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Abstract—The increasing complexity of modern software sys- 
tems has rendered traditional debugging methods, such as 
manual code inspection and breakpoint analysis, progressively 
inefficient. This paper introduces Prompt-Oriented Code Under- 
standing (POCU), a novel paradigm that leverages Generative 
Artificial Intelligence (GenAI) to enable natural language-driven 
debugging directly within Integrated Development Environments 
(IDEs). We propose a system architecture that translates devel- 
oper queries in natural language into actionable code analysis and 
debugging operations. To facilitate continuous model improve- 
ment without compromising intellectual property, we introduce 
a Trust-Metric Federated Learning (TMFL) framework. TMFL 
allows the underlying GenAI model to be fine-tuned across 
disparate, private codebases (silos) while ensuring the integrity 
and accountability of contributions through a novel trust metric. 
Furthermore, acknowledging the critical need for transparency 
in AI-assisted tools, we present a framework to quantify and 
optimize the inherent trade-off between the explainability of the 
AI’s suggestions and its raw performance. We define metrics 
for both dimensions and formulate an optimization strategy to 
achieve a Pareto-optimal balance. Our conceptual framework and 
proposed methodologies lay the groundwork for a new generation 
of intelligent, intuitive, and trustworthy developer tools designed 
to significantly reduce debugging time and cognitive load. 

Index Terms—Generative AI, Code Understanding, Natural 
Language Processing, Software Debugging, Federated Learning, 
Explainable AI, IDE Integration 

 

I. INTRODUCTION 

Software development is an intricate process where de- 

bugging constitutes a significant portion of the development 

lifecycle, often consuming up to 50% of a developer’s time 

[1]. Traditional debugging techniques rely heavily on devel- 

opers forming hypotheses about code behavior and manually 

verifying them using tools like debuggers, log analyzers, and 

static analysis tools. This process is labor-intensive, requires 

deep expertise in the codebase, and scales poorly with the 

size and complexity of modern software projects, especially 

in distributed and microservices-based architectures. 

The recent proliferation of Large Language Models (LLMs) 

and Generative AI (GenAI) has opened new frontiers in 

human-computer interaction, particularly in specialized do- 

mains like software engineering [2], [3]. These models have 

demonstrated remarkable capabilities in code generation, com- 

pletion, and summarization. However, their application to the 

nuanced and context-heavy task of debugging remains an 

open and challenging research area. The primary challenge 

lies in bridging the gap between high-level, often ambiguous, 

This work was not supported by any organization. 

developer intent expressed in natural language and the low- 

level, precise operations required for effective code analysis 

and fault localization. 

This paper introduces Prompt-Oriented Code Under- 

standing (POCU), a novel approach that recasts debugging 

as a conversational, query-driven process. The core idea is 

to empower developers to interact with their codebase using 

natural language prompts directly within their IDE. For in- 

stance, a developer could ask, ”Why is the user session object 

nullifying after the payment gateway callback?” or ”Trace the 

execution path for request ID ’xyz-123’ and highlight any 

potential race conditions.” The POCU system would then parse 

this query, gather relevant context from the code, runtime data, 

and version control history, and provide a synthesized, human- 

readable explanation along with actionable suggestions. 

However, building such a system presents three fundamental 

challenges that this paper aims to address: 

1) Contextual Intelligence and Integration: A generic 

GenAI model lacks the specific context of a proprietary 

codebase. An effective debugging assistant must be 

deeply integrated with the IDE and be aware of the 

project’s static structure, dynamic runtime behavior, and 

historical evolution. 

2) Data Privacy and Collaborative Learning: To improve 

its accuracy, the model must learn from a wide ar- 

ray of codebases. However, organizations are unwilling 

to share their proprietary source code for centralized 

training. A decentralized learning paradigm is required 

that preserves data privacy while enabling collaborative 

model improvement. 

3) Trust and Transparency: Developers will not rely on 

a ”black box” tool for critical debugging tasks. The 

system’s suggestions must be explainable, allowing de- 

velopers to understand the reasoning behind a particular 

conclusion. There is an inherent trade-off between the 

model’s performance (e.g., accuracy) and the explain- 

ability of its outputs. 

To address these challenges, we propose a multi-faceted 

solution. First, we detail the architecture of the POCU system, 

which integrates a GenAI core with static and dynamic code 

analysis tools via a context-aware middleware. Second, we in- 

troduce a Trust-Metric Federated Learning (TMFL) frame- 

work. TMFL enables distributed fine-tuning of the core GenAI 

model across organizational silos. It incorporates a novel 

trust metric that weighs model updates based on factors like 
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data quality, contribution consistency, and security posture, 

preventing malicious or low-quality updates from corrupting 

the global model. Third, we propose a formal framework 

to manage the Explainability-Performance Optimization 

(EPO) trade-off, enabling organizations to configure the sys- 

tem to their desired balance between insightful explanations 

and predictive accuracy. 

The contributions of this paper are therefore threefold: 

• A novel system architecture for Prompt-Oriented Code 

Understanding (POCU) that facilitates natural language- 

driven debugging in IDEs. 

• A Trust-Metric Federated Learning (TMFL) framework 

designed for secure, privacy-preserving, and accountable 

collaborative training of code-understanding models. 

• A formal methodology for quantifying and optimizing the 

trade-off between model explainability and performance 

in the context of AI-assisted software engineering. 

This paper is organized as follows: Section II reviews 

related work. Section III presents the detailed methodology 

of the POCU system, the TMFL framework, and the EPO 

model. Section IV outlines a proposed experimental design 

for evaluating the system. Section V discusses potential results 

and their implications. Finally, Section VI concludes the paper 

and suggests avenues for future research. 

II. RELATED WORK 

The application of AI to software engineering, often termed 

AISE, has a rich history. Our work builds upon several key 

areas: code analysis, natural language processing for source 

code, and federated learning. 

A. AI in Code Analysis and Debugging 

Automated program repair (APR) and fault localization have 

been long-standing goals in software engineering research. 

Early techniques relied on statistical methods and program 

slicing [4]. More recently, machine learning-based approaches 

have gained prominence. Systems like DeepBugs [5] used 

deep learning to detect bugs based on code patterns. Other 

research has focused on mining software repositories to learn 

common bug-fix patterns [6]. While powerful, these systems 

are typically specialized for specific bug classes and lack the 

interactive, general-purpose query capabilities of our proposed 

POCU system. 

The advent of large-scale, pre-trained models like Codex 

[3] and AlphaCode [7] has revolutionized the field. These 

models excel at code generation and have been integrated 

into tools like GitHub Copilot. While these tools assist in 

”forward-engineering” (writing new code), our work focuses 

on ”reverse-engineering” and diagnostics (understanding and 

debugging existing code), which requires a deeper level of 

contextual inference. 

B. Natural Language Processing on Source Code 

The idea of treating source code as a natural language (the 

”naturalness hypothesis”) has been influential [8]. This has led 

to the development of models that can perform tasks like code 

summarization, documentation generation, and code search 

using natural language queries. Models like CodeBERT [9] 

and GraphCodeBERT [10] use bimodal pre-training on parallel 

corpora of code and natural language text to learn rich repre- 

sentations. Our POCU system leverages such representations 

but extends them by integrating runtime context and interactive 

dialogue capabilities, moving from static code representation 

to dynamic execution understanding. 

C. Federated Learning for Privacy-Preserving AI 

Federated Learning (FL) was introduced by Google to train 

models on decentralized data, such as on mobile devices, 

without centralizing the data itself [11]. It has become a cor- 

nerstone of privacy-preserving machine learning. In the soft- 

ware engineering domain, FL has been proposed for tasks like 

defect prediction across different organizations [12]. However, 

standard FL algorithms like FedAvg are vulnerable to non- 

IID data distributions and potential adversarial attacks from 

malicious clients [13]. Our TMFL framework addresses these 

vulnerabilities by introducing an explicit trust mechanism to 

vet and weight client contributions, making the collaborative 

learning process more robust and accountable, which is critical 

when dealing with valuable intellectual property like source 

code. 

D. Explainable AI (XAI) 

As AI models become more complex, the need for explain- 

ability has grown. Techniques like LIME [14] and SHAP [15] 

provide post-hoc explanations for model predictions. Applying 

XAI to code-related tasks is an emerging field. The goal is to 

explain why a model flagged a certain piece of code as buggy 

or suggested a particular fix. Our EPO framework contributes 

to this area by moving beyond simply providing explanations 

to actively managing the trade-off between the quality of these 

explanations and the model’s core performance metrics, which 

has not been formally addressed in the context of AI-driven 

debugging tools. 

III. METHODOLOGY 

This section details the three core components of our 

proposed solution: the POCU system architecture, the TMFL 

framework for collaborative training, and the EPO model for 

balancing explainability and performance. 

A. Prompt-Oriented Code Understanding (POCU) System Ar- 

chitecture 

The POCU system is designed as an IDE plugin that 

mediates the interaction between the developer, the codebase, 

and a powerful GenAI core. Its architecture consists of four 

main layers. 

1) IDE Integration and Context Gathering: This layer acts 

as the primary interface. It includes a chat-like UI within the 

IDE where developers can issue natural language prompts. 

Crucially, this layer is responsible for automatically gathering 

relevant context for each query. The context vector, Cv, is 

composed of: 
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• Static Context (Cs): The Abstract Syntax Tree (AST) 4) The server calculates a trust score, τt ∈ [0, 1], for each 

of the current file and related files, the call graph, 

dependency information, and version control history (e.g., 

‘git blame‘ output). 

• Dynamic Context (Cd): If the application is running in a 

debug session, this includes the current call stack, variable 

values, thread states, and recent application logs. 

client k. 

5) The server aggregates the local updates to form the new 

global model, wt+1, using a weighted average where the 

weights are a function of the trust scores. 

The standard FedAvg update rule is: 

• Query Context (Cq): The developer’s natural language 
prompt and the recent history of the conversation to wt+1  = 

Σ 
nk 

wk 

maintain dialogue coherence. 
n 

k=1 

t+1 

The final context-enriched prompt, Prich, is formulated as 

Prich = f (Cs, Cd, Cq), where f is a serialization function that 

combines these disparate data sources into a format suitable 

for the GenAI core. 
2) Natural Language Processing (NLP) Front-end: This 

where nk = |Dk| is the size of the local dataset and n = 

k nk. 

Our proposed TMFL update rule modifies this to: 

N 

component is responsible for prompt pre-processing and intent 

recognition. It parses the developer’s query, C , to identify the 
wt+1 = 

Σ 
Σ 

αknk k 
t+1 

q 

core intent (e.g., ’find bug’, ’explain code’, ’trace execution’). k=1 j=1 αjnj 

It uses Named Entity Recognition (NER) to identify key code 

artifacts mentioned in the query (e.g., function names, variable 

where αk is the normalized trust weight for client k, derived 

from its trust score τt.  
names). This structured representation of the query allows the 1) Defining the Trust Metric τt: The trust score τt for 

system to trigger more specific analysis tasks. 

3) GenAI Core: The heart of the system is a large language 
client k at round t 

k k 

is a composite metric calculated as: 

model, pre-trained on a massive corpus of open-source code 

and natural language text (e.g., a foundation model similar to 

GPT-4 or PaLM 2). This model is then fine-tuned using the 

TMFL framework described below. The GenAI core receives 

the context-enriched prompt Prich and generates a response. 

Its task is not just to generate text but to synthesize information 

from the provided context to form a coherent, accurate, and 

helpful explanation or suggestion. 

4) Actionable Analysis Engine: The raw output of the 

GenAI model might be a high-level hypothesis. The Action- 

able Analysis Engine translates this hypothesis into concrete 

operations. For example, if the model suggests, ”The issue 

might be a race condition in the ‘updateCache‘ function,” this 

engine could automatically instrument the code to add more 

logging around that function, or suggest specific breakpoints to 

the developer. This feedback loop, where the model’s output 

triggers further automated analysis, is a key feature of the 

POCU system. 

B. Trust-Metric Federated Learning (TMFL) Framework 

To enable the GenAI core to learn from proprietary code- 

bases without centralized data sharing, we propose the TMFL 

framework. It extends the standard Federated Averaging (Fe- 

dAvg) algorithm by incorporating a trust metric for each 

participating client (e.g., an organization). 

Let N be the number of participating clients. In each 

communication round t, the process is as follows: 

1) The central server distributes the current global model, 

wt, to a subset of clients. 

2) Each client k fine-tunes the model on its local, private 

data Dk to produce a local model update, wk . 

τt = λ1Qt + λ2Ct + λ3St 

where λ1 + λ2 + λ3 = 1 are weighting hyper-parameters. The 

components are: 

• Quality Score (Qt ): Measures the quality of the client’s 

update. This is assessed by the server using a small, 

held-out validation set. The score is proportional to the 

performance improvement the client’s update provides on 

this set. 

• Consistency Score (Ct ): Measures the similarity of a 

client’s update to the global update trend. An update 

that is a significant outlier might be malicious or simply 

the result of a highly non-IID data distribution. This is 

calculated based on the cosine similarity between the 

client’s update vector (∆wk = wk − wt) and the mean 

update vector of the previous round. 

• Security Score (St ): An externally provided score repre- 

senting the client’s security posture. This could be based 

on audits, certifications, or historical data on security 

incidents. This helps prevent contributions from known 

bad actors. 

This trust metric ensures that clients who contribute high- 

quality, consistent, and secure updates have a greater influence 

on the global model, making the federated ecosystem more 

robust and accountable. 

 

C. Explainability-Performance Optimization (EPO) Frame- 

work 

Developers require transparent reasoning, not just correct 

3) Each client sends its proposed update wk 
server. 

back to the answers. The EPO framework addresses the trade-off between 

the model’s performance and the explainability of its outputs. 

N 

w 
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k 

1) Quantifying Explainability and Performance: We first 

define metrics for each dimension. 

• Performance (P): This is a task-dependent metric. For 

bug detection, it could be the F1 score. For code ex- 

planation, it could be measured by ROUGE or BLEU 

scores against human-written explanations. We define it 

as a singular metric P ∈ [0, 1]. 

• Explainability (E ): This is more challenging to quantify. 

We propose a composite metric: 

E = β1C + β2F + β3I 

where β1 + β2 + β3 = 1. 

– Clarity (C): The readability and simplicity of 

the generated explanation, measured using standard 

readability scores (e.g., Flesch-Kincaid). 

– Fidelity (F): How accurately the explanation re- 

flects the model’s internal reasoning. This can be 

approximated by measuring how the model’s output 

changes when features (e.g., lines of code) identified 

as important by the explanation are perturbed, similar 

to the logic of LIME [14]. 

– Identifiability (I): The extent to which the ex- 

planation points to specific, verifiable artifacts in 

the code (e.g., line numbers, variable names). An 

explanation like ”There’s a null pointer exception 

on line 42 because ‘user.session‘ is null” has higher 

identifiability than ”There might be a state issue.” 

2) Formulating the Optimization Problem: The goal is to 

find a model configuration θ from a set of possible configura- 

tions Θ that maximizes both performance and explainability. 

This is a multi-objective optimization problem. We aim to 

identify the Pareto frontier of configurations. A configuration 

θ1 Pareto-dominates θ2 if it is at least as good on all objectives 

and strictly better on at least one. 

maximize  (P(θ), E(θ))  for  θ ∈ Θ 

The configuration space Θ can include model hyperparam- 

eters, the choice of decoding strategy (e.g., nucleus sampling 

vs. beam search, which affects creativity vs. precision), and 

the level of detail requested from the explanation generation 

module. 

We can solve this using evolutionary algorithms or by 

training a meta-model that predicts P and E for a given 

θ. The outcome is not a single ”best” model, but a set of 

Pareto-optimal models. This allows an organization to choose 

a specific model from the frontier that aligns with its internal 

policies. For instance, a team working on critical financial 

software might choose a model with maximum explainability 

(Emax), even at a slight cost to performance, while a team 

developing a fast-moving web application might prefer a 

model with maximum performance (Pmax). 

IV. PROPOSED EXPERIMENTS AND EVALUATION 

To validate the effectiveness of the proposed POCU system 

and its underlying frameworks, we outline a comprehensive, 

multi-stage evaluation plan. 

A. Datasets and Baselines 

• Datasets: We will use a combination of public and syn- 

thetic datasets. The Defects4J benchmark [16] provides 

a large set of real-world bugs from Java projects, which 

is ideal for evaluating bug localization and explanation 

tasks. We will also create a synthetic dataset of code 

snippets and corresponding natural language queries to 

evaluate the code understanding capabilities in a more 

controlled environment. For the federated learning eval- 

uation, we will partition existing large codebases (e.g., 

the CodeSearchNet dataset [17]) to simulate different 

organizational silos with non-IID data distributions. 

• Baselines: The POCU system’s performance will be 

compared against several baselines: 

1) A fine-tuned, non-federated GenAI model (e.g., 

CodeLlama) to measure the impact of TMFL. 

2) Existing static analysis tools (e.g., SonarQube, 

PMD) to compare traditional rule-based methods 

with AI-driven analysis. 

3) Human performance: We will conduct a user study 

with experienced software developers to measure 

the reduction in Mean Time To Resolution (MTTR) 

for a set of debugging tasks. 

 

B. Evaluation Metrics 

1) POCU System Performance: 

• Bug Localization Accuracy: The percentage of test 

cases where the system correctly identifies the faulty 

line(s) of code within its top-k suggestions. 

• Explanation Quality: Evaluated using ROUGE-L for 

textual similarity to human-written explanations and 

through developer ratings in the user study (on a 1-5 

Likert scale for clarity, correctness, and actionability). 

• Mean Time To Resolution (MTTR): Measured in the 

user study, comparing the time taken to solve a debugging 

task with and without the POCU assistant. 

2) TMFL Framework Robustness: 

• Model Convergence Speed: The number of communi- 

cation rounds required to reach a target accuracy level, 

compared to standard FedAvg. 

• Adversarial Resilience: We will simulate a poisoning 

attack where a subset of malicious clients attempts to 

degrade the global model’s performance. We will measure 

the deviation in accuracy of the TMFL-trained model 

versus a standard FedAvg model. 

• Trust Score Correlation: We will measure the correla- 

tion between a client’s calculated trust score τt and the 

actual quality of their data to validate that the metric 

correctly identifies high-value contributors. 

3) EPO Framework Analysis: 

• Pareto Frontier Generation: We will run experiments 

with different model configurations to plot the resulting 

(P, E) pairs and visualize the Pareto frontier. 
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• Trade-off Analysis: We will analyze the shape of the 

frontier to quantify the ”cost” of explainability. For ex- 

ample, ”A 10% increase in the explainability score leads 

to a 3% decrease in bug detection accuracy.” 

 

C. User Study Design 

We will recruit 30-40 software developers with varying 

levels of experience. They will be divided into a control group 

(using their standard IDE and debugging tools) and a treatment 

group (using the IDE with the POCU plugin). Both groups 

will be assigned a series of identical debugging tasks on a 

moderately complex Java application. We will measure task 

completion time, success rate, and collect qualitative feedback 

through post-task surveys on cognitive load, usability, and trust 

in the tool. 

 

V. EXPECTED RESULTS AND DISCUSSION 

 

We hypothesize that the experimental results will demon- 

strate the viability and advantages of our proposed system. 

For the POCU system, we expect to see a significant 

reduction in MTTR for the treatment group in the user 

study. We anticipate that the system’s ability to synthesize 

static and dynamic context will allow it to identify complex, 

multi-faceted bugs that are often missed by traditional static 

analyzers. The qualitative feedback is expected to highlight 

the system’s intuitive nature, though some developers may 

initially express skepticism, underscoring the importance of 

the explainability component. 

For the TMFL framework, we predict that in the ad- 

versarial simulation, the global model trained with TMFL 

will maintain a significantly higher accuracy compared to the 

one trained with standard FedAvg. The trust metric should 

effectively down-weight the contributions from the malicious 

clients, preserving the integrity of the model. We also expect 

TMFL to show slightly slower initial convergence than FedAvg 

in a clean environment, as the trust scores need a few rounds 

to stabilize, but to achieve a higher final accuracy ceiling due 

to better handling of non-IID data. 

For the EPO framework, the experiments will likely reveal 

a non-linear trade-off between performance and explainability. 

We expect to find a ”sweet spot” on the Pareto curve where a 

small sacrifice in performance yields a large gain in explain- 

ability. This result would be highly impactful, as it would 

provide a clear, data-driven methodology for organizations 

to configure their AI tools. The analysis might also reveal 

that certain model architectures or training techniques are 

inherently more explainable without a significant performance 

penalty. 

Collectively, these expected results would constitute strong 

evidence that natural language-driven, context-aware, and 

trustworthy AI assistants can fundamentally improve the soft- 

ware debugging process, shifting it from a manual, painstaking 

task to a more collaborative and efficient human-AI dialogue. 

VI. CONCLUSION AND FUTURE WORK 

This paper has introduced a comprehensive framework for 

Prompt-Oriented Code Understanding (POCU), a paradigm 

aimed at revolutionizing software debugging through natural 

language interaction. We have proposed a system architecture 

that integrates GenAI with IDEs, providing deep contex- 

tual awareness. To address the critical challenges of data 

privacy and model integrity, we designed the Trust-Metric 

Federated Learning (TMFL) framework, which enables secure, 

collaborative model training with accountability. Finally, we 

presented the Explainability-Performance Optimization (EPO) 

framework to formally manage the crucial trade-off between 

the accuracy of AI suggestions and their transparency. 

Our work lays a theoretical and architectural foundation 

for a new class of intelligent developer tools. By treating 

debugging as a dialogue, we aim to lower the cognitive barrier 

for developers, accelerate fault resolution, and ultimately im- 

prove software quality. The proposed trust and explainability 

frameworks are crucial steps towards building AI systems that 

are not only powerful but also reliable and worthy of developer 

trust. 

Future work will focus on implementing a prototype of 

the POCU system and conducting the extensive experiments 

outlined in this paper. Several challenges remain to be ex- 

plored. Handling the sheer volume of context in large-scale 

enterprise systems will require sophisticated context-pruning 

and retrieval-augmentation techniques. Extending the TMFL 

framework to handle more complex, multi-modal data (e.g., 

performance traces, user bug reports) is another promising di- 

rection. Furthermore, the psychological and human-computer 

interaction aspects of AI-assisted debugging warrant deeper 

investigation. As these systems become more capable, un- 

derstanding how they reshape developer workflows and skill 

requirements will be of paramount importance. 
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