
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 1

Problem Faced During the Software Development Cycle

1Nilakshi Gupta, 2Mahi Sahu

Department of Computer Applications, Babu Banarasi Das University, Lucknow, India

1pg741154@gmail.com , 2sahumahi1026@gmail.com

Abstract— The software development cycle cover a series of

stages , each compelling to the successful design of software

products. Though each stage illustrates eccentric challenges that

can block progress and impact the final product’s quality. This

paper examines the common problems faced during the software

development cycle , including issues in requirements gathering ,

design , implementation , testing , and maintenance. Through a

precise analysis of these stages , we recognize basic interference

such as unclear requirements , scope creep , inappropriate structure

, coding errors , integration challenges , insufficient testing ,and

technical liability. The paper also proposes methods to ease these

concern , aiming to enhance the efficiency and effectiveness of

software development processes. By understanding and addressing

these problems , software development teams can enhance the

project outcomes and deliver higher-quality software products.

Keywords— Software development , requirements gathering ,

software design , coding errors , integration challenges , software

testing , scope creep , inappropriate structure , technical liability ,

software cycle .

1. INTRODUCTION

The software development cycle , commonly known as the

Software Development Life Cycle (SDLC) , is a structured

framework that guides the development of software products from

genesis to deployment and maintenance. This cycle covers various

stages , including requirement gathering , design , implementation ,

testing , deployment , and maintenance , each are important for

delivering a operational and reliable software products. Despite the

structured approach , software development projects usually diverse

challenges that can lead to delays , budget overruns , and

compromised product quality.

The complexity of current software systems, linked with the high

standards of stakeholders and end-users , provoke these challenges.

Issues such as unclear requirements , scope creep , inappropriate

structure design , coding errors , integration challenges , insufficient

testing , and technical liability are common obstructions that

software development teams must navigate. These obstacles can

stem from various sources , including miscommunication among

stakeholders , evolving user needs , technological constraints , and

limitations in resources and expertise.

Understanding the problems essentials in the software development

cycle is essential for improving project management practices ,

enhancing team collaboration , and ultimately delivering high-

quality software.

During the requirements gathering phase , uncertainty and

incomplete information can lead to misunderstandings and set the

stage for future challenges. Scope creep , or the chaotic growth of

the project goals beyond the initial specifications , can disturb the

timelines and raise budgets. In the design phase , inappropriate

structure planning can result in a system that is difficult to

balance, maintain , or integrate with other system.

Implementation , or the actual coding of the software , proposes

its own set of challenges , such as coding errors and integration

issues , which can actually impact the operationally and reliability

of the software . Testing is the critical phase aim to catch and fix

defects before the software goes live , but insufficient testing or

poorly managed test environments can lead to undetected bugs

that compromise the software's performance and user satisfaction.

Finally, the maintenance phase, which involves updating the

software to adapt to changing requirements and fix bugs, often

suffers from issues related to technical debt – the accumulation of

sub-optimal code that necessitates costly and time-consuming

refactoring.

This paper aims to provide a comprehensive exploration of these

problems faced during the software development cycle. By

identifying the root causes of these issues and proposing effective

mitigation strategies, this research seeks to enhance understanding

and offer practical solutions to improve the efficiency,

effectiveness, and quality of software development projects.

Through this analysis, we hope to contribute valuable insights to

the field of software engineering and support practitioners in

navigating the complex landscape of software development.

Figure 1 : SDLC Phases

http://www.ijsrem.com/
mailto:pg741154@gmail.com
mailto:sahumahi1026@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 2

2. LITERATURE REVIEW

The Software Development Life Cycle (SDLC) is a structured

framework used to develop software products. Each phase of the

SDLC comes with its exclusive set of challenges that can impact the

project if not managed properly. This literature review provides a

comprehensive overview of the SDLC, common challenges

encountered, and previous research on these problems.

2.1 Overview of the Software Development Life Cycle (SDLC)

The SDLC is a process that consists of several distinct phases:

requirements gathering, design, implementation, testing, deployment,

and maintenance. Each phase plays a crucial role in the development

of software :-

2.1.1 Requirement Gathering - This initial phase involves

collecting and documenting the functional and non-functional

requirements of the software. It aims to understand the needs of

the stakeholders and the problems the software intends to

solve.

2.1.2 Design - During the design phase, the software’s architecture is

created, defining the system components, interfaces, and data

flow. It includes high-level design (HLD) and low-level design

(LLD).

2.1.3 Implementation - This phase involves coding the software

according to the design specifications. Developers translate the

design into executable code.

2.1.4 Testing - Testing is crucial for identifying and fixing bugs and

ensuring the software meets the specified requirements. It

includes various levels of testing such as unit testing,

integration testing, system testing, and user acceptance testing.

2.1.5 Deployment - In this phase, the software is delivered to the

users or clients. Deployment may involve installation,

configuration, and performance tuning.

2.1.6 Maintenance - Post-deployment, the software requires

maintenance to correct any issues, improve performance, and

adapt to new requirements or environments.

2.2 Common challenges in Software Development

Each phase of the SDLC presents its own set of challenges that can

hinder the successful completion of a software project :

2.2.1 Requirements Gathering - Unclear, incomplete, or evolving

requirements can lead to significant challenges.

Miscommunication between stakeholders and developers

often results in requirements that do not affiliate with

business needs.

2.2.2 Design - Challenges in the design phase include inadequate

architectural planning, over-engineering, and lack of

standardization. These issues can lead to poor system

scalability and maintainability.

2.2.3 Implementation - Coding errors, integration challenges, and

inconsistent coding standards are common problems.

Ensuring code quality and managing complex integrations

require robust practices and tools.

2.2.4 Testing- Insufficient testing, lack of a proper test

environment, and ineffective bug management can result in

undetected defects. Comprehensive testing strategies are

essential to ensure software reliability.

2.2.5 Deployment- Deployment failures can occur due to lack of

preparation or unexpected issues. Proper planning and the

use of automated deployment tools can reduce these risks.

2.2.6 Maintenance - Technical liability, continuous maintenance

needs, and evolving requirements pose ongoing challenges.

Effective maintenance practices are necessary to keep the

software functional and relevant.

3. METHODOLOGY

The methodology for this research paper involves a systematic

approach to identifying, analyzing, and reducing the problems faced

during the Software Development Life Cycle (SDLC). This section

outlines the research design, data collection methods, and analysis

techniques used to achieve the study's objectives.

3.1 Research Design

This study utilizes a mixed-methods research design,

combining qualitative and quantitative approaches to gain a

comprehensive understanding of the challenges in the

SDLC. The research design is structured as follows:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 3

3.1.1 Literature Review - An extensive review of existing

literature to identify common problems and best practices in

the SDLC.

3.1.2 Surveys - Conducting surveys with software development

professionals to gather quantitative data on the prevalence

and impact of various challenges.

3.1.3 Interviews - Conducting in-depth interviews with experienced

developers, project managers, and other stakeholders to

gather qualitative insights.

3.2 Iterative and Incremental Nature of SDLC Methodologies

3.2.1 Waterfall Model - A linear and sequential approach where each

phase must be completed before the next begins. It is suitable

for projects with well-defined requirements but lacks flexibility

for changes during development.

Figure 3: Waterfall Model

3.2.2 Agile Model -An iterative approach that focuses on flexibility,

customer collaboration, and continuous delivery. Agile

methodologies, such as Scrum, involve iterative cycles called

sprints, where incremental improvements are made.

Figure 4 : Agile Model

3.2.3 Spiral Model - This model has characteristics of both iterative

and waterfall models. This model is used in projects which are

large and complex. This model was named spiral because if we

look at its figure, it looks like a spiral, in which a long curved

line starts from the center point and makes many loops around

it. A software project goes through these loops again and again

in iterations. After each iteration a more and more complete

version of the software is developed. The most special thing

about this model is that risks are identified in each phase and

they are resolved through prototyping. This feature is also

called Risk Handling.

Figure 5: Spiral Model

3.2.4 V Model - It is based on the association of testing phase

with each development phase that is in V-Model with each

development phase, its testing phase is also associated in a

V-shape in other words both software development and

testing activities take place at the same time.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 4

Figure 6 : V Model

3.2.5 Incremental Model – In Incremental Model, the software

development process is divided into several increments and

the same phases are followed in each increment. In simple

language, under this model a complex project is developed

in many modules or builds.

Figure 7 : Incremental Model

4. PROBLEMS DURING REQUIREMENT GATHERING

4.1 Ambiguous Requirements - Impact on Project Scope and

Outcomes unclear requirements can significantly derail a

software development project. When requirements are

unclear, the development team may misinterpret them,

leading to incorrect implementations.

This can result in features that do not meet user needs,

increased costs due to redesign, and increased project

timelines. The scope of the project can become fluid and

uncertain, causing scope creep where the project grows beyond

its original intentions without parallel adjustments in time or

budget.

4.2 Incomplete Requirements - Incomplete requirements are a

primary cause of scope creep, where additional features or

changes are continuously added to the project. This can result

in project delays and budget overruns. When the primary

requirements do not capture all necessary details, new

requirements arise during development, forcing the team to

revise the project plan frequently.

4.3 Best Practices for Thorough Requirement Gathering

 a. Stakeholder Involvement: Engage all relevant stakeholders

early and regularly to ensure comprehensive requirements

collection.

b. Workshops and Brainstorming : Conduct workshops and

brainstorming sessions to gather detailed requirements from

various approaches.

c. Use Cases and User Stories: Develop detailed use cases and

user stories to capture functional requirements thoroughly.

 d. Prototypes and Mockups : Use prototypes and mockups to

visualize requirements and get early feedback from

stakeholders.

 e. Requirements Documentation : Maintain clear and detailed

requirements documentation that is easily accessible to all team

members and stakeholders.

4.4 Stakeholder Miscommunication

Effective communication among stakeholders is crucial to

prevent misunderstandings and ensure that requirements are

accurately confined and interpreted. Miscommunication can lead

to incorrect assumptions, missing requirements, and ultimately a

product that does not meet user needs.

4.4.1 Strategies to Enhance Communication

a. Regular Meetings: Schedule regular meetings with stakeholders to

discuss progress, clarify requirements, and address any questions.

b. Clear Documentation: Use clear and detailed documentation to

ensure that all stakeholders have a common understanding of the

requirements.

c. Visual Aids: Utilize visual aids such as flowcharts, diagrams, and

prototypes to facilitate better understanding and communication.

d. Feedback Loops: Implement feedback loops to continuously gather

input and clear requirements throughout the development process.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 5

5. CHALLENGES IN DESIGN PHASE

 5.1 Inadequate Architectural Design

Insufficient architectural design can lead to significant issues in

software scalability, maintainability, and performance. Poor

design decisions made early in the project can result in an

inflexible system that is difficult to modify or expand. This can

increase technical liability and future maintenance costs, making

the system less adaptable to changing requirements.

5.1.1 Mitigation Strategies

a. Architectural Reviews: Conduct regular architectural

reviews with experienced architects to identify and address

potential design imperfections early.

b. Prototyping: Develop prototypes to validate architectural

choices and gather early feedback.

c. Scalability Planning: Ensure the architecture is designed

with scalability in mind, accommodating future growth and

changes.

5.2 Best Practices for Effective Design

a. Design Patterns: Utilize well-known design patterns to

solve common design problems and assist the reuse of

successful strategies.

b. Iterative Design: Adopt an iterative design approach,

allowing for regular enhancement and feedback.

c. Collaboration and Communication: Faster collaboration

and communication among all stakeholders, including

developers, designers, and business analysts, to ensure a

shared understanding of design objectives and constraints.

By addressing these challenges and implementing these best

practices, software development teams can enhance the

effectiveness of the design phase, leading to more robust, scalable,

and maintainable software systems.

6. ISSUES DURING IMPLEMENTATION

6.1 Coding Errors

a. Impact on Software Quality - Coding errors are a

common issue during the implementation phase, leading

to bugs, security liabilities, and system crashes. These

errors can origin from various sources, including

misunderstandings of requirements, lack of experience, or

simple human mistakes. Coding errors can significantly

affect software quality, resulting in increased costs for

debugging and fixing issues, and potential loss of user

trust.

6.2 Integration Challenges - Integration challenges arise when

different modules or components of the system do not work

together as expected. This can lead to delays in project

timelines, increased costs for debugging and fixing integration

issues, and overall system instability.

6.3 Methods to ensure Quality Code

a. Test-Driven Development (TDD): Use TDD practices where tests

are written before the code, ensuring that the code meets the

required specifications.

b. Continuous Testing: Implement continuous testing practices to

ensure that code changes are tested regularly. This helps in catching

issues early and maintaining high code quality.

c. Static Code Analysis: Use static code analysis tools to detect

potential issues in the code without executing it. Tools like Sonar-

Qube and Coverity can help identify code smells and vulnerabilities.

d. Documentation: Maintain comprehensive documentation for the

codebase to ensure that new developers can understand and

contribute effectively.

By addressing these issues and implementing the suggested strategies,

software development teams can improve the quality and reliability of

their code, leading to more successful project outcomes.

7. TESTING AND QA PROBLEMS

Insufficient Testing - Insufficient testing can lead to the release

of software with critical bugs, security liabilities, and

performance issues. This inaccuracy can cause system failures,

data loss, and user dissatisfaction, probable leading to financial

losses and reputational damage.

7.1 Mitigation Strategies

a. Comprehensive Test Plans: Develop detailed test plans that

cover all aspects of the software, including functional,

performance, security, and usability testing.

b. Automated Testing: Implement automated testing to ensure

consistent and thorough testing across different parts of the

application. Tools like Selenium and JUnit can facilitate this

process.

c. Regression Testing: Conduct regression testing to secure that

new changes do not adversely affect existing functionality.

7.2 Test Environment Issues- A poorly configured or insufficient

test environment can lead to inaccurate test results, where issues

present in the production environment are not detected during

testing. This inconsistency can result in unfamiliar bugs making

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 6

their way into the final product.

7.3 Best Practices for Effective testing and QA

a. Test Automation: Automate repetitive and critical test cases to

increase efficiency and coverage. Tools like Selenium, Test

Complete, and QTP can be useful.

b. User Acceptance Testing (UAT): Involve actual users in the

testing process to authenticate that the software meets their

needs and expectations.

c. Performance Testing: Conduct performance testing to ensure

the software can handle expected loads and perform well

under stress. Tools like J Meter and Load Runner can assist

with this.

d. Security Testing: Perform security testing to identify and fix

liabilities. Use tools like OWASP ZAP and Burp Suite for

this purpose.

e. Continuous Testing: Integrate testing into the CI/CD pipeline

to ensure that tests are run continuously and automatically

with each code change.

By addressing these testing and quality assurance issues,

software development teams can improve the reliability, security,

and performance of their products, leading to higher user

satisfaction and fewer post-release issues.

8. DEPLOYMENT AND MAINTENACE

CHALLENGES

8.1 Deployment Failures - By addressing these testing and

quality assurance issues, software development teams can

improve the reliability, security, and performance of their

products, leading to high Deployment failures can cause

significant disruptions, leading to system downtime, user

dissatisfaction, and potential financial losses. These failures

often arise from discrepancies between the development,

testing, and production environments, or from errors in

deployment scripts and processes. user satisfaction and fewer

post-release issues.

8.2 Technical Debt - Technical debt refers to the long-term

costs incurred due to quick and dirty solutions or suboptimal

code implemented to meet short-term goals. Accumulating

technical debt can lead to increased maintenance costs,

reduced system performance, and difficulties in

implementing new features.

8.3 Continuous Maintenance Requirements - Continuous

maintenance is crucial for keeping software systems up-to-

date, secure, and efficient. However, it can be challenging

due to the need for ongoing updates, bug fixes, and security

patches, which require careful management to avoid

introducing new issues.

8.4 Tool and Practices for Effective Maintenance –

a. Version Control: Use version control systems like Git to

manage code changes effectively, enabling easier tracking

and rollback of changes.

b. Documentation: Maintain comprehensive and up-to-date

documentation to facilitate easier troubleshooting and

onboarding of new developers.

c. Agile Practices: Adopt Agile methodologies to handle

maintenance tasks in an iterative and liable manner, ensuring

quick response to issues.

9. CONCLUSIONS AND FUTURE WORK

The software development cycle surrounds several stages, each

presenting exclusive challenges that can influence the overall success

of a project. This paper has demonstrated and analyzed the common

problems faced during requirements gathering, design,

implementation, testing, deployment, and maintenance phases. Key

issues include unclear and incomplete requirements, integration

challenges, coding errors, uncertain coding standards, insufficient

testing, deployment failures, technical liability, and continuous

maintenance requirements. Addressing these problems effectively is

critical for improving software quality, reducing costs, and assuring

timely project delivery.

By implementing best practices such as thorough requirements

documentation, modular design, continuous integration, automated

testing, and robust deployment strategies, software development teams

can reduce many of these challenges. Additionally, approving agile

methodologies and maintaining comprehensive documentation can

further enhance communication and accommodation among team

members, leading to more efficient and successful projects .While this

paper provides a comprehensive overview of the problems faced

during the software development cycle, future research can develop

deeper into several areas to further improve software development

practices:

a. Advanced Automation Techniques: Explore the latest

advancements in automation tools and techniques, particularly in

the areas of testing and deployment, to decrease human error and

increase efficiency.

b. Artificial Intelligence and Machine Learning: Explore how AI

and machine learning can be integrated into the software

development cycle to predict and prevent issues, enhance

processes, and decision-making.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35471 | Page 7

c. DevOps Practices: Study the impact of DevOps practices on

software development, focusing on how continuous integration,

continuous deployment, and infrastructure as code can streamline

the development process and improve software quality.

d. Technical Debt Management: Develop more effective methods

for managing technical liability, including better tracking tools

and strategies for prioritizing and addressing technical liability

within project timelines.

e. Case Studies and Real-World Applications: Conduct detailed case

studies on various software development projects to identify

practical solutions and best practices that can be applied across

different industries and project types.

f. Stakeholder Engagement: Investigate strategies for improving

stakeholder engagement and communication, particularly in large

and distributed teams, to ensure that requirements are clearly

understood and met.

g. Security Practices: Enhance research on integrating robust

security practices throughout the software development life-cycle

to prevent vulnerabilities and protect against cyber threats.

10. ACKNOWLEDGEMENT

We are highly grateful to our college Babu Banarasi Das University

for providing us robust environment to dive deep into this project

and also thankful to our management, mentors and faculties for their

guidance and support.

11. REFERENCES

1. Pressman, R.S. (2014). Software Engineering: A Practitioner's

Approach. McGraw-Hill Education.

2. Martin, R. C. (2008). Clean Code: A Handbook of Agile

Software Craftsmanship. Prentice Hall.

3. Beck, K. (2004). Extreme Programming Explained: Embrace

Change. Addison-Wesley.

4. Boehm, B. W. (1988). "A Spiral Model of Software

Development and Enhancement". ACM SIGSOFT Software

Engineering Notes, 11(4), 14-24.

5. Brooks, F. P. (1995). The Mythical Man-Month: Essays on

Software Engineering. Addison-Wesley.

6. Kaner, C., Bach, J., & Pettichord, B. (2001). Lessons Learned in

Software Testing: A Context-Driven Approach. Wiley.

7. "Requirement Engineering Challenges: A Systematic Mapping

Study" - Discusses various challenges in requirement

engineering within SDLC. Springer Link

8. "The Impact of Agile Development Practices on Project

Outcomes" - Explores the benefits and challenges of Agile

methodologies in software development. MDPI

9. "Current and Future Challenges of Software Engineering" -

Reviews the ongoing challenges and future directions in software

engineering. ScienceDirect

10. ResearchGate: Offers a collection of research papers and

articles on software development challenges. ResearchGate.

11. IEEE Xplore: Access to a wide range of technical literature on

software development lifecycle issues. IEEE Xplore.

http://www.ijsrem.com/
https://link.springer.com/search?new-search=true&query=Requirement+Engineering+Challenges%3A+A+Systematic+Mapping+Study%22
https://link.springer.com/search?new-search=true&query=Requirement+Engineering+Challenges%3A+A+Systematic+Mapping+Study%22

