriculture aims to increase yield while reducing 

input costs through data-driven decision- making. It uses 

tools like remote sensing, drones, and IoT-enabled devices 

to monitor crop and soil conditions. Kamilaris and 

Prenafeta-Boldú surveyed over 250 machine learning 

applications in agriculture, showing that deep learning 

models like CNNs and LSTMs outperform classical models 

in tasks like crop disease detection and yield prediction [2]. 

 

3. Machine Learning for Drought Stress Prediction 

 

Numerous machine learning algorithms have been 

developed to predict crop stress under drought conditions. 

LSTM networks, with their ability to handle sequential data, 

have shown exceptional results in modeling rainfall patterns 

and soil moisture variations [3]. CNNs, on the other hand, 

have been applied successfully to process spatial features 

from satellite imagery, enabling stress detection at scale [4]. 

 

4. BCI (Brain-Computer Interface) in Agriculture 

 

Though still emerging, BCI technology has begun 

influencing smart agriculture. BCIs translate brain signals 

(e.g., EEG) into machine-readable commands, allowing 

cognitive input for semi-autonomous systems. A pilot study 

by Mishra et al. demonstrated how EEG inputs could be 

used to control irrigation systems based on a farmer’s 

attention and stress levels, integrating cognitive feedback 

into traditional agricultural controls [5]. 

 

5. Integration of BCI with AI for Adaptive Systems 

 

The integration of BCI with AI introduces a feedback loop 

where human cognition informs AI decisions. 

Reinforcement learning (RL) is particularly suited for this, 

as it enables systems to adapt policies based on rewards 

derived from user satisfaction or system performance. This 

approach has been explored in prosthetic design and 

autonomous vehicles and is now emerging in human-in-the-

loop agricultural systems [6]. 

 

362.Use of Multi-Modal Data in Crop Viability Models 
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Robust crop prediction models rely on integrating multi-

modal data: soil health metrics, climate data, crop type, and 

even human factors like cognitive input. Such integrated 

approaches improve prediction accuracy, especially in 

environments where data is sparse or variable. Recent 

research emphasizes the role of hybrid models combining 

satellite data with on- ground sensors and human feedback 

loops [7]. 

 

XI. METHDOLOGY 

 

The proposed methodology is structured as a multi- stage 

framework that integrates environmental sensing, machine 

learning models, and Brain-Computer Interface (BCI) 

signals to predict paddy crop viability under drought 

conditions. The system comprises five core modules: data 

acquisition, preprocessing, model training, cognitive 

feedback integration, and adaptive decision-making. 

 

1. Data Acquisition 

 

This stage collects diverse datasets from multiple sources, 

including: 

 

• Remote sensing data: Satellite imagery and 

spectral indices (e.g., NDVI, NDWI) to detect 

vegetation health and moisture levels. 

• Soil and weather data: Soil pH, moisture content, 

temperature, humidity, rainfall, and solar radiation 

from IoT sensors and meteorological databases. 

• Crop-specific metrics: Historical yield data, plant 

growth stages, and stress markers specific to 

paddy. 

• BCI signals: EEG-based cognitive signals 

collected via non-invasive BCI devices to capture 

user intent and stress perception. 

 

2. Data Preprocessing 

 

Data is synchronized temporally and spatially across 

sources. The following techniques are applied: 

 

• Missing value imputation and normalization. 

• Temporal alignment of weather and sensor data. 

• Dimensionality reduction using Principal 

Component Analysis (PCA) or Autoencoders for 

efficient modeling. 

• EEG signal filtering and feature extraction using 

Fast Fourier Transform (FFT) and Common Spatial 

Patterns (CSP). 

 

3. Machine Learning Model Training 

 

Two deep learning models are used in tandem: 

 

• Convolutional Neural Network (CNN): Processes 

spatial imagery (e.g., satellite data) to detect 

drought stress patterns and plant health. 

• Long Short-Term Memory (LSTM) Network: 

Captures temporal dependencies in weather, soil, 

and EEG signals to forecast future crop viability 

trends. 

 

The outputs of both models are fused to predict a crop 

viability score, indicating the probability of healthy growth 

under current and forecasted drought conditions. 

 

4. BCI-Cognitive Feedback Loop 

 

A closed-loop interaction is established between the user 

and the system: 

 

• The BCI device monitors user attention, cognitive 

workload, and perceived crop stress. 

• Feedback is fed into a reinforcement learning (RL) 

agent that adjusts prediction thresholds, irrigation 

suggestions, or stress alerts in real time. 

• The system evolves with continued user 

interaction, improving both usability and model 

accuracy. 

 

5. Reinforcement Learning for Adaptive Management 

 

An RL-based decision layer continuously optimizes 

agricultural actions based on predicted outcomes and user 

feedback: 

 

• The agent receives state information (weather, soil, 

crop status) and reward signals (e.g., improved 

viability or cognitive satisfaction). 

• Actions include irrigation timing, crop switching 

recommendations, and fertilization schedules. 

• The policy is updated using algorithms such as 

Deep Q-Networks (DQN) or Proximal Policy 

Optimization (PPO) for real-time adaptability. 

 

This methodology supports a human-in-the-loop approach 

that merges data intelligence with human insight, enabling 

more proactive and personalized crop 3m3 anagement, 

particularly in drought-prone areas. 
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XII. SYSTEM ARCHITECTURE 

 

The architecture of the proposed system is designed to 

integrate environmental sensing, machine learning, and 

cognitive feedback into a unified predictive model for 

drought-based crop viability. The system is divided into five 

interconnected layers: 

 

 

 

1. Data Collection Layer 

o Gathers environmental data (e.g., 

temperature, humidity, rainfall, soil 

pH) from IoT sensors. 

o Retrieves satellite imagery and spectral 

indices such as NDVI from remote 

sensing sources. 

o Collects real-time EEG signals via BCI 

devices during user interaction. 

2. Preprocessing and Feature Engineering 

Layer 

o Cleans and normalizes the collected 

data. 

o Performs feature extraction (e.g., FFT and 

CSP on EEG, PCA for environmental 

data). 

o Synchronizes spatial and temporal 

features across datasets. 

3. Deep Learning Prediction Layer 

o CNN is used to analyze spatial 

patterns from satellite imagery. 

o LSTM processes time-series data such as 

weather and EEG trends. 

o Fusion of CNN and LSTM outputs to 

predict a Viability Score. 

4. Cognitive Feedback and Adaptation Layer 

o Monitors BCI data for attention, 

stress, and decision signals. 

o Reinforcement Learning agent uses 

this feedback to adjust model behavior. 

o Optimizes irrigation recommendations, 

crop switching, or alert systems. 

5. Decision Support Interface 

o Visualizes crop viability predictions, 

stress alerts, and irrigation actions. 

o Provides interactive dashboard for 

farmers or researchers. 

o Continuously learns from user 

interactions and improves 

recommendations. 

 

Below figure 1 shows the Architecture diagram 

 

 
 

Figure 1: System Architecture 

 

XIII. RESULTS AND DISCUSSION 

1. Model Evaluation 

 

To assess the performance of the proposed crop viability 

prediction system, both Convolutional Neural Network 

(CNN) and Long Short-Term Memory (LSTM) models 

were trained and evaluated using the integrated dataset, 

which included environmental variables, soil metrics, and 

BCI- generated EEG features. Due to the limited size of the 

original dataset, model training was supplemented with 

synthetic data augmentation techniques to ensure sufficient 

variability and training robustness. 

 

The fused model (CNN + LSTM) achieved superior 

performance in comparison to individual models. Key 

evaluation metrics are as follows: 

 

Model Accuracy Precision Recall F1-Score 

CNN Only 85.7% 84.5% 82.3% 83.4% 

LSTM Only 88.2% 86.1% 85.9% 86.0% 

CNN + LSTM 91.4% 90.2% 89.7% 89.9% 

 

This result highlights that combining spatial (image/satellite 

data) and temporal (climate and EEG time-series) features 

enhances the system’s ability to predict crop stress and 

viability under drought conditions. 

 

2. BCI Feedback Impact 

34 

An experimental BCI-feedback loop was simulated 
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using pre-recorded EEG signals representing cognitive 

stress and attention levels during crop inspection. The 

integration of BCI allowed for: 

 

• Real-time cognitive feedback, enhancing the 

model’s adaptability. 

• Personalized irrigation suggestions, adjusted 

based on perceived urgency/stress detected via 

EEG. 

• Improved user engagement, as the system 

responded dynamically to human input. 

 

The BCI-enhanced reinforcement learning module showed a 

12% improvement in decision adaptability when 

compared to static recommendation systems. 

 

3. Visual Analysis 

 

Prediction results were visualized via a front-end 

dashboard displaying: 

 

• Crop viability scores on a scale from 0 to 1. 

• Stress level color codes (Green: Healthy, 

Yellow: Moderate, Red: High Risk). 

• Time-series graphs for drought severity index, soil 

moisture, and chlorophyll content. 

• EEG stress indicators mapped to crop zones. 

 

This interface allowed users (farmers or agronomists) to 

interact with predictions in a meaningful and intuitive 

manner. 

 

4. Discussion 

 

The results confirm that: 

 

• Deep learning models can successfully model the 

complex interactions between environmental 

conditions, plant physiology, and cognitive signals. 

• BCI offers a novel input mechanism, enhancing 

responsiveness and personalization in decision-

making. 

• Reinforcement learning can dynamically 

optimize strategies, such as irrigation timing and 

resource allocation, making the system suitable for 

real-world deployment in drought- prone regions. 

 

However, the current limitations include: 

 

• A small real dataset, which necessitated synthetic 

augmentation. 

• High cost and technical complexity of BCI 

devices, which may limit adoption in rural 

settings. 

• Limited longitudinal data, restricting long- term 

forecasting. 

 

I. Conclusion 

 

This research presents an innovative framework for 

predicting paddy crop viability under drought conditions by 

integrating environmental sensor data, remote sensing 

imagery, and Brain-Computer Interface (BCI) signals. By 

combining Convolutional Neural Networks (CNN) for 

spatial data and Long Short-Term Memory (LSTM) 

networks for temporal patterns, the model demonstrates 

strong predictive capability in evaluating crop stress and 

forecasting outcomes. 

 

The inclusion of BCI-based cognitive feedback in a 

reinforcement learning loop introduces a novel human- in-

the-loop approach that enhances decision-making 

adaptability. This integration not only improves the model’s 

responsiveness but also personalizes the recommendations 

based on the user’s cognitive state, contributing to a more 

intelligent and context-aware precision agriculture system. 

 

Experimental results show that the hybrid CNN-LSTM 

model, coupled with EEG-driven reinforcement learning, 

can effectively optimize irrigation schedules, identify crop 

stress, and support proactive intervention strategies. While 

current limitations such as dataset size and BCI hardware 

complexity exist, the study sets a strong foundation for 

future research into neuroadaptive agricultural systems. 

 

Ultimately, the proposed system has the potential to 

significantly enhance crop resilience in drought-prone areas 

and lead to smarter, more sustainable agricultural practices. 
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