
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19971 | Page 1

PUBLISHING MULTIPLE SENSOR READINGS TO

NODE-RED USING MQTT PROTOCOL

Soham Das Dr. K. Venkatesh

Department of Networking and Communication Department of Networking and Communication

SRM Institute of Science and Technology SRM Institute of Science and Technology

sd8159@srmist.edu.in venkatek2@srmist.edu.in

 Abstract - In this project, we aim to make a deep dive into the

concepts of data collection from multiple sensors using the MQTT

protocol. We would be using Node-red to publish the sensor

readings with the help of ESP8266 MQTT and Arduino. ESP8266

would be taken as a publisher whereas Node-red will be taken as

a subscriber. We would be using the humidity, temperature, and

pressure sensors reading and publishing it to the dashboard

created on Node-Red. Mosquitto broker will help in creating the

publisher and subscriber connection.

For the project, we would use 3 kinds of sensors, the DHT22

sensor, the BME280 sensor, and the BME280 sensor. These 3

sensors are capable of detecting both temperature and humidity.

The BME280 additionally also has the feature of sensing pressure

We decided to use the MQTT protocol because it is energy efficient

and easy to deploy in different machines and is a very influential

protocol if we see it in respect of Industry 4.0. MQTT in IoT uses

quantity of Service(QoS) levels to ensure proper message delivery

to the receivers even when there is an unreliable connection

between two devices.

Node-Red is a robust graphical programming platform that is

used for programming tools and types of equipment for wiring

hardware devices, API, and online services. It provides a browser-

based editor that makes it easy to wire together flows using the

wide range of nodes in the palette that can be deployed to its

runtime in a single click.

The documentation of the project will aim to study past studies

and research and also explore the scope of the MQTT Protocol

from the Industry 4.0 perspective. In industry, there are several

kinds of machinery for which the temperatures are needed to be

controlled and substances used where humidity control is

necessary. The sensors that can be attached to our machinery can

detect the temperature and humidity associated with it and

provide valuable insight to the respective authorized personnel

working with it. This will help in controlling system overheating.

With the help project, I propose a solution for monitoring the

humidity, temperature, and pressure with help of multiple

attached sensors and connecting the sensors with a dashboard

build by us using Node-Red. The dashboard will receive the data

from the sensor through MQTT protocol which is a light weight

protocol which will be useful in low bandwidth areas also.

I. INTRODUCTION

 A collection of communication standards known as M2M

(Machine-to-Machine) protocols allows devices to

communicate data with one another without the need for human

interaction. These protocols let devices communicate and work

together in different types of firms which include

manufacturing, transportation, healthcare, and smart homes. A

number of M2M protocols are available, each created for

particular use cases and applications. Here are a few typical

M2M protocols:

1. (MQTT) is a compact pub/sub messaging standard created

for IoT and other unpredictable, low-bandwidth networks. It is

extensively utilized in sectors including healthcare, industrial

automation, and smart homes.

2. CoAP: The lightweight Constrained Application Protocol

(CoAP) was created for networks and devices with limited

resources, such as those used in smart homes, healthcare, and

industrial automation. It may be used with a variety of transport

protocols, including UDP and SMS, and is used for device-to-

device communication.

3. LwM2M: Lightweight Machine-to-Machine (LwM2M) is a

protocol created for controlling and keeping track of Internet of

Things (IoT) devices remotely. It offers a common data model

for device administration and security and makes use of the

CoAP protocol.

4. Real-time data distribution and communications between

devices are made possible through the Data Distribution

Service (DDS) protocol. Real-time data is crucial in sectors like

aerospace, defense, and healthcare, where it is often employed.

The communication between devices is standardised thanks to

these protocols, making it easier to integrate and interoperate

various systems and devices. Moreover, they provide attributes

like security, dependability, and scalability, which are crucial

for M2M communication across several sectors.

A messaging protocol called MQTT is created specifically for

IoT and other networks with limited resources. It was created

in the late 1990s by Arlen Nipper of Arcom (now Eurotech) and

Andy Stanford-Clark of IBM, and it has since grown to be a

widely used standard for IoT communications.

The simplicity of MQTT is its distinguishing quality. MQTT is

made to work well on low-power, resource-constrained devices

like sensors, actuators, and other Internet of Things (IoT)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19971 | Page 2

devices, in contrast to other messaging protocols that might be

resource-intensive and need a lot of bandwidth. This is

accomplished through the use of a publish-subscribe

communication architecture, in which a device may send a

message to a broker, who then distributes it to any subscribing

devices. This method does away with the requirement for

ongoing polling or upholding a permanent connection, which

can save a substantial amount of power and bandwidth.

MQTT also supports three levels of quality of service (QoS) for

message delivery, which allows for fine-grained control over

the reliability and consistency of message transmission. The

three levels of QoS are:

1. QoS 0: Just one delivery at most. There is no assurance that

the subscriber will get the message, which is transmitted just

once. Although there is the least dependability at this level,

there is also the least overhead.

2. QoS 1: Delivery at least once. At least one attempt is made

to send the message, and the broker will keep trying until the

subscriber responds by acknowledging receipt. This level has a

little larger overhead than QoS 0, but it offers a higher level of

dependability.

3. Precisely once delivery under QoS 2. The broker will make

sure the subscriber receives the message precisely once after it

is transmitted exactly once. Although it has the biggest

overhead, this level offers the best level of dependability.

The support for security provided by MQTT is another crucial

element. To guarantee that messages are transmitted safely

between devices and brokers, MQTT may be protected using

Transport Layer Security (TLS) encryption and authentication.

This is particularly crucial for Internet of Things (IoT)

applications, where security is essential to thwart assaults and

data breaches. Overall, MQTT is a popular option for IoT

applications due to its lightweight design, support for various

QoS levels, and security features. It is widely utilized for a

range of purposes, including remote monitoring, control, and

data collecting, in industries including smart homes, industrial

automation, healthcare, and agriculture.

With the help of ESP32 MQTT and the Arduino IDE, we will

be posting sensor values to Node-Red. By posting and

subscribing to MQTT topics, we will carry out MQTT

communication between the ESP32 and Node-Red. One ESP32

MQTT publisher and one Node-Red subscriber will be present.

With the help of the ESP32, we will use the DS18B20, DHT,

and BME280 sensors to publish sensor data to MQTT. The

Dashboard will be sued to subscribe to the MQTT topics and

display the sensor values on Node-Red.

Industry 4.0 is fundamentally based on the MQTT protocol.

Industry 4.0, is the integration of cutting-edge digital

technology into industrial processes in order to build "smart

factories" and increase production productivity, efficiency, and

flexibility. The German government first used the phrase

"Industry 4.0" in 2011 as part of a high-tech initiative to

encourage the use of digital technology in manufacturing. The

preceding three industrial revolutions, which introduced

automation, electricity, and steam power to production, served

as the foundation for Industry 4.0. IoT, AI, ML, 3D printing,

AR and VR capabilities are just a few examples of the digital

and physical systems that make up Industry 4.0. These

technologies are utilized to build autonomous, intelligent,

networked, and systems that can continuously monitor and

improve manufacturing processes.

Improved product quality, better productivity and adaptability,

less downtime, and cost savings are all advantages of Industry

4.0. Moreover, it enables businesses to offer novel goods and

services that are tailored and made to suit the requirements of

certain clients. The workforce must be retrained, new business

models and strategies must be developed, and there must be a

large investment in new technology. Industry 4.0, as a whole,

points to a dramatic evolution in production is conducted, with

the scope to completely change the BPS, spur economic

expansion, and increase competitiveness.

II. SCOPE

The MQTT protocol has a wide range of applications in a wide

range of sectors, including:

1. Internet of Things: Because of its portability, low bandwidth,

and low-power requirements, MQTT is frequently employed in

the IoT space. In smart homes, industrial automation, and

healthcare, it is frequently used for machine-to-machine

communication, sensor data transfer, and device

administration.

2. Mobile apps: For real-time communications and

notifications, MQTT is also utilized in mobile applications. It is

perfect for usage in messaging applications, chatbots, and push

notifications since it enables effective and dependable

communication between mobile devices and back-end systems.

3. Industrial automation: To facilitate communication between

machines, sensors, and other devices in a manufacturing

environment, MQTT is utilized in industrial automation. It

offers a dependable and effective method for data sharing

between machines and the optimization of manufacturing

procedures.

4. Transportation: To facilitate communication between

vehicles and traffic management systems, MQTT is utilized in

transportation systems like linked automobiles and smart traffic

systems. It enables real-time data analysis and transfer,

enhancing efficiency, safety, and traffic flow.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19971 | Page 3

III. CHALLENGES AND LIMITATIONS

Although the MQTT (Message Queuing Telemetry Transport)

protocol has numerous advantages and is extensively utilized in

a variety of fields and applications, there are several difficulties

and restrictions that should be taken into account:

1. Security: As MQTT does not by default offer end-to-end

encryption, communications may be intercepted and read by

unauthorized parties. Further security measures like Transport

Layer Security (TLS) and authentication should be used to

ensure a safe connection.

2. Compatibility: Older hardware or gadgets that don't support

MQTT may not work with it. The complexity and expense of

implementation may rise in some circumstances if extra

hardware or software is needed to support MQTT

communication.

3. Restricted features: Although MQTT offers certain

fundamental messaging functions, it could be missing some

more sophisticated functionalities that are present in other

messaging protocols. For instance, file transmission is not

natively supported by MQTT, even though it may be necessary

in specific use cases.

4. Implementation complexity: The implementation of MQTT's

extra components, such as a broker and client libraries, might

make the system more difficult overall.

Apart from technological issues, the Windows operating system

faces the following difficulties:

 1. Ports need to be manually opened because they are not

opened automatically.

 2. To record the readings, the windows defender firewall

may need to be disabled.

IV. LITERATURE REVIEW

A promising technology has arisen called the Internet of Things

(IoT). Data transport has been reduced as a result of the IoT

objects' constrained resources. In order to comply with these

demands and limitations, new protocols have been established.

Many other IoT application protocols have been proposed,

MQTT, CoAP, and many more [1].

MQTT is classified as being open-source, having a small

amount of network bandwidth requirements, and being suitable

for remote locations. Mobile devices, such as tablets and

smartphones, are compatible with MQTT apps. Telemetry is

also used to manage statistics that are collected from remote

sensors. The fact that MQTT is a flexible and lightweight

protocol is what led people and builders to choose it. The

publish/subscriber system is made to be simple to use in

practice. These qualities make it ideal for data and analytics as

well as trading between devices [3].

Applications for this developing technology include data

monitoring and home automation. With the help of home

automation, we are achieving comfort in our daily lives. Homes

with practically everything hooked up to a remotely scalable

framework, including outlets, heating and cooling systems, and

appliances, are more accurately portrayed by homes with home

automation. A significant number of IoT devices must

communicate with one another for home automation. Firmware

needs to be updated frequently due to the noticeable increase in

the number of devices on cloud platforms. It involves removing

previously installed devices, making the necessary code

modifications, and then flashing the modified code once more.

Information processing should be done somewhere else if

possible in order to solve these problems. Node-RED, a visual

wiring tool, facilitates quick and simple connection

configurations by enabling the association of devices. ESP8266

and an MQTT broker are connected to a range of devices using

Node-RED, a monitoring and control dashboard will be

developed and settled

According to [3], the MQTT orientation will be classified into

2 parts. This part of the module gives an explanation of each

component

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19971 | Page 4

IoT has evolved into the term "smart things," which are objects

with internal computation and system linkages. They are

especially capable of sensing our surroundings and acting

shrewdly as a result. Node-RED is used to make relevant

connections between two or more hardware components, web

services, and APIs. Node-RED was developed by IBM

Emerging Technologies and is open source It functions

essentially as a visual graphical programming tool created for

the IoT, but it may also be used in other applications for rapid

collection of flows of different services. It is built on Node.js, a

framework for server-side java scripting. By substituting

common coding activities, With the help of Node-RED, people

would directly integrate equipment and Online services, and

this should be accomplished through the use of a graphical

stretch layout.

By linking several Node-RED components, a stream is

generated in the Node-RED. The Node-RED flows are typically

preserved in JSON, which functions as a demonstration of how

easy it is to transmit the information throughout devices for

collaboration with others. Nodes are interconnected to one

another through flow keeping to achieve a predefined purpose.

similar to how flows may be combined appropriately to achieve

higher-order outcomes. Node-RED can be utilized locally by

establishing a browser at http://localhost:1880. A cluster of

nodes contained within a graphical user module for Node-RED

can be employed to quickly construct a live data showcase.

Using their local browser, users may view the user interface via

http://localhost:1880/ui.

V. METHODOLOGY

Ensure that Thonny IDE and Micro-Python are both up-to-date

and installed on your computer. The firmware ought to have

already been installed onto your ESP8266 board.

The MQTT broker will be contacted by an ESP8266 board

outfitted with DHT22, BME280, and DS18B20 sensors. We'll

employ a Mosquito broker. This ESP8266 board transmits the

DHT22 humidity and temperature measurements on the MQTT

topic esp8266/dht/temperature and esp8266/dht/humidity,

respectively. The BME280 temperature values are also

published under the topic: esp8266/bme280/temperature. In the

page esp8266/bme280/humidity, the BME280 humidity values

are published. The BME280 pressure values are also published

under the topic: esp8266/bme280/pressure. Similar to other

message boards, this one posts DS18B20 temperature values in

both Celsius and Fahrenheit on the MQTT topic

esp8266/ds18b20/temperatureC and

esp8266/ds18b20/temperatureF. With regard to these seven

topics, Node-Red is a subscriber. As soon as Node-Red gets

sensor data, it presents it interactively on its dashboard.

VI. CONNECTIONS

The power supply (VCC) pin is the first pin on the DHT22

sensor. It should be connected to the ESP8266's 3.3-volt or Vin

pin. The pin designated as "Data Out" allows us to obtain

samples of temperature and humidity from the DHT sensor.

Attach the data pin to the 10k pull-up resistor and this pin to the

ESP8266's GPIO12 at the same time. You may also use any

digital pin on the ESP8266, though. For proper communication

between the microcontroller and sensor, a pull-up resistor is

employed to maintain the data pin at a high voltage. To learn

more about the DHT22, you may look at its datasheet. DHT22

is sometimes referred to as AM2302. The resistor is not

required if you are using a DHT22 sensor module. The

BME280 is fairly simple to connect to the ESP8266 boards. The

VCC terminal must be connected to 3.3V, the sensor's SCL to

the module's SCL pin, the grounding hub to commonalities, and

the sensor's SDA to the ESP8266 component's SDA pin. The

ESP8266's GPIO4 and GPIO5 are SDA and SCL's conventional

I2C pins, respectively.

There are two ways to power the DS18B20 sensor. Normal

Mode: The VDD pin and 4.7K ohm pull-up resistor are used to

power the sensor from an external source. The sensor is

powered by its own data line in parasite mode. As a result, no

external power source is needed. Although DS10B20 will be

operated in normal mode, the ESP8266 board's 3.3V pin serves

as its Vcc pin's power source. There are three connections on

the DS18B20 sensor. The ESP8266 board grounds the first

terminal. A 4.7k-ohm pull-up resistor is used to link the center

terminal of the sensor's data line to GPIO13. Every other GPIO

http://www.ijsrem.com/
http://localhost:1880/ui

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19971 | Page 5

pin is also an option. The ESP board's 3.3V supplies power to

the third terminal.

Activate the Thonny Shell. The MQTT broker and Wi-Fi will

first be established connections on the ESP8266 board. It will

post the sensor readings on the relevant subjects every 10

seconds.

VI. ALGORITHM

The flowchart of how the main micropython file is working:

The full project structure:

The ESP8266 board will be connected to the three types of

sensors and data from the sensor will be published to the

topics through the MQTT Broker. The Node red dashboard

will subscribe to each of the topics to capture the published

data and would be displaying it subsequently as it changes.

VII. LIBRARIES AND DEPENDENCIES

The 'umqttsimple' library for Micro Python is the first package

that must be installed since we must utilize the MQTT protocol.

It is a lightweight Micro python MQTT client. To proceed with

our project, we will need to install a BME280 library for Micro

Python. Micropython-bme280 will be used in our project. With

the DS18x20 digital thermometer, for example, the OneWire

library offers routines for communication via the Dallas

OneWire protocol. OneWire is a Master/Slave protocol where

just one wire is needed for communication. Then we need to

install node-red. Before installation of node-red, we need to

make sure there is node.JS in our machine. A programming

instrument called Node-RED has been utilized to produce fresh

and compelling connections between physical objects, APIs,

and networking sites. It delivers a browser-based editor that

makes it simple to wire up processes utilizing a diverse range

of nodes in the range of shades that are able to be deployed to

its runtime with a click of the mouse. Inside node–red a

dashboard will be created for which we need to install another

dependency. The Node-RED Dashboard is a group of nodes

that lets you build a web dashboard that communicates with

your flow directly. Inject nodes may be swapped out for buttons

utilizing the different nodes, and data can now be sent straight

to a web component like a gauge or table without having to first

print it to the debug.

VIII. CONCLUSION

The MicroPython ESP8266 MQTT Post Multiple Sensor

Readings to Node-Red project uses an ESP8266 module

powered by MicroPython to receive sensor data and broadcast

it using the MQTT protocol to a Node-Red server. The project

offers a straightforward method for gathering and instantly

visualising sensor data from far-off sites.

In conclusion, this project shows how simple it is to gather and

share sensor data using MicroPython. It also emphasises how

effective the MQTT protocol is in enabling device connection

over the internet. On the other hand, Node-Red offers a

straightforward and user-friendly interface for developing

dashboards and real-time representations of sensor data.

Overall, the project provides a workable method for remotely

monitoring sensor data, making it applicable to many different

fields, such as home automation, agricultural, and industrial

monitoring.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19971 | Page 6

REFERENCES

[1] “A QOS approach for Internet of Things(IOT) environment

using MQTT protocol” by Abdulrahman A. Sadeq, Rosilah

Hassan, Salah S. Al-rawi, Ahmed M. Jubair and Azana H.M.

Aman

[2] “IOT based Home Automation using Node-RED” by Ravi

Kishore Kodali and Arshiya Anjum (2018).

[3] “IoT Monitoring System Based on MQTT

Publisher/Subscriber Protocol” by Narges A-hussein and

Ayman D. Salman (2020).

http://www.ijsrem.com/

