
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52844 | Page 1

Prompt-Oriented Code Understanding: Towards Natural Language-Driven

Debugging in IDEs

Mohan Siva Krishna Konakanchi mohansivakrishna16@gmail.com

Abstract—The increasing complexity of modern software sys-
tems has rendered traditional debugging methods, such as
manual code inspection and breakpoint analysis, progressively
inefficient. This paper introduces Prompt-Oriented Code Under-
standing (POCU), a novel paradigm that leverages Generative
Artificial Intelligence (GenAI) to enable natural language-driven
debugging directly within Integrated Development Environments
(IDEs). We propose a system architecture that translates devel-
oper queries in natural language into actionable code analysis and
debugging operations. To facilitate continuous model improve-
ment without compromising intellectual property, we introduce
a Trust-Metric Federated Learning (TMFL) framework. TMFL
allows the underlying GenAI model to be fine-tuned across
disparate, private codebases (silos) while ensuring the integrity
and accountability of contributions through a novel trust metric.
Furthermore, acknowledging the critical need for transparency
in AI-assisted tools, we present a framework to quantify and
optimize the inherent trade-off between the explainability of the
AI’s suggestions and its raw performance. We define metrics
for both dimensions and formulate an optimization strategy to
achieve a Pareto-optimal balance. Our conceptual framework and
proposed methodologies lay the groundwork for a new generation
of intelligent, intuitive, and trustworthy developer tools designed
to significantly reduce debugging time and cognitive load.

Index Terms—Generative AI, Code Understanding, Natural
Language Processing, Software Debugging, Federated Learning,
Explainable AI, IDE Integration

I. INTRODUCTION

Software development is an intricate process where de-

bugging constitutes a significant portion of the development

lifecycle, often consuming up to 50% of a developer’s time

[1]. Traditional debugging techniques rely heavily on devel-

opers forming hypotheses about code behavior and manually

verifying them using tools like debuggers, log analyzers, and

static analysis tools. This process is labor-intensive, requires

deep expertise in the codebase, and scales poorly with the

size and complexity of modern software projects, especially

in distributed and microservices-based architectures.

The recent proliferation of Large Language Models (LLMs)

and Generative AI (GenAI) has opened new frontiers in

human-computer interaction, particularly in specialized do-

mains like software engineering [2], [3]. These models have

demonstrated remarkable capabilities in code generation, com-

pletion, and summarization. However, their application to the

nuanced and context-heavy task of debugging remains an

open and challenging research area. The primary challenge

lies in bridging the gap between high-level, often ambiguous,

This work was not supported by any organization.

developer intent expressed in natural language and the low-

level, precise operations required for effective code analysis

and fault localization.

This paper introduces Prompt-Oriented Code Under-

standing (POCU), a novel approach that recasts debugging

as a conversational, query-driven process. The core idea is

to empower developers to interact with their codebase using

natural language prompts directly within their IDE. For in-

stance, a developer could ask, ”Why is the user session object

nullifying after the payment gateway callback?” or ”Trace the

execution path for request ID ’xyz-123’ and highlight any

potential race conditions.” The POCU system would then parse

this query, gather relevant context from the code, runtime data,

and version control history, and provide a synthesized, human-

readable explanation along with actionable suggestions.

However, building such a system presents three fundamental

challenges that this paper aims to address:

1) Contextual Intelligence and Integration: A generic

GenAI model lacks the specific context of a proprietary

codebase. An effective debugging assistant must be

deeply integrated with the IDE and be aware of the

project’s static structure, dynamic runtime behavior, and

historical evolution.

2) Data Privacy and Collaborative Learning: To improve

its accuracy, the model must learn from a wide ar-

ray of codebases. However, organizations are unwilling

to share their proprietary source code for centralized

training. A decentralized learning paradigm is required

that preserves data privacy while enabling collaborative

model improvement.

3) Trust and Transparency: Developers will not rely on

a ”black box” tool for critical debugging tasks. The

system’s suggestions must be explainable, allowing de-

velopers to understand the reasoning behind a particular

conclusion. There is an inherent trade-off between the

model’s performance (e.g., accuracy) and the explain-

ability of its outputs.

To address these challenges, we propose a multi-faceted

solution. First, we detail the architecture of the POCU system,

which integrates a GenAI core with static and dynamic code

analysis tools via a context-aware middleware. Second, we in-

troduce a Trust-Metric Federated Learning (TMFL) frame-

work. TMFL enables distributed fine-tuning of the core GenAI

model across organizational silos. It incorporates a novel

trust metric that weighs model updates based on factors like

https://ijsrem.com/
mailto:mohansivakrishna16@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52844 | Page 2

data quality, contribution consistency, and security posture,

preventing malicious or low-quality updates from corrupting

the global model. Third, we propose a formal framework

to manage the Explainability-Performance Optimization

(EPO) trade-off, enabling organizations to configure the sys-

tem to their desired balance between insightful explanations

and predictive accuracy.

The contributions of this paper are therefore threefold:

• A novel system architecture for Prompt-Oriented Code

Understanding (POCU) that facilitates natural language-

driven debugging in IDEs.

• A Trust-Metric Federated Learning (TMFL) framework

designed for secure, privacy-preserving, and accountable

collaborative training of code-understanding models.

• A formal methodology for quantifying and optimizing the

trade-off between model explainability and performance

in the context of AI-assisted software engineering.

This paper is organized as follows: Section II reviews

related work. Section III presents the detailed methodology

of the POCU system, the TMFL framework, and the EPO

model. Section IV outlines a proposed experimental design

for evaluating the system. Section V discusses potential results

and their implications. Finally, Section VI concludes the paper

and suggests avenues for future research.

II. RELATED WORK

The application of AI to software engineering, often termed

AISE, has a rich history. Our work builds upon several key

areas: code analysis, natural language processing for source

code, and federated learning.

A. AI in Code Analysis and Debugging

Automated program repair (APR) and fault localization have

been long-standing goals in software engineering research.

Early techniques relied on statistical methods and program

slicing [4]. More recently, machine learning-based approaches

have gained prominence. Systems like DeepBugs [5] used

deep learning to detect bugs based on code patterns. Other

research has focused on mining software repositories to learn

common bug-fix patterns [6]. While powerful, these systems

are typically specialized for specific bug classes and lack the

interactive, general-purpose query capabilities of our proposed

POCU system.

The advent of large-scale, pre-trained models like Codex

[3] and AlphaCode [7] has revolutionized the field. These

models excel at code generation and have been integrated

into tools like GitHub Copilot. While these tools assist in

”forward-engineering” (writing new code), our work focuses

on ”reverse-engineering” and diagnostics (understanding and

debugging existing code), which requires a deeper level of

contextual inference.

B. Natural Language Processing on Source Code

The idea of treating source code as a natural language (the

”naturalness hypothesis”) has been influential [8]. This has led

to the development of models that can perform tasks like code

summarization, documentation generation, and code search

using natural language queries. Models like CodeBERT [9]

and GraphCodeBERT [10] use bimodal pre-training on parallel

corpora of code and natural language text to learn rich repre-

sentations. Our POCU system leverages such representations

but extends them by integrating runtime context and interactive

dialogue capabilities, moving from static code representation

to dynamic execution understanding.

C. Federated Learning for Privacy-Preserving AI

Federated Learning (FL) was introduced by Google to train

models on decentralized data, such as on mobile devices,

without centralizing the data itself [11]. It has become a cor-

nerstone of privacy-preserving machine learning. In the soft-

ware engineering domain, FL has been proposed for tasks like

defect prediction across different organizations [12]. However,

standard FL algorithms like FedAvg are vulnerable to non-

IID data distributions and potential adversarial attacks from

malicious clients [13]. Our TMFL framework addresses these

vulnerabilities by introducing an explicit trust mechanism to

vet and weight client contributions, making the collaborative

learning process more robust and accountable, which is critical

when dealing with valuable intellectual property like source

code.

D. Explainable AI (XAI)

As AI models become more complex, the need for explain-

ability has grown. Techniques like LIME [14] and SHAP [15]

provide post-hoc explanations for model predictions. Applying

XAI to code-related tasks is an emerging field. The goal is to

explain why a model flagged a certain piece of code as buggy

or suggested a particular fix. Our EPO framework contributes

to this area by moving beyond simply providing explanations

to actively managing the trade-off between the quality of these

explanations and the model’s core performance metrics, which

has not been formally addressed in the context of AI-driven

debugging tools.

III. METHODOLOGY

This section details the three core components of our

proposed solution: the POCU system architecture, the TMFL

framework for collaborative training, and the EPO model for

balancing explainability and performance.

A. Prompt-Oriented Code Understanding (POCU) System Ar-

chitecture

The POCU system is designed as an IDE plugin that

mediates the interaction between the developer, the codebase,

and a powerful GenAI core. Its architecture consists of four

main layers.

1) IDE Integration and Context Gathering: This layer acts

as the primary interface. It includes a chat-like UI within the

IDE where developers can issue natural language prompts.

Crucially, this layer is responsible for automatically gathering

relevant context for each query. The context vector, Cv, is

composed of:

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52844 | Page 3

k

N

k

k

k

t+1

k

t+1

t+1

Σ

k k k k

• Static Context (Cs): The Abstract Syntax Tree (AST) 4) The server calculates a trust score, τt ∈ [0, 1], for each

of the current file and related files, the call graph,

dependency information, and version control history (e.g.,

‘git blame‘ output).

• Dynamic Context (Cd): If the application is running in a

debug session, this includes the current call stack, variable

values, thread states, and recent application logs.

client k.

5) The server aggregates the local updates to form the new

global model, wt+1, using a weighted average where the

weights are a function of the trust scores.

The standard FedAvg update rule is:

• Query Context (Cq): The developer’s natural language
prompt and the recent history of the conversation to wt+1 =

Σ
nk

wk

maintain dialogue coherence.
n

k=1

t+1

The final context-enriched prompt, Prich, is formulated as

Prich = f (Cs, Cd, Cq), where f is a serialization function that

combines these disparate data sources into a format suitable

for the GenAI core.
2) Natural Language Processing (NLP) Front-end: This

where nk = |Dk| is the size of the local dataset and n =

k nk.

Our proposed TMFL update rule modifies this to:

N

component is responsible for prompt pre-processing and intent

recognition. It parses the developer’s query, C , to identify the
wt+1 =

Σ
Σ

αknk k
t+1

q

core intent (e.g., ’find bug’, ’explain code’, ’trace execution’). k=1 j=1 αjnj

It uses Named Entity Recognition (NER) to identify key code

artifacts mentioned in the query (e.g., function names, variable

where αk is the normalized trust weight for client k, derived

from its trust score τt.
names). This structured representation of the query allows the 1) Defining the Trust Metric τt: The trust score τt for

system to trigger more specific analysis tasks.

3) GenAI Core: The heart of the system is a large language
client k at round t

k k

is a composite metric calculated as:

model, pre-trained on a massive corpus of open-source code

and natural language text (e.g., a foundation model similar to

GPT-4 or PaLM 2). This model is then fine-tuned using the

TMFL framework described below. The GenAI core receives

the context-enriched prompt Prich and generates a response.

Its task is not just to generate text but to synthesize information

from the provided context to form a coherent, accurate, and

helpful explanation or suggestion.

4) Actionable Analysis Engine: The raw output of the

GenAI model might be a high-level hypothesis. The Action-

able Analysis Engine translates this hypothesis into concrete

operations. For example, if the model suggests, ”The issue

might be a race condition in the ‘updateCache‘ function,” this

engine could automatically instrument the code to add more

logging around that function, or suggest specific breakpoints to

the developer. This feedback loop, where the model’s output

triggers further automated analysis, is a key feature of the

POCU system.

B. Trust-Metric Federated Learning (TMFL) Framework

To enable the GenAI core to learn from proprietary code-

bases without centralized data sharing, we propose the TMFL

framework. It extends the standard Federated Averaging (Fe-

dAvg) algorithm by incorporating a trust metric for each

participating client (e.g., an organization).

Let N be the number of participating clients. In each

communication round t, the process is as follows:

1) The central server distributes the current global model,

wt, to a subset of clients.

2) Each client k fine-tunes the model on its local, private

data Dk to produce a local model update, wk .

τt = λ1Qt + λ2Ct + λ3St

where λ1 + λ2 + λ3 = 1 are weighting hyper-parameters. The

components are:

• Quality Score (Qt): Measures the quality of the client’s

update. This is assessed by the server using a small,

held-out validation set. The score is proportional to the

performance improvement the client’s update provides on

this set.

• Consistency Score (Ct): Measures the similarity of a

client’s update to the global update trend. An update

that is a significant outlier might be malicious or simply

the result of a highly non-IID data distribution. This is

calculated based on the cosine similarity between the

client’s update vector (∆wk = wk − wt) and the mean

update vector of the previous round.

• Security Score (St): An externally provided score repre-

senting the client’s security posture. This could be based

on audits, certifications, or historical data on security

incidents. This helps prevent contributions from known

bad actors.

This trust metric ensures that clients who contribute high-

quality, consistent, and secure updates have a greater influence

on the global model, making the federated ecosystem more

robust and accountable.

C. Explainability-Performance Optimization (EPO) Frame-

work

Developers require transparent reasoning, not just correct

3) Each client sends its proposed update wk
server.

back to the answers. The EPO framework addresses the trade-off between

the model’s performance and the explainability of its outputs.

N

w

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52844 | Page 4

k

1) Quantifying Explainability and Performance: We first

define metrics for each dimension.

• Performance (P): This is a task-dependent metric. For

bug detection, it could be the F1 score. For code ex-

planation, it could be measured by ROUGE or BLEU

scores against human-written explanations. We define it

as a singular metric P ∈ [0, 1].

• Explainability (E): This is more challenging to quantify.

We propose a composite metric:

E = β1C + β2F + β3I

where β1 + β2 + β3 = 1.

– Clarity (C): The readability and simplicity of

the generated explanation, measured using standard

readability scores (e.g., Flesch-Kincaid).

– Fidelity (F): How accurately the explanation re-

flects the model’s internal reasoning. This can be

approximated by measuring how the model’s output

changes when features (e.g., lines of code) identified

as important by the explanation are perturbed, similar

to the logic of LIME [14].

– Identifiability (I): The extent to which the ex-

planation points to specific, verifiable artifacts in

the code (e.g., line numbers, variable names). An

explanation like ”There’s a null pointer exception

on line 42 because ‘user.session‘ is null” has higher

identifiability than ”There might be a state issue.”

2) Formulating the Optimization Problem: The goal is to

find a model configuration θ from a set of possible configura-

tions Θ that maximizes both performance and explainability.

This is a multi-objective optimization problem. We aim to

identify the Pareto frontier of configurations. A configuration

θ1 Pareto-dominates θ2 if it is at least as good on all objectives

and strictly better on at least one.

maximize (P(θ), E(θ)) for θ ∈ Θ

The configuration space Θ can include model hyperparam-

eters, the choice of decoding strategy (e.g., nucleus sampling

vs. beam search, which affects creativity vs. precision), and

the level of detail requested from the explanation generation

module.

We can solve this using evolutionary algorithms or by

training a meta-model that predicts P and E for a given

θ. The outcome is not a single ”best” model, but a set of

Pareto-optimal models. This allows an organization to choose

a specific model from the frontier that aligns with its internal

policies. For instance, a team working on critical financial

software might choose a model with maximum explainability

(Emax), even at a slight cost to performance, while a team

developing a fast-moving web application might prefer a

model with maximum performance (Pmax).

IV. PROPOSED EXPERIMENTS AND EVALUATION

To validate the effectiveness of the proposed POCU system

and its underlying frameworks, we outline a comprehensive,

multi-stage evaluation plan.

A. Datasets and Baselines

• Datasets: We will use a combination of public and syn-

thetic datasets. The Defects4J benchmark [16] provides

a large set of real-world bugs from Java projects, which

is ideal for evaluating bug localization and explanation

tasks. We will also create a synthetic dataset of code

snippets and corresponding natural language queries to

evaluate the code understanding capabilities in a more

controlled environment. For the federated learning eval-

uation, we will partition existing large codebases (e.g.,

the CodeSearchNet dataset [17]) to simulate different

organizational silos with non-IID data distributions.

• Baselines: The POCU system’s performance will be

compared against several baselines:

1) A fine-tuned, non-federated GenAI model (e.g.,

CodeLlama) to measure the impact of TMFL.

2) Existing static analysis tools (e.g., SonarQube,

PMD) to compare traditional rule-based methods

with AI-driven analysis.

3) Human performance: We will conduct a user study

with experienced software developers to measure

the reduction in Mean Time To Resolution (MTTR)

for a set of debugging tasks.

B. Evaluation Metrics

1) POCU System Performance:

• Bug Localization Accuracy: The percentage of test

cases where the system correctly identifies the faulty

line(s) of code within its top-k suggestions.

• Explanation Quality: Evaluated using ROUGE-L for

textual similarity to human-written explanations and

through developer ratings in the user study (on a 1-5

Likert scale for clarity, correctness, and actionability).

• Mean Time To Resolution (MTTR): Measured in the

user study, comparing the time taken to solve a debugging

task with and without the POCU assistant.

2) TMFL Framework Robustness:

• Model Convergence Speed: The number of communi-

cation rounds required to reach a target accuracy level,

compared to standard FedAvg.

• Adversarial Resilience: We will simulate a poisoning

attack where a subset of malicious clients attempts to

degrade the global model’s performance. We will measure

the deviation in accuracy of the TMFL-trained model

versus a standard FedAvg model.

• Trust Score Correlation: We will measure the correla-

tion between a client’s calculated trust score τt and the

actual quality of their data to validate that the metric

correctly identifies high-value contributors.

3) EPO Framework Analysis:

• Pareto Frontier Generation: We will run experiments

with different model configurations to plot the resulting

(P, E) pairs and visualize the Pareto frontier.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52844 | Page 5

• Trade-off Analysis: We will analyze the shape of the

frontier to quantify the ”cost” of explainability. For ex-

ample, ”A 10% increase in the explainability score leads

to a 3% decrease in bug detection accuracy.”

C. User Study Design

We will recruit 30-40 software developers with varying

levels of experience. They will be divided into a control group

(using their standard IDE and debugging tools) and a treatment

group (using the IDE with the POCU plugin). Both groups

will be assigned a series of identical debugging tasks on a

moderately complex Java application. We will measure task

completion time, success rate, and collect qualitative feedback

through post-task surveys on cognitive load, usability, and trust

in the tool.

V. EXPECTED RESULTS AND DISCUSSION

We hypothesize that the experimental results will demon-

strate the viability and advantages of our proposed system.

For the POCU system, we expect to see a significant

reduction in MTTR for the treatment group in the user

study. We anticipate that the system’s ability to synthesize

static and dynamic context will allow it to identify complex,

multi-faceted bugs that are often missed by traditional static

analyzers. The qualitative feedback is expected to highlight

the system’s intuitive nature, though some developers may

initially express skepticism, underscoring the importance of

the explainability component.

For the TMFL framework, we predict that in the ad-

versarial simulation, the global model trained with TMFL

will maintain a significantly higher accuracy compared to the

one trained with standard FedAvg. The trust metric should

effectively down-weight the contributions from the malicious

clients, preserving the integrity of the model. We also expect

TMFL to show slightly slower initial convergence than FedAvg

in a clean environment, as the trust scores need a few rounds

to stabilize, but to achieve a higher final accuracy ceiling due

to better handling of non-IID data.

For the EPO framework, the experiments will likely reveal

a non-linear trade-off between performance and explainability.

We expect to find a ”sweet spot” on the Pareto curve where a

small sacrifice in performance yields a large gain in explain-

ability. This result would be highly impactful, as it would

provide a clear, data-driven methodology for organizations

to configure their AI tools. The analysis might also reveal

that certain model architectures or training techniques are

inherently more explainable without a significant performance

penalty.

Collectively, these expected results would constitute strong

evidence that natural language-driven, context-aware, and

trustworthy AI assistants can fundamentally improve the soft-

ware debugging process, shifting it from a manual, painstaking

task to a more collaborative and efficient human-AI dialogue.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a comprehensive framework for

Prompt-Oriented Code Understanding (POCU), a paradigm

aimed at revolutionizing software debugging through natural

language interaction. We have proposed a system architecture

that integrates GenAI with IDEs, providing deep contex-

tual awareness. To address the critical challenges of data

privacy and model integrity, we designed the Trust-Metric

Federated Learning (TMFL) framework, which enables secure,

collaborative model training with accountability. Finally, we

presented the Explainability-Performance Optimization (EPO)

framework to formally manage the crucial trade-off between

the accuracy of AI suggestions and their transparency.

Our work lays a theoretical and architectural foundation

for a new class of intelligent developer tools. By treating

debugging as a dialogue, we aim to lower the cognitive barrier

for developers, accelerate fault resolution, and ultimately im-

prove software quality. The proposed trust and explainability

frameworks are crucial steps towards building AI systems that

are not only powerful but also reliable and worthy of developer

trust.

Future work will focus on implementing a prototype of

the POCU system and conducting the extensive experiments

outlined in this paper. Several challenges remain to be ex-

plored. Handling the sheer volume of context in large-scale

enterprise systems will require sophisticated context-pruning

and retrieval-augmentation techniques. Extending the TMFL

framework to handle more complex, multi-modal data (e.g.,

performance traces, user bug reports) is another promising di-

rection. Furthermore, the psychological and human-computer

interaction aspects of AI-assisted debugging warrant deeper

investigation. As these systems become more capable, un-

derstanding how they reshape developer workflows and skill

requirements will be of paramount importance.

REFERENCES

[1] D. A. Patterson and J. L. Hennessy, ”Computer Organization and Design:
The Hardware/Software Interface,” Morgan Kaufmann, 2013.

[2] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,
”The Power of Many: A Study of Collaboration on GitHub,” in Proc.
Int. Conf. on Software Engineering (ICSE), 2014, pp. 678–689.

[3] M. Chen et al., ”Evaluating Large Language Models Trained on Code,”
arXiv preprint arXiv:2107.03374, 2021.

[4] M. Weiser, ”Program Slicing,” in Proc. Int. Conf. on Software Engineer-
ing (ICSE), 1981, pp. 439-449.

[5] M. Pradel and K. Sen, ”DeepBugs: A Learning Approach to Name-
Based Bug Detection,” in Proc. ACM on Programming Languages
(OOPSLA), 2018, Art. 147.

[6] Y. Kim, D. Kim, T. F. Bissyande´, E. Choi, L. Li, A. Klein, and Y. Le
Traon, ”An empirical study of bug-fixing patches in the wild: revisited,”
Software: Practice and Experience, vol. 48, no. 1, pp. 73-98, 2018.

[7] Y. Li et al., ”Competition-level code generation with AlphaCode,”
Science, vol. 378, no. 6624, pp. 1092-1097, 2022.

[8] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, ”On the
naturalness of software,” in Proc. Int. Conf. on Software Engineering
(ICSE), 2012, pp. 837–847.

[9] Z. Feng et al., ”CodeBERT: A Pre-Trained Model for Programming and
Natural Languages,” in Proc. Conf. on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

[10] D. Guo et al., ”GraphCodeBERT: Pre-training Code Representations
with Data Flow,” in Proc. Int. Conf. on Learning Representations (ICLR),
2021.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52844 | Page 6

[11] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
”Communication-Efficient Learning of Deep Networks from Decentralized Data,”
in Proc. Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2017, pp.
1273-1282.

[12] H. Zhang, H. Yu, S. Wang, and X. Yuan, ”Federated Defect Prediction,” IEEE
Transactions on Software Engineering, vol. 48, no. 12, pp. 4930- 4945, Dec.
2022.

[13] V. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, ”How to
Backdoor Federated Learning,” in Proc. Int. Conf. on Artificial Intelligence and
Statistics (AISTATS), 2020, pp. 1625-1635.

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, ””Why Should I Trust You?”:
Explaining the Predictions of Any Classifier,” in Proc. ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, 2016, pp. 1135- 1144.

[15] S. M. Lundberg and S. Lee, ”A Unified Approach to Interpreting Model
Predictions,” in Proc. Conf. on Neural Information Processing Systems
(NeurIPS), 2017.

[16] R. Just, D. Jalali, and M. D. Ernst, ”Defects4J: A database of existing faults to
enable controlled testing studies for Java programs,” in Proc. Int. Symp. on
Software Testing and Analysis (ISSTA), 2014, pp. 437-440.

[17] H. Husain, H. Wu, T. Kustner, W. Fedus, R. Liaw, A. D. H. van den Oord, and A.
L. Gaunt, ”CodeSearchNet Challenge: Evaluating the State of the Art in Code
Search,” arXiv preprint arXiv:1909.09436, 2019.

[18] S. Ji, S. Luan, J. He, Y. Lyu, Y. Su, S. Pu, Y. Zhang, and X. He, ”Survey of
Explainable AI (XAI): A Technical Perspective,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 7, no. 1, pp. 8-28, Feb.
2023.

[19] K. Li, J. Wang, J. Wang, T. Li, Z. Wang, Z. Liu, H. Zhang, and D. Zhang,
”Federated Learning for Software Engineering: A Case Study of Defect
Prediction,” IEEE Transactions on Software Engineering, early access, 2023.

https://ijsrem.com/

