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Abstract 

Multiset rings (Mrings) form an important generalization of classical rings by allowing elements to appear with finite frequencies 

and frequency function satisfies some conditions. In non-commutative Mrings, the center (called Madhya, denoted by ℳ(Ƴ), 

where Ƴ is an Mring) consists of those elements that frequency-commute with every element of the ring with respect to 

multiplication. This paper studies the algebraic behavior of the center of an Mring constructed over a ring. We prove that if Y is a 

non-empty Mring over a ring (S, +, ⋅) which is also form a field and satisfies the natural condition that every non-zero element has 

the same frequency as its multiplicative inverse, i.e., ƑY(u) = ƑY(u⁻¹) for all u ≠ 0, then the center 𝓜(Y) itself becomes a sub-Mring 

of Ƴ. This result shows that the center inherits the full Mring structure in the presence of multiplicative inverses and frequency 

symmetry. Additionally, we establish a homomorphism theorem for Mideals and centers: if ɧ: (S, ⊕, ⊙) → (T, +, ⋅) is a bijective 

Mring homomorphism, then the pre-image of every Mideal of T is an Mideal of S, and the centers satisfy a natural correspondence, 

highlighting when the center coincides with the whole Mring and when it is properly smaller. These results extend classical center 

and correspondence theorems to the multiset setting and open the door to further investigation of representation theory, idempotent 

structures, and applications in coding theory and cryptographic protocols based on multiplicity-aware algebraic systems. 
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Introduction: 

The classical theory of rings has been successfully generalized in various directions to capture uncertainties, multiplicities, and 

fuzzy behaviors. One such significant extension is the notion of multisets (Msets), where an element is allowed to occur more than 

once with a certain multiplicity or frequency. By assigning a counting function (frequency function) Ƒ to each element of a r ing, 

several authors introduced the concept of multiset rings (Mrings) and studied their algebraic properties analogous to crisp rings. 

In an Mring Y [which is an Mset] over a ring (S, ⊕, ⊙), the frequency values satisfy the following three conditions for all u,v∈ S: 

1.ƑY(u ⊕ v) ≥ min{ƑY(u), ƑY(v)}, 

2.ƑY(u ⊙ v) ≥ min{ƑY(u), ƑY(v)}. 

                                          3.ƑY(-u) = ƑY(u) for all u ∈ S. 

This structure preserves many ring-like properties while accommodating repeated occurrences of elements. A natural and 

important substructure that arises in non-commutative Mrings is the center of an Mring, it can also be called the Madhya (denoted 

by 𝓜(Ƴ)), defined as the multiset of all elements that commute with every element of the underlying ring with respect to the 

frequency of multiplication, i.e., 

ℳ(Ƴ) = {u ∈ S |ƑY(u⊙v) = ƑY(v⊙u) ∀ v ∈ S}, 

with frequency Ƒℳ(Y) )(u) = ƑY(u) 

When the underlying ring is commutative, the center coincides with the Mring itself, but in the general case, the center plays a role 

analogous to the classical center of a ring. 

The study of ideals in Mrings (called Mideals) and their behavior under ring homomorphisms has already shown that Mideals are 

preserved in the reverse direction under bijective homomorphisms (preimage of an Mideal is an Mideal). However, little attention 

has been paid to how the center behaves under homomorphisms and in special classes of rings such as fields, where every non-

zero element possesses a multiplicative inverse. 

This paper investigates the structural properties of the center (Madhya) of multiset rings constructed over fields. In particular, we 

explore the condition ƑY(u) = ƑY(u⁻¹) for all non-zero u ∈ S, which is natural in many counting or weighting scenarios on fields 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                       Volume: 08 Issue:12 |Dec-2024                                     SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                        DOI: 10.55041/IJSREM40322                                     |        Page 2 
 

(e.g., finite fields, functional graphs, or incidence structures).Under this mild and interpretable hypothesis, we prove that the ℳ(Ƴ) 

itself forms an Mring over the same field, thereby becoming a sub-Mring with rich algebraic properties. 

Furthermore, we establish homomorphism theorems for centers, showing that bijective Mring homomorphisms preserve the 

Mideal property in the inverse image and induce natural relationships between the centers of domain and codomain Mrings. 

Concrete examples over the power set ring of a two-element set (which is isomorphic to ℤ₂ × ℤ₂) and over ℤ₄ (a commutative ring 

that is not a field) are provided to illustrate both commutative and non-commutative phenomena in frequency tables. 

 

The results presented here not only generalize classical center and homomorphism theorems to the multiset environment but also 

lay the foundation for further study of representation theory, module theory over Mrings, and applications in coding theory and 

cryptography where multiplicity and symmetry of elements are crucial. 

Definition 1.1: Mset [8]:  

Let S be a classical set. A multiset or Mset Ƴ is a combination of members of S and a pre-defined frequency function ƑƳ, where 

ƑƳ: S→N U {0}, where ƑƳ(u) is the frequency of u in Ƴ. 

Example 1.1: 

If S= {u1, u2, u3, ………un} and Ƴ= {<2,u1>,<5,u2>, <4,u3>}  

Then Ƴ is an Mset over S. 

Here 2, 5, 4 are number of repetitions of u1, u2, u3 respectively. 

we can write u1 Є2Ƴ, u2 Є5Ƴ, u3 Є4Ƴ. 

Definition 1.2: Sub Mset [8]: 

Let Ƴ1 and Ƴ2 are two Msets from S. Then Ƴ1 is called sub Mset of Ƴ2, denoted by Ƴ1⊆Ƴ2, if 

ƑƳ2
(u) ≥ ƑƳ1

(u) ∀ u Є S, 

And Ƴ1 is called proper sub Mset of Ƴ2, denoted by ϒ1⊂ ϒ2 if, 

ƑƳ2
(u) ≥ ƑƳ1

(u) ∀ u Є S and there exist at least one u Є S such that ƑƳ2
(u) >ƑƳ1

(u). 

Example 1.2: 

Let S = {a, b, c, d} and Ƴ1 = {<2,a>,<3,b>,<4,d>}, 

Ƴ2 = {<1,a>,<3,b>,<2,d>}. 

 Clearly, Ƴ2 is a sub Mset of Ƴ1. 

i.e. Ƴ2⊆Ƴ1, more accurately ϒ2⊂ ϒ1. 

Definition 1.3: Multiset Rings or Mring[7]: 

Let (S, +,.) be a Ring and Ƴ be an Mset taken from S. Then Ƴ is an Mset Ring or Mring if the frequency function satisfies 

following conditions: 

1. ƑƳ(u+v) ≥min {ƑƳ(u), ƑƳ(v); u, v Є S}. 

2.  ƑƳ(u.v) ≥min {ƑƳ(u), ƑƳ(v) ; u, v Є S}. 

3.  ƑƳ(-u) = ƑƳ(u) ∀ u ЄՄ,  

Example 1.3: 

Let A= {1,2}, and S= Power set of A, 

i.e., S= {Φ, {1}, {2}, {1,2}} 

and operation taken here symmetric difference as addition and intersection as multiplication. 

Here, clearly S is a Ring with respect to operation symmetric difference as addition and intersection as multiplication. 

Now let,  

Ƴ= {<3,Φ>,<2,{1}>,<2,{2}>,<3,{1,2}>}. 
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Now frequency addition operation table is shown below: 

∆ Φ      3 {1}    2 {2}     2 {1,2}  3 

Φ       3 Φ      3 {1}    2 {2}     2 {1,2}  3 

{1}     2 {1}    2  Φ     3 {1,2}  3 {2}     2 

{2}     2 {2}    2 {1,2} 3 Φ       3 {1}     2 

{1,2}  3 {1,2} 3 {2}    2 {1}     2 Φ       3 

 

Here addition inverse of each element is its own. 

Also, Frequency multiplication operation table is shown below, 

Ո Φ      3 {1}   2 {2}     2 {1,2} 3 

Φ       3 Φ      3 Φ     3 Φ      3 Φ      3 

{1}     2 Φ      3 {1}   2 Φ      3 {1}     2 

{2}     2 Φ      3 Φ     3 {2}     2 {2}     2 

{1,2}  3 Φ      3 {1}   2 {2}     2 {1,2}  3 

 

Here frequency of each element in each cell in both cases is greater than or equal to minimum frequency of corresponding two 

elements from where it comes.  

So, it is clear from frequency operation table that frequency function satisfies all conditions to form an Mring.  

So Ƴ is an Mring. 

Definition 1.4: Commutative Mring [9]: 

Let Ƴ be an Mring taken from a ring S. Then Ƴ is called commutative Mring if and only if, ƑƳ(u.v) = ƑƳ(v.u) for all u,v Є S. 

If any frequency multiplication table of an Mring is symmetric with respect to frequency then we will say that this is an example 

of commutative Mring. 

Example 1.4: 

Since in previous example, 

frequency multiplication table is symmetric with respect to frequency, so this is an example of a commutative Mring. 

Definition 1.5 [10]: 

(a) Let U and V be two nonempty sets and ϕ: U→V be a mapping and suppose Ƴ Є [U]m then ϕ(Ƴ) is an Mset where 

frequency function of ϕ(Ƴ) defined as follows: 

          for any v Є V, 

         Ƒϕ(Ү)(v) = Max {ƑƳ(u); if ϕ -1(v) ≠ ϕ and u Є U such that, ϕ(u)=v} 

                        = 0; otherwise. 

(b) If ᴃ Є [V]w then ϕ -1(ᴃ) is an Mset, 
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          where frequency function of ϕ -1(ᴃ) defined as follows, 

           for any u Є U, Ƒϕ−1(B)(u) = Ƒᴃ[ϕ(u)]. 

Definition 1.6: Multiset Ideal [7]: 

Let (S,+, .) be a Ring and I Є MR[S], then I is said to be a left multiset ideal if for each k Є S, ƑI (k.u) ≥ ƑI(u) ∀ u Є S, and I is 

said to be a right multiset ideal if,  

ƑI (u.k) ≥ ƑI(u) ∀ u Є S. 

If both the conditions of left and right hold then, 

It is called a multiset ideal or an Mset ideal or an Mideal. 

Main Results & Definition: 

Theorem 2.1: Suppose (S,⊕,⊙) and (T,+,.) are two ring and a function ɧ:S→T be a one-one onto homomorphism, if I is an 

Mideal over T then ɧ-1(I) is also Mideal over S i.e. if I Є MI(T) then ɧ-1(I) Є MI(S). 

Proof: 

Now for all u,v Є S,Ƒɧ−1(𝑰)(u − v) 

                                  = ƑI(ɧ(u⊕(-v)))  

                                  = ƑI(ɧ(u)+ɧ(-v)) 

                                  ≥min {ƑI(ɧ(u)), ƑI(ɧ(-v))}. 

                                  = min {ƑI(ɧ(u)), ƑI(-ɧ(v))}. 

                                  = min {ƑI(ɧ(u)), ƑI(ɧ(v))}. 

                                  = min {Ƒɧ−1(𝑰)(u), Ƒɧ−1(𝑰)(v)}. 

Now,Ƒɧ−1(𝑰)(u ⊙ v) = ƑI(ɧ(u⊙v))  

                                 =ƑI(ɧ(u).ɧ(v)) 

                             ≥max {ƑI(ɧ(u)), ƑI(ɧ(v))} 

                            =max {Ƒɧ−1(𝑰)(u), Ƒɧ−1(𝑰)(v)}. 

And Ƒɧ−1(𝑰)(−u) = ƑI(ɧ(-u)) = ƑI(-ɧ(u)) 

                                                          = ƑI(ɧ(u)) 

                                                          =Ƒɧ−1(𝑰)(u), for all u ЄS. 

Therefore, if I Є MI(T) then ɧ-1(I) Є MI(S). 

Hence proved. 

Definition 2.1: Madhya of an Mring: 

Let (S,+,.)  be a ring and Ƴ be an Mring taken from S.  

Then Madhya of Ƴ is denoted by ℳ(Ƴ) is an Mset such that, 

Ƒℳ(Ƴ)(u)= ƑƳ(u), where u Є S and ƑƳ(u.v) = ƑƳ(v.u) ∀ v Є S. 

Ƒℳ(Ƴ)(u)=0, where u Є S and ƑƳ(u.v) ≠ ƑƳ(v.u) for some v Є S. 

Example 2.1: 

 If A= {1,2},  

and S=P(A) i.e. Power set of A,  

and operation taken here symmetric difference as addition and intersection as multiplication then, 
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Ƴ= {<3,Φ>,<2,{1}>,<2,{2}>,<3,{1,2}>} forms an Mring 

Above frequency multiplication table is symmetric. 

Therefore, each u Є S, ƑƳ(u.v) = ƑƳ(v.u) for all v Є S. 

So 𝓜(Ƴ)= Ƴ= {<3, Φ>,<2,{1}>,<2,{2}>,<3, {1,2}>}. 

Example 2.2: 

If we take (Z4, +4, ×4) as a ring  

and Ƴ = {<5, 0>,<1,1>,<3,2>,<1,3>}. 

Then, frequency addition and multiplication operation tables are as below: 

 

 

 

 

 

 

∆ Φ      3 {1}    2 {2}     2 {1,2}  3 

Φ       3 Φ      3 {1}    2 {2}     2 {1,2}  3 

{1}     2 {1}    2  Φ     3 {1,2}  3 {2}     2 

{2}     2 {2}    2 {1,2} 3 Φ       3 {1}     2 

{1,2}  3 {1,2} 3 {2}    2 {1}     2 Φ       3 

     Ո Φ      3 {1}   2 {2}     2 {1,2}   3 

Φ       3 Φ      3 Φ     3 Φ      3 Φ      3 

{1}     2 Φ      3 {1}   2 Φ      3 {1}     2 

{2}     2 Φ      3 Φ     3 {2}     2 {2}     2 

{1,2}  3 Φ      3 {1}   2 {2}     2 {1,2}  3 

+4 0      5 1       1 2        3 3       1 

0     5 0      5 1       1 2        3 3       1 

1     1 1      2 2       3 3        1 0       5 

2     3 2      3 3       1 0        5 1       1 

3     1 3      1 0       5 1        1 2        3 

×4 0      5 1      1 2       3 3      1 

0     5 0      5 0      5 0       5 0      5 

1     1 0      5 1      1 2       3 3      1 
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From it is clear that Ƴ is an Mring and since S is a commutative Mring so ℳ(Ƴ)= Ƴ. 

Theorem 2.2: If Let (S,+,.)  be a ring which forms a field also and Ƴ is a non-empty Mring taken from S with ƑƳ(u) = ƑƳ(u-

1) ∀ u Є S where u-1 is an inverse element of u with respect to multiplication then, ℳ(Ƴ) is also an Mring over S. 

Proof:  

Since, (S,+,.)  be a ring which forms a field. 

So (S,+)  and (S,.)  are two groups. 

As Ƴ is a non-empty Mring taken from S. 

Therefore, ƑƳ(u+v) ≥min { ƑƳ(u), ƑƳ(v)} for all u Є S. 

and ƑƳ(u) = ƑƳ(-u) ∀ u Є S 

Thus, Ƴ is an Mgroup with respect to addition. 

So ℳ(Ƴ) is an Mgroup with respect to addition. 

Again, Ƴ is a non-empty Mring taken from S. 

So ƑƳ(u.v) ≥min { ƑƳ(u), ƑƳ(v)} for all u Є S. 

Given that, ƑƳ(u) = ƑƳ(u-1) ∀ u Є S. 

Thus, ℳ(Ƴ) is an Mgroup with respect to multiplication. 

Hence, Ƒℳ(Ƴ)(u+v) ≥min { Ƒℳ(Ƴ)(u), Ƒℳ(Ƴ)(v)} for all u,v Є S. 

and Ƒℳ(Ƴ)(u.v) = min { Ƒℳ(Ƴ)(u), Ƒℳ(Ƴ)(v)} for all u,v Є S. 

Also Ƒℳ(Ƴ)(u) = Ƒℳ(Ƴ)(-u). 

Therefore, ℳ(Ƴ) is also an Mring over S. 

Hence the proof. 
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2     3 0      5 2      3 0       5 2      3 

3     1 0      5 3      1 2       3 1      1 

http://www.ijsrem.com/

