
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35595 | Page 1

Progressive Web Apps in Cross-Platform Development: A Comparative Analysis

and Evaluation

Manu S Rao1, Rekha B S2

1 Department of ISE, RV College of Engineering® Bengaluru, India

2 Department of ISE, RV College of Engineering® Bengaluru, India

---***---
Abstract - The evolution of app development methodologies has

been significant, yet the discussion around cross-platform

development remains pertinent. Apps must seamlessly function on

both Android and iOS devices, accommodating diverse hardware

configurations and platform versions. The proliferation of device

categories beyond smartphones and tablets adds further complexity

to achieving multi-platform compatibility. Despite the presence of

multi-platform frameworks supported by both practical application

and research, the challenge of efficiently developing apps for various

targets persists. Progressive Web Apps (PWAs) potentially offer a

solution to this ongoing quest for unifying technology. This paper

aims to evaluate the role of PWAs in multi-platform development,

exploring their foundational aspects and assessing the current

landscape of possibilities. The evaluation includes a comparative

analysis conducted in two phases. In the first phase, the different

application development paradigms are analyzed with their

advantages and disadvantages. In the second phase, the PWAs are

compared to native and cross-hybrid apps based on launch time,

installation size, and Largest Contentful Paint (LCP), with PWAs

outperforming in all three metrics. By examining these aspects, the

paper seeks to provide a complete understanding of PWAs' potential

in cross-platform development.

Key Words: Progressive Web Apps, Cross-Platform

Development, App Development, Web Application, Multi-

Platform Compatibility, Frameworks, Comparative Analysis,

Performance Evaluation, Technology Unification, Mobile

Devices, Android, iOS

1.INTRODUCTION
Since the debut of the inaugural iPhone [1] over a decade

ago, the landscape of mobile development methodologies has
evolved significantly. During this period, the fundamentals of
mobile app development have undergone simultaneous
simplification and complication. On one hand, the proliferation
of platforms with significant market presence has diminished,
accompanied by the emergence of robust cross-platform
development frameworks [2] and advancements in various
other aspects. Conversely, challenges such as device
fragmentation persist, necessitating support for emerging
device categories like wearables amidst the relentless pace of
technological innovation.

The emergence of multi-platform hybrid app development
methods has significantly facilitated the creation of apps for
multiple operating systems and platforms, offering benefits
such as reduced learning curves, cost-effectiveness, and
expedited time-to-market. However, choosing between native,
multi-platform, and web apps can still be complex, especially
for graphically-intensive games that often require SDK [3].

Progressive online Apps (PWAs) are a modern way to
application development that claim to combine the internet

technology's user-friendliness with the benefits of native apps.
This process can be carried out with app sizes significantly
reduced without sacrificing functionality. Despite these
benefits, very little research has been done on PWAs; most
evaluations have been done on the Android platform. This
research aims to bridge the gap between academic inquiry and
industry implementation by investigating whether PWAs can
evolve into a multiplatform solution that addresses the
problems with existing cross-platform development paradigms
or serve as the unifying technology for cross-platform app
development.

2. BACKGROUND
In the following section, we outline the background of our

study. Initially, we outline native application development,
cross platform development and PWAs as fundamental
approaches and examine their developmental principles,
unique features and their benefits and drawbacks.

Fig -1: Classification of Application Development

2.1 Native Application Development

Developing native applications for the Android and iOS
platforms requires using the official programming languages
and development environments from Google and Apple,
respectively. The Integrated Development Environment (IDE)
for Android is called Android Studio [4], and the main IDE for
iOS is called Xcode [5]. Designed specifically for each
platform, these environments provide an extensive toolkit for
developing, writing, testing, and debugging applications.

The two main programming languages used in Android
development are Java [6] and Kotlin [7]. Although Java has
long been the preferred option, JetBrains’ [8] Kotlin has gained
popularity due to its contemporary features and compatibility
with Java. Conversely, since its introduction by Apple in 2014,
Swift [9] has been the language of choice for iOS developers.
It provides developers with a simplified and expressive
language for creating iOS apps, and it is made to be current,
safe, and efficient.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35595 | Page 2

One of native app development's main benefits is that it can
make use of platform-specific features and APIs to create
responsive, high-performance apps that interface with the
underlying operating system with ease. Furthermore, because
native apps follow the platform's UI conventions and design
rules, they usually provide a superior user experience.

However, there are certain drawbacks to local development
as well. One significant disadvantage is that developing
applications for iOS and Android requires different codebases,
which can add to the expense and duration of development.
Furthermore, it can be difficult to update and maintain two
different codebases, particularly for smaller development
teams. In addition, apps must adhere to platform-specific rules
and review procedures in order to be submitted to the
appropriate app stores (the Apple App Store [10] for iOS and
the Google Play Store [11] for Android), which can be a time-
consuming and restricted process. Native app development is
still a well-liked option for creating excellent, platform-
specific mobile apps that offer the best user experience and
performance in spite of these difficulties.

2.2 Cross Platform Development

Cross-platform development addresses the challenges of
developing native apps for many platforms, such as Android
and iOS. The use of frameworks and technologies that allow
developers to create code once and deliver it across various
platforms lowers the need for several codebases and
streamlines the development process. There are various cross-
platform frameworks available, each with unique capabilities,
benefits, and downsides.

React Native [12], developed by Facebook, is one of the
most used cross-platform frameworks. It allows developers to
create mobile applications with JavaScript and React, a
popular toolkit for developing user interfaces. With React
Native, a single codebase can be used for both Android and
iOS, greatly increasing code reusability.

The fundamental advantage of cross-platform development
is the ability to write code once and deploy it across numerous
platforms, saving time and money. These frameworks often
include tools and libraries that make development easier. For
example, hot reloading enables developers to examine the
effects of code changes without having to rebuild the entire
app.

Despite these advantages, cross-platform development has
several downsides. Some frameworks may not support all
platform-specific features and APIs, limiting the app's
functionality. Furthermore, performance concerns can develop,
particularly in sophisticated systems that require great
performance and responsiveness.

2.3 Progressive Web Application

 Progressive Web Apps (PWAs) are a cutting-edge approach
of creating websites that combine web technology capabilities
with native mobile app experiences. PWAs provide customers
with a more app-like experience than traditional web apps by
integrating features such as push notifications, offline
capabilities, and home screen installation. PWAs are built
using common web technologies such as HTML, CSS, and
JavaScript. Their primary characteristics include

responsiveness, dependability, and speed across several
devices and network configurations.

PWAs can operate offline or with very low connectivity due to
the use of service workers [15], which are background-running
scripts that have the ability to intercept network requests.
Because of this, PWAs can cache resources and content,
allowing users to access them even when they are not online.
Because PWAs may be loaded on a user's device and utilized
from the home screen in a manner similar to native programs,
they also provide a seamless user experience.

PWAs are superior to native apps and conventional web apps
in a number of ways. PWAs provide a uniform user experience
across many devices and platforms, and they are quick and
responsive for users, even on sluggish or unstable networks.
Because PWAs don't need separate code bases or app store
submissions, they are also less expensive to develop and
distribute than native apps.

PWAs do, however, have certain restrictions. They might not
be able to access all of the features and functionalities of native
apps, like app integration or device hardware access.
Furthermore, PWAs might not work with all browsers or
devices, which would restrict their accessibility to particular
user demographics.

3. RELATED WORK
Shubham et al., [16] presents a Data Retrieval System for

small-sized and medium-sized businesses, offering a solution
for tracking sales, purchases, profits, losses, and expenses.
Utilizing Progressive Web Application (PWA) technology, the
system functions without requiring any downloads, hence
saving storage space. The app is developed using React for the
user interface and a MongoDB server, operating as a SaaS
model. The paper details the development, implementation,
and benefits of PWAs for business data collection.

Zulkifli et al. [17] investigate the design and performance
of Progressive Web Apps (PWAs) for e-commerce that
employ the Angular framework and Service Worker
technologies. The study underlines the growing relevance of e-
commerce for business success and looks into how PWAs
might improve e-commerce experiences. The researchers ran
performance studies to compare systems with and without
Service Worker, concentrating on parameters like response
time, throughput, and latency. The findings show that PWAs
are quick, dependable, and ideal for e-commerce apps.

Alonge et al. [18] present an architecture for Progressive
Web Apps (PWAs) that can run in places with little or no
connectivity. The authors want to address the issue of data
transfer from client to server while a web application is offline,
which is a restriction of present PWA capabilities. The
proposed approach entails sending critical data via an SMS
platform when offline, with a product created utilizing a
service worker to identify offline applications and transfer data
via SMS. The results show that the suggested architecture can
be utilized to send data in offline environments, with
suggestions for future research to improve the solution. The
study also covers the significance of PWAs in today's
environment, their benefits, and the principles that they must
follow.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35595 | Page 3

Oforji et al., [19] addresses the creation of a cross-platform
mobile app for the healthcare industry utilizing Progressive
Web Apps (PWA), Deep Learning, and Natural Language
Processing (NLP). The app intends to process patient medical
records and incorporate an intelligent system for diagnosis and
therapy prescriptions. PWAs are 42 times smaller than android
apps and launch faster. The article also investigates the use of
Hybrid programs, which are cost-effective cross-platform
programs created using web technologies. However, when
compared to native apps, they may run worse and have less
functionality.

Fernando et al., [20] delves into the study of caching
mechanisms in Progressive Web Applications (PWAs),
contrasting them with traditional web applications. The paper
develops two applications, one traditional and one PWA,
testing both with the Google Lighthouse tool on desktop and
mobile devices. The results support PWAs' superior
performance in certain contexts. The paper's primary focus is
to highlight the diverse caching methods in PWAs and
traditional web applications, emphasizing the performance
benefits of PWAs.

Abasiama et al., [21] aims to develop an electronic model,
a digital wallet, to replace traditional physical wallets with an
online wallet system for small-scale organizations.The project
uses structured System Analysis and Design Methodology to
ensure a systematic approach from inception to
completion.The goal is to provide a safe, flexible, and scalable
electronic payment solution for small-scale organizations,
minimizing the common problems associated with physical
cash transactions, such as theft and loss, while improving the
ease of electronic transactions.

Pratik et al., [22] investigates the fundamentals of
Progressive Web Applications (PWAs) in cross-platform
development, providing a thorough assessment of their existing
capabilities in comparison to traditional cross-platform app
development methodologies. The paper evaluates the PWAs to
alternative cross-platform development methodologies from
both technical and overall viewpoints and finishes with a
comprehensive review of the results.

Jasmine et al., [23] studies how Progressive Web Apps
(PWAs), a solution provided by Google, effectively address
the inherent limitations of both native mobile apps and web
browsers.The paper delves into how PWAs combine the best
features of native apps and web experiences, providing a more
efficient, faster-loading, and user-friendly solution without the
need for extensive storage or consistent network connectivity.

Stefan et al., [24] compares the energy usage of different
mobile development techniques with Progressive Web Apps
(PWAs), with an emphasis on UI rendering and interaction
scenarios. The study discovered that although PWAs use more
energy than other mobile cross-platform development
techniques, they are still a competitive alternative to native
development, which uses the least energy. The PWA's energy
footprint is greatly affected by the kind of web browser that is
used to run it. Because consumers are cognizant of their
smartphones' energy efficiency, the study highlights the
significance of energy-efficient apps. The report also
emphasizes how difficult it is for developers to design mobile
apps that are energy-efficient due to the lack of tools for
diagnosing and analyzing energy-related problems.

Malavolta et al., [25] evaluates how service providers
affect two mobile devices' energy efficiency as well as various
network scenarios for Progressive Web Apps (PWAs). The
two main elements of the empirical experiment utilised in the

study were the use of service workers and the type of network
(2G or WiFi). The study found that there was no interaction
between the two factors and that service staff had no
appreciable effect on the energy usage of the two devices,
regardless of network conditions. The study's conclusions point
to the possibility of enhancing energy efficiency through PWA
and service worker technologies, which is a positive move in
narrowing the user experience gap between native apps and
mobile web apps.

Rensema et al.,[26] examines the core components of
PWAs with an emphasis on security, privacy, compatibility,
performance, and the effect on users and businesses.
Compatibility tests across eight browsers on four different
operating systems are part of the research, along with analyses
of Service Worker, Web App Manifest, add-to-home-screen
features, and offline capabilities. The findings indicate that
while iOS has limited support for PWA capabilities, the
majority of them are supported by major browsers, particularly
on Android and Chromium-based platforms. The
implementation technique has a considerable impact on
performance, and proper optimization can yield large benefits.
However, PWAs are a tempting option for contemporary web
development because they have been shown to increase user
re-engagement and revenue for large enterprises.

Steiner et al., [27] examines whether Web Views, which
are in-app web experiences featured in applications rather than
standalone web browsers, support Progressive Web App
(PWA) features. PWAs can work offline, get push alerts, and
synchronize data in the background thanks to Service Workers
APIs. Although a few standalone Android browsers support
Service Workers, the support for them in Web Views varies
greatly. The PWA Feature Detector is an open-source tool
created by the authors to assess PWA feature support on
various devices and Web Views. Although the study indicates
that there are significant differences between different Web
View technologies and the browser engines that power them, it
also finds that on Android , the results are consistent
irrespective of the version of the operating system, which is
helpful considering the inconsistent update policies of many
manufacturers.

Jiyeon et al. [28] examines the special security and privacy
issues associated with Progressive Web Apps (PWAs), which
provide offline surfing and native app-like functionality using
HTML5 capabilities like caching, push notifications, and
service workers. The analysis finds design faults in widely
used third-party push services and vulnerabilities in key
browsers that raise the danger of phishing. In addition, a
demonstration of a bitcoin mining attack that takes advantage
of service workers is presented, coupled with a new side-
channel attack that exploits offline caching to infer users'
history of visited PWAs. The research makes a number of
recommendations and countermeasures to lessen these
dangers, with a focus on stronger push notification systems,
enhanced browser security, and tactics to stop cache-based
exploits.

David et al., [29] explores the potential of web apps to run
on all devices, as opposed to the traditional native mobile app
development for each platform, which can be expensive. With
advancements in web technologies, web apps can now offer
more features and capabilities, making them a viable option for
mobile app development. The paper introduces the concept of
Progressive Web Apps (PWA), created by Google, which aims
to standardize web development. It highlights the advantages
of developing apps centrally as a PWA, comparing it to
developing for each mobile platform. The paper also discusses

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35595 | Page 4

the current state of web technologies and the scenarios where
PWAs are a strong alternative to native mobile apps.

Andreas et al.,[30] advocates for PWAs as a possible
technology that could bridge the gap between native and online
apps. The study compares the performance of two cross-
platform mobile apps with a Progressive Web App after
providing an outline of PWA characteristics. These programs
were created to confirm findings and made available for
validation in an open-source repository.

4. METHODOLOGY
 The research paper employs a distinct and comprehensive
methodology to evaluate the performance of Progressive Web
Applications (PWAs), aiming to provide a thorough
comparison with native and cross-platform applications.

 The methodology involves a detailed comparison of the
performance metrics of three types of applications: Native
Applications, Cross-Platform Applications, and Progressive
Web Applications (PWAs). Specifically, the performance
metrics under scrutiny are Largest Contentful Paint (LCP),
Installation Size, and Launch Time. To ensure a robust and
meaningful comparison, two types of applications are
developed for each method. The first type of application is
designed to display static and predefined content, which serves
as a controlled environment to measure basic performance
attributes without the variability of network conditions. The
second type of application is more complex and dynamically
loads data from the internet, providing insights into how each
application handles real-world data retrieval and rendering
tasks. This dual-application approach allows for a
comprehensive assessment of how static versus dynamic
content impacts performance across different application types.

4.1 Device Details

 For this evaluation, all applications—Native Applications,
Cross-Platform Applications, and Progressive Web
Applications (PWAs)—are tested using the same device to
ensure consistency and reliability in the performance metrics.
The device is carefully configured to minimize any
background activity that might interfere with the evaluation
methodology. This controlled environment is crucial to
maintain the integrity of the collected data and to provide an
accurate comparison of the performance metrics across
different application types and web browsers.

 Table -1: Device Specification

Device Name Nothing Phone 2A

RAM 8GB

Processor Dimensity 7200

Operating System Android 14

4.2 Application Details

 To rigorously evaluate the performance metrics of different
application development methods, a total of six applications
were developed. These applications were strategically
designed to encompass both static and dynamic content

scenarios across three distinct development approaches: Native
Applications, Cross-Platform Applications, and Progressive
Web Applications (PWAs). For every development method,
two apps were specifically made to enable a thorough and
equitable comparison.

4.2.1 Development of Native Application

For the first methodology, two native applications were
developed for the Android platform to evaluate performance in
static and dynamic content scenarios. The first application
displayed a static heading and content of approximately 1200
characters, providing a controlled environment for assessing
metrics such as LCP, Installation Size, and Launch Time. The
second application dynamically loaded the same content from
the internet, simulating real-time data fetching and rendering.
Both applications were developed using Kotlin and Jetpack.

4.2.2 Development of Cross Platform Application

Two cross-platform applications were developed to compare
with the native applications. These apps, designed to run on
both Android and iOS, were built using the React Native
framework. The first application displayed static content,
including a heading and 1200 characters of text, to benchmark
performance in a controlled environment. The second
application dynamically loaded the same content from the
internet, testing performance in dynamic scenarios. React
Native and JavaScript were chosen for their ability to deliver a
near-native user experience.

4.2.3 Development of Progressive Web Application

For the PWAs, two web applications were created to evaluate
performance under static and dynamic content scenarios. The
first PWA displayed a static heading and 1200 characters of
content, providing a controlled environment to measure
performance metrics like load time and rendering speed. The
second PWA dynamically loaded the same content from the
internet, reflecting real-world usage patterns. These PWAs
were developed using React.js and JavaScript, chosen for their
efficiency in handling dynamic data and creating responsive
user interfaces.

Fig -2: Developed Applications

(Native, Cross Platform, PWA)

5. RESULTS
 The methodology employed in this comparative analysis
involved systematically measuring and evaluating key
performance metrics across three different types of mobile
applications: Native Applications, Cross-Platform
Applications, and Progressive Web Applications (PWAs). A
detailed and structured approach was adopted to ensure the
accuracy and reliability of the performance measurements,
utilizing appropriate tools and techniques tailored to each

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35595 | Page 5

metric under consideration. The primary metrics of interest
were Installation Size, Launch Time, and Largest Contentful
Paint (LCP).

5.1 Installation Size

The installation size represents the amount of storage space
required on a device to install the application. For PWAs, this
metric indicates the total storage space needed to download the
PWA and its assets completely. In the case of applications
displaying static content, the PWA exhibited a significantly
smaller installation size of 1.43 MB compared to the native
app and the cross-platform app, which required 7.39 MB and
12.7 MB of storage space, respectively. This notable difference
highlights a key advantage of PWAs: their ability to deliver
lightweight applications that consume minimal device storage,
facilitating faster downloads and installations and thereby
enhancing the user experience.

For applications loading dynamic data, the PWA had an
installation size of 2.4 MB, whereas the native app and cross-
platform application required 8.9 MB and 13.5 MB of storage
space, respectively. This further underscores the primary
advantage of PWAs in providing robust applications with
minimal device storage requirements

5.2 Launch Time

Launch time refers to the duration taken by an application to
open and become fully functional after being launched by the
user. For applications with static data, the native application
demonstrated the fastest launch time of 760 milliseconds,
followed by the cross-platform app with a launch time of 960
milliseconds, and the PWA with a launch time of 1240
milliseconds. The longer launch time of the PWA reflects the
necessity of loading and rendering the web content completely.
However, it is important to note that subsequent launches are
quicker due to browser caching of PWAs for offline
availability.

For applications with dynamic data, the native application
again showed the fastest launch time of 890 milliseconds,
followed by the cross-platform app at 1080 milliseconds, and
the PWA at 1400 milliseconds. This performance pattern
highlights the need for PWAs to complete a full initial load,
resulting in a longer initial launch time.

5.3 Largest Contentful Paint

The Largest Contentful Paint (LCP) metric evaluates the time
it takes for the largest content piece in the viewport to become
visible to the user during page load. In applications with static
content, the native application outperformed both the cross-
platform and PWA applications, achieving an LCP of 600
milliseconds. The cross-platform app had an LCP of 780
milliseconds, while the PWA registered an LCP of 1000
milliseconds. The relatively larger LCP of the PWA indicates
the requirement for complete downloading and rendering of
the application, leading to longer LCP times compared to
native and cross-platform applications.

For applications with dynamic data, the native application
maintained the lowest LCP of 690 milliseconds, followed by
the cross-platform application at 890 milliseconds, and the
PWA at 1120 milliseconds. This consistency in performance
metrics further illustrates the efficiency of native applications
in rendering content swiftly, while PWAs, due to their
comprehensive loading processes, exhibit longer LCP times.

Table -2: Performance metrics for Static Data Application

Measure Native

App
Cross

Platform App
PWA

Installation

Size
7.39 MB 12.7 MB 1.43Mb

Launch

Time
760 ms 960 ms 1240 ms

LCP 600 ms 780 ms 1000 ms

Table –3 : Performance metrics for Dynamic Data App

Measure Native

App
Cross

Platform App
PWA

Installation

Size
8.9 MB 13.5 MB 2.4 MB

Launch

Time
890 ms 1080 ms 1400 ms

LCP 690 ms 890 ms 1120 ms

6. CONCLUSION

6.1 Conclusion

 The comparative analysis of Native Applications, Cross-
Platform Applications, and Progressive Web Applications
(PWAs) reveals distinct performance characteristics across key
metrics. Native applications consistently demonstrated superior
performance in terms of launch time and Largest Contentful
Paint (LCP), showcasing their efficiency in rendering and
quick access. Cross-platform applications, while slightly
lagging behind native apps, offered a balanced performance
across metrics due to their versatile framework. PWAs, despite
having the smallest installation size advantage, exhibited
longer launch times and LCP due to the need for complete
loading and rendering of web content. These findings highlight
that while PWAs are advantageous for their lightweight
storage requirements and broad accessibility, native
applications remain the optimal choice for performance-critical
scenarios. Cross-platform applications provide a viable middle
ground, balancing performance and development efficiency.

6.2 Future Work

 Future studies should look into ways to improve the
performance of web technologies and sophisticated caching
techniques to minimize the startup time and Largest Contentful
Paint (LCP) of Progressive Web Applications. Furthermore,
broadening the scope of the research to encompass a greater
range of devices and network configurations may yield a more
thorough comprehension of performance dynamics. Examining
the effects of employing distinct development frameworks and
libraries for cross-platform apps may also provide valuable
information for enhancing their efficiency.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35595 | Page 6

REFERENCES

1. Proske, Marina & Poppe, Erik & Jaeger-Erben, Melanie. (2020).

The smartphone evolution - an analysis of the design evolution

and environmental impact of smartphones.

2. Youn, Dongliang & Hu, Minjie. (2021). A Comparative Study of

Cross-platform Mobile Application Development.

3. Google. (n.d.). Command-Line tools : Android studio : Android

developers. Android Developers.

https://developer.android.com/tools

4. Android Developers. (n.d.). Android Studio. Retrieved May 27,

2024, from https://developer.android.com/studio

5. Apple Inc. (n.d.). Xcode. Retrieved May 27, 2024, from

https://developer.apple.com/xcode/

6. Oracle. (n.d.). Java. Retrieved May 27, 2024, from

https://www.java.com/en/

7. JetBrains. (n.d.). Kotlin programming language. Retrieved May

27, 2024, from https://kotlinlang.org/

8. JetBrains. (n.d.). JetBrains: Essential tools for software developers

and teams. Retrieved May 27, 2024, from

https://www.jetbrains.com/

9. Swift. (n.d.). Swift programming language. Retrieved May 27,

2024, from https://www.swift.org/

10. Apple Inc. (n.d.). App Store - Apple (IN). Retrieved May 27,

2024, from https://www.apple.com/in/app-store/

11. Google. (n.d.). Google Play. Retrieved May 27, 2024, from

https://play.google.com/

12. Facebook. (n.d.). React Native. Retrieved May 27, 2024, from

https://reactnative.dev/

13. JavaScript.com. (n.d.). JavaScript. Retrieved May 27, 2024, from

https://www.javascript.com/

14. Facebook. (n.d.). React documentation. Retrieved May 27, 2024,

from https://reactjs.org/.

15. Mozilla. (n.d.). Service Worker API - Web APIs | MDN.

Retrieved May 27, 2024, from https://developer.mozilla.org/en-

US/docs/Web/API/Service_Worker_API.

16. S. M. Gaikwad and K. R. Kulkarni, “Data collection system

based on pwa (progres- sive web app) as saas,” 2022 5th

International Conference on Advances in Science and Technology

(ICAST), pp. 270–273, 2022. [Online]. Available: https://api.

semanticscholar.org/CorpusID:256878711.

17. Z. Tahir, A. A. Ilham, M. Niswar, Adnan, and A. A. Fauzy,

“Progressive web apps development and analysis with angular

framework and service worker for e- commerce system,” 2021

IEEE International Conference on Computing (ICOCO), pp. 192–

195, 2021. [Online]. Available: https : / / api . semanticscholar .

org / CorpusID:246039015.

18. A. O. Josephe, C. Chrysoulas, T. Peng, B. E. Boudani, I.

Iatropoulos, and N. Pitropakis, “Progressive web apps to support

(critical) systems in low or no connec- tivity areas,” 2023 IEEE

IAS Global Conference on Emerging Technologies (Glob-

ConET), pp. 1–6, 2023. [Online]. Available:

https://api.semanticscholar.org/ CorpusID:259179353.

19. O. Jerome and A. Onway, “Effective cross-platform mobile app

development using progressive web apps, deep learning and

natural language processing,” International Journal of

Engineering Applied Sciences and Technology, 2023. [Online].

Available: https://api.semanticscholar.org/CorpusID:260328925.

20. F. Correia, ́O. Ribeiro, and J. C. Silva, “Progressive web apps

development: Study of caching mechanisms,” 2021 21st

International Conference on Computational Science and Its

Applications (ICCSA), pp. 181–187, 2021. [Online]. Available:

https: //api.semanticscholar.org/CorpusID:247476934.

21. A. Akpan, S. Mmeah, and B. Baah, “E-wallet system

implementation: Impact on small scale business,” International

Journal of Computer Applications, vol. 8, pp. 2277–128, 2018.

22. P. Thacker and D. Dharani, “Realization of native apps using

progressive web apps,” Journal of emerging technologies and

innovative research, 2020. [Online]. Available:

https://api.semanticscholar.org/CorpusID:218774075.

23. J. Muman, “Progressive web apps: An optimistic approach to

traditional application development,” 2021. [Online]. Available:

https://api.semanticscholar.org/ CorpusID:237396884.

24. S. Huber, L. Demetz, and M. Felderer, “A comparative study on

the energy con- sumption of progressive web apps,” Inf. Syst.,

vol. 108, p. 102 017, 2022. [Online]. Available:

https://api.semanticscholar.org/CorpusID:247334626.

25. I. Malavolta, K. Chinnappan, L. Jasmontas, S. Gupta, and K. A.

K. Soltany, “Evaluating the impact of caching on the energy

consumption and performance of progressive web apps,” 2020

IEEE/ACM 7th International Conference on Mo- bile Software

Engineering and Systems (MOBILESoft), pp. 109–119, 2020.

[Online] .

26. D.-J. Rensema, “The current state of progressive web apps: A

study on the per- formance, compatibility, consistency, security

and privacy, and user and business impact of progressive web

apps,” Dissertation, Karlstad University, 2020. [Online].

Available: https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-

78904.

27 T. Steiner, “What is in a web view: An analysis of progressive

web app features when the means of web access is not a web

browser,” Companion Proceedings of the The Web Conference

2018, 2018. [Online]. Available: https://api.semanticscholar.

org/CorpusID:12592264.

28. J. Lee, H. Kim, J. Park, I. Shin, and S. Son, “Pride and prejudice

in progressive web apps: Abusing native app-like features in web

applications,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (CCS

’18), New York, NY, USA: Association for Computing

Machinery, 2018, 1731–1746. doi: 10.1145/3243734.3243867.

29. D. A. Hume, “Progressive web apps,” 2017. [Online]. Available:

https : / / api . semanticscholar.org/CorpusID:67337068.

30. A. Biørn-Hansen, T. Majchrzak, and T. Grønli, “Progressive web

apps: The possible web-native unifier for mobile development,”

in Proceedings of the 13th International Conference on Web

Information Systems and Technologies - Volume 1: WEBIST,

2017, pp. 344–351, isbn: 978-989-758-246-2. doi:

10.5220/0006353703440351.

http://www.ijsrem.com/

