
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM20186 | Page 1

Preempting Criteria Affecting Future Software Development Methodologies

to Construct A Better SDLC Framework

Shreyansh Padarha1

1 Department of Data Science, CHRIST (Deemed To Be) University Pune Lavasa

---***---

Abstract - Anthropological studies and system sciences show

humans thrive under locus, where structural integrity is intact. It

is only natural, that the software developed by humans, order the

same. The process and methodology involved in building these

applications are complex and chaotic, yet elegant at the same

time. Dividing tasks into phases was considered the optimal

method, to take advantage of the specializations of various

individuals and teams. But, in the ever-rampant world, where AI

and machine learning enable, concurrent implementation, it's just

to question the basis of the same. The software development

industry constantly evolves, with emerging new methodologies

and technologies. To stay competitive and continuously evolve,

better frameworks for future development and micromanaging

need to be created. To do the same, this research paper aims to

preempt the criteria that are likely to affect software development

models and methodologies, by deep diving into the SLDC's

origins, central idea, and relevance throughout our modern

history.

Key Words: Management, Software Development Life

Cycle (SDLC), Software Engineering, Agile, Waterfall

Models, Incremental Models, Generative AI, Artificial

Intelligence, Blockchain Technology

INTRODUCTION

 To construct a better SDLC framework, it is important to take a

comprehensive approach that considers various factors such as

project size, complexity, budget, time-to-market, regulatory

compliance, and emerging technologies like Generative AI,

Neural Networks, and Blockchain. The success of software

development projects is heavily influenced by how people

interact with technology, learn and adapt to new tools and

processes, and communicate and collaborate with team

members. Understanding human psychology and incorporating

it into the design of SDLC frameworks and methodologies can

create intuitive, efficient, and effective development processes.

Collaboration, communication, and flexibility are also crucial for

successful software development. By adopting new technologies

and best practices, companies can proactively address the criteria

affecting future software development methodologies and

deliver high-quality software applications within the expected

timeframes and budget.

To construct a better SDLC framework, it is important to take

a comprehensive approach that considers various factors such

as project size, complexity, budget, time-to-market,

regulatory compliance, and emerging technologies like

Generative AI, Neural Networks, and Blockchain. The

success of software development projects is heavily

influenced by how people interact with technology, how they

learn and adapt to new tools and processes, and how they

communicate and collaborate with team members.

Understanding human psychology and incorporating it into

the design of SDLC frameworks and methodologies can create

intuitive, efficient, and effective development processes.

Collaboration, communication, and flexibility are also crucial

for successful software development. By adopting new

technologies and best practices, companies can proactively

address the criteria affecting future software development

methodologies and deliver high-quality software applications

within the expected timeframes and budget.

SDLC’S HISTORY, CLOUT & IMPORTANCE

Looking after Software development processes or

methodology has been a norm in companies across various

industries. The software development life cycle (SDLC) is an

outline for developing software, it encompasses the various

phases involved in a development process, from requirement

gathering and designing to testing and maintenance. It is a

systematic approach and a fundamental of software

engineering. The process itself includes, but is not limited to

planning, analysis, design, implementation, testing,

deployment and maintenance. Each phase of the process is of

critical importance.[1][2]

Existential need for SDLC and its history

In the early 1960s, structured programming and software

engineering practices were coming into widespread usage. In

the early days, software engineering, lacked consistency,

formalization and any homogeneous structure, resulting in

software products riffled with reliability and quality issues. In

order to address these discrepancies, engineers started

developing programming practices and methodologies that

had a greater emphasis on requirement gathering, designing,

testing and compartmentalised execution. The SDLC was

developed as a formal framework for the development of

software in an efficient, and quality manner.[3]

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM20186 | Page 2

SDLCs’ clout and widespread adoption

Software Development Life Cycle (SDLC) has been

instrumental in the past few decades, and to understand its

clout and significance, we’ll be delving into in-depth case

studies and the implications of using SDLCs for these

undermentioned organisations, and industries.

A) Microsoft Windows (1990s): At the time, Microsoft was

facing extremely tough competition from IBM’s OS/2 and

Apple’s MacOS. Microsoft was faced with the challenge of

developing a new OS. They used SDLC to manage the

development of Windows, which ensured the project was

developed on time and within the estimated budget. The

SDLC also helped Microsoft ensure the quality of Windows

OS was above par, which helped to establish Microsoft as the

frontrunner in the modern era of Operating Systems.

Although not confirmed, Microsoft most likely used an

amended linear life cycle model, like the waterfall

model[4][5][6][7]

B) Financial Industry: Companies like JPMorgan Chase,

Goldman Sachs, and American Express make and other

financial institutions make use of SDLC to comply with strict

regulatory requirements such as Sarbanes-Oxley Acy and

Dodd-Frank Act. These regulations require financial

institutions to have strict procedures, and controls in place to

ensure fairness, accuracy, completeness and reliability of

financial data. The SDLC provides a framework that helps

these organizations to comply with the requirements.[8][9]

C) ISO/IEC 12207: It is an international standard that

provides a framework for software life cycle processes. The

standard describes the processes that are necessary for the

development, maintenance and disposal of all software

products. The standard also highlights the importance and

need to identify and manage risks associated with software

development, whether it's security threats like data breaches

or procedural/IP infringements. This standard shows the

widespread adoption and validity of SDLC.[10][11]

D) IBM BENEFITING FROM SDLC APPROACH (360

OS)˘: In-depth stage-wise analysis in the next

section.[12][13]

IBM BENEFITING FROM SDLC APPROACH

(360 OS)

In 1964, International Business Machines Corporation (IBM)

announced the development of the OS/ 360 operating system.

The project, a massive undertaking, involved over 1,000

developers and cost over $ 1 billion. This project was

considered a landmark in the history of software development

and highlighted the vital need for a more structured and

methodical approach to software development. IBM used the

SLDC to manage the development of the OS/360, which

helped ensure that such a mammoth project was completed in

the given timeframe and budget.[12][13]

The SLDC fortified the OS/360 project, and helped IBM in

the following ways:

1. Planning: In the planning phase, IBM defined rigid

objectives and requirements. They identified the need to

develop an OS that could support a wide range of computer

models and configurations. The planning phase helped IBM

to establish a clear project vision and roadmap.[14]

2. Analysing the requirements: IBM conducted extensive

market research to identify the needs of its customers. The

data and information gathered through this research helped

define the functional requirement of the OS/360 operating

system. This ‘analysis’ phase ensured the software being

developed meets the needs of its target (end) users and

provides them with the necessary functionalities.[15]

3. Design: IBM created a detailed design plan (strategy),

which included the system architecture, data model and

component design. For instance, IBM developed a

hierarchical system structure, in order to allow for the

efficient processing of huge amounts of data. This design

phase meant that the product created was well-structured and

could be maintained and scaled for the long term as well.[16]

4. Implementation: This phase involved creating the

designed product. It involved coding, testing and integrating

various components and parts of the system. IBM developed

a set of programming languages that could be used to write

programs for the OS/360. They also developed other utility

tools to support the development and testing of these

programs. This phase, helped IBM to fulfil and make a fully

functional product that would meet the initial idea of the

design and analysis phase.[17]

5. Testing: This phase helped IBM in rectifying bugs and

make sure OS/360 was reliable for end users. The company

conducted extensive testing of the system to identify and fix

bugs and ensure the software ran across various computer

configurations and models.[18]

6. Maintenance: The maintenance phase for a big company

like IBM, is never-ending. This phase made sure that IBM

kept OS/360 up to date and kept providing its users with

ongoing support and improvements. For example, IBM

included virtual memory management and the ability to

support (compatible) multiple programming languages in its

software.[19]

PARADIGM SHIFT IN MODEL ADOPTIONS

Context switching, in operating systems, refers to the

component that allows multiple processors to share the same

CPU. It allows the partially executed data to be stored until

the processor is free to execute the remaining process. In

contrast to the aforementioned phenomenon, in a Software

Development Model or Methodology, once a model has been

chosen to develop software, or complete a task chunk,

changing the SDLC model can be extremely time-consuming,

complex and challenging. In fact, companies as a whole avoid

radically changing their methodologies on short notice, as it

can create ripple effects on their operations. There are many

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM20186 | Page 3

hindering factors to a change SDLC, like resistance to change,

lack of skills and expertise, company culture and mindset and

the obvious reason, Cost and time.[20]

Irrespective of this, adopting the wrong SDLC can be even

more detrimental in both the short and long run. The

consequences of selecting the wrong model can range from

inefficiencies to delays, increased costs, etc. Over the past 2-

3 decades companies have been shifting from traditional and

old software development models to newer, hybrid, rigorous

and bold models. This is largely credited to changing nature

of the software development industry and the need to keep up

with the rapidly evolving technologies and business

requirements.[21]

The paradigm shift in model adoptions can be better

understood with the classic waterfall to agile model shift. The

waterfall model is the oldest, simplest model in existence. It's

linear, and sequential and prevents re-accession of any phase.

It's best suited for smaller projects, it's simple to understand

and implement, systematic and structural in nature. Most

major IT giants initially began with the waterfall model,

which mostly got the job done, But, IBM. Intel and Microsoft,

all have shifted from waterfall to agile in this century.

Microsoft felt that the waterfall model was slowing down

their development process, preventing them to meet customer

expectations. IBM felt the model was too rigid and didn't

allow changes to be made easily. Intel, on similar lines, felt

the model was too inflexible and didn't welcome quick

changes. Agile, on the other hand, allows for changes to be

made quickly and efficiently resulting in faster delivery and

more customizability of products.

Similar examples, of more companies, and their reasons to

shift models have been drafted below.

Company

Previous

SDLC

Methodology

Current

SDLC

Methodology

Reasons for

Model Shift

Google Traditional

SDLC

Model

Hybrid

Model

(Agile +

Scrum)

To enable

faster

development

and release of

products.

Improve

collaboration

between teams.

Increase

productivity in

product

development.

Airbnb Hybrid

SDLC

Model

RITE (Rapid

Iterative

Testing and

Evaluation)

Framework

To enable

faster testing

and iteration of

products.

Improve

collaboration

between teams.

Improve the

user

experience.

Walmart Traditional

SDLC

Model

Hybrid

Model

(Agile +

DevOps)

To reduce

costs.

To increase

speed to

market rate.

To improve

product

quality.

Cisco Traditional

SDLC

Model

Continuous

Delivery

Methodology

For faster

delivery of

products.

Improve

collaboration

between teams.

Increase

efficiency in

the

development

process.

Microsoft Waterfall

Model

Agile Model To speed up

their

development

process.

To be more

responsive to

customer

needs.

IBM Waterfall

Model

Agile Model To increase

productivity

To reduce

development

costs.

Improve

customer

satisfaction

Intel Waterfall

Model

Agile Model

Spotify Scrum

Model

Squad Model To align their

development

process with

their company

culture

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM20186 | Page 4

FACTORS INFLUENCING THE ADOPTION OF

A METHODOLOGY

As seen in the previous section, there are various factors that

come into play while choosing the SDLC model or

methodology to use for developing products. A company or

unit needs to keep these factors in mind. These criteria can

also help us decide what kind of future framework or model

could be adopted by companies and businesses.

In my opinion, the said factors can be broadly categorized

under two related sections:

1. Organisation-bound factors

Organisational bound factors are those which are related to an

individual company. It can range from the inner functioning

of a company, and its domain to its work culture. Some of the

important organization-specific factors include:

Culture and Mindset: The work culture and mindset of

current employees at the company can deeply influence,

whether they will adapt to a different methodology or model.

Resistance to change: The change in the model needs to be

well received among the employees, in order to allow a

smooth transition.

Lack of skills and expertise: This point can be better

explained by an example, changing from a waterfall model to

agile or scrum methodology, which involves being familiar

with tools that clock in work, or bifurcate tasks. Employees

need to either be trained or have prior knowledge/experience

regarding these methodologies.

Technical Debt: This refers to the additional implied cost and

effort required for the additional rework caused by choosing

a fast, new technology as a solution, rather than the better

approach that would have taken longer.

Other Factors: Cost and time, Customer Involvement

2. Model-instigated factors

Model-instigated factors include those factors that pertain to

the complexities that a model/methodology being applied or

adopted presents. Some of the prominent model-instigated

factors involved:

Choosing the right model: depending on the projects on-

board, size, requirements and complexity.

Stakeholder involvement: impact of the model on

developers, testers, project managers and end-users.

Other Factors: Regulatory compliances in accordance with

the model, Cost delta with new model

EMERGING TECHNOLOGIES AND

CHANGING WORLD

Generative AI, Neural Networks, Blockchain and new

technologies have changed the SDLC landscape and potential

ground-breaking developments are a surety. Some imminent

incorporation of new emerging technologies could be

a) Increased use of automated testing and deployment:

Software development cycle models and methodologies will

have to make use of AI, ML tools and frameworks for the

development and testing of products to ensure faster

development, implementation and deployment.

b) Designing and requirement analysis could be heeded

with the incorporation of AI: Generative AI and complex

ML models can render designs and possible requirements

based on customer objectives and problem statements. There

could be multiple renditions, that the AI produces and

suggests, which can further be filtered and selected manually

by experienced employees/managers/decision makers.

c) A shift to decentralized development: Blockchain

technology can enable decentralized development and the

creation of decentralized applications that operate without

central control. As companies shift towards blockchain

technology, SDLC might have to shift to similar development

techniques.

d) More flexible and agile models: With AI there will be a

greater emphasis on experimentation, iterations and feedback.

SDLC models must be more flexible and agile to incorporate

the variations, with an increased focus on collaboration and

continuous improvement.

e) Greater emphasis on security and privacy: With

blockchain technologies security and privacy will be of prime

concern in the SLDC. New methodologies, will have to

incorporate specialized security and privacy practices, such

as smart contract development and testing.

CONCLUSION

The research paper found a great emphasis must be placed on

how the inner workings of a company, might be influenced

by the adoption of a new model of methodology. Over the

years, the adoption of SDLC models has shifted significantly,

dictating a paradigm shift. Factors influencing the adoption

are not limited to a certain set of criteria. It can range from

project size, complexity, budget, and time to market to

regulatory compliance. To construct better SDLC

frameworks for the future, it's imperative to take a

multifaceted approach that considers various new emerging

technologies like Generative AI, Neural Networks and

Blockchain.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM20186 | Page 5

REFERENCES

[1] Boehm, B. W, A spiral model of software development

and enhancement. Computer, 21(5), 1988

[2] Selecting a Development Approach, February 2005

[3] Geoffrey Elliott, Global Business Information

Technology: an integrated systems approach, 2004

Brooks/Cole Publishing Company, 1993.

[4] A. Miller, Applying the Systems Development Life

Cycle to the Art of Writing Computer Programs. Journal of

Information Technology Management, 2001

[5] J. Stien, Microsoft Windows prepares for its debut,

Infoworld, 1991

[6] Microsoft, Windows 3.0, 1990

[7] R. Magoulas, Windows XP in a nutshell, O’Reilly

Media Inc., 2004

[8] Sarbanes-Oxley Act of 2002, Pub. L. No. 107-204, 116

Stat. 745, 2002

[9] Dodd-Frank Wall Street Reform and Consumer

Protection Act, Pub. L. No. 111-203, 124 Stat. 1376, 2010

[10] B. W. Boehm & L. B. Huang, "ISO/IEC 12207: A

Framework for Software Life Cycle Processes." Computer,

34(9), 112-113., 2001

[11] ISO/IEC 12207:2017, Systems and software

engineering – Software life cycle processes, International

Organization for Standardization (ISO), 2017

[12] IBM Systems Reference Library, IBM Operating

System: Concepts and Failures, 1965

[13] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Sixth Edition), 2005

[14] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Seventh Edition) Chapter 2, 2010

[15] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Seventh Edition) Chapter 4, 2010

[16] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Seventh Edition) Chapter 5, 2010

[17] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Seventh Edition) Chapter 6, 2010

[18] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Seventh Edition) Chapter 9, 2010

[19] Roger S. Pressman, Software Engineering: A

Practitioner’s Approach (Seventh Edition) Chapter 15, 2010

[20] Anneliese Andrews & James Dalziel, The impact of

culture on software development: a systematic literature

review, Journal of Software: Practice and Experience, 2017

[21] S. S. Rathore & K. Sing , Software Development Life

Cycle Models and Methodologies: A Survey, International

Journal of Advanced Research in Computer Science and

Software Engineering, 2016

http://www.ijsrem.com/

