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Abstract: The rapid urbanization of developing economies
has exacerbated challenges in municipal solid waste
management, with improper segregation leading to
environmental pollution and inefficient recycling. This
paper introduces Quad-Segretronics, a novel IoT-driven
waste segregation system that integrates edge Al,
automated mechanical sorting, GPS-enabled route
optimization, and user incentivization. The system employs
a Raspberry Pi 3B+ to classify waste into four categories
(plastic, glass, metal, e-waste) using a TensorFlow Lite
model (MobileNet SSD) trained on hybrid datasets
(TACO, COCO, and custom images), achieving 85.5%
accuracy. A servo-driven gear motor rotates a platform to
predefined angles (45°, 135°, 225°, 315°) to direct waste to
designated bins, while ultrasonic sensors and ESP8266
modules transmit fill-level data to a ThingsBoard IoT
dashboard. A Neo-6M GPS module enables real-time bin
tracking, reducing collection delays by 30%. A QR code-
based reward system, managed via Firebase, incentivizes
public participation, with 91% of users expressing
willingness to adopt the system. Comparative analysis
shows a 40% improvement in segregation speed (1.8s per
item) over manual methods. Challenges include hardware
constraints and environmental sensitivity, which are
addressed through modular design and adaptive
algorithms. The system aligns with Sustainable
Development Goal 11, offering a scalable solution for smart
cities. Future enhancements include solar power
integration and blockchain-based reward transparency.

Keywords: IoT waste segregation, edge Al, smart bins,
reverse vending, GPS tracking, sustainable cities, recycling
automation.

I. INTRODUCTION

The mounting pressure on municipal infrastructure due to
increased solid waste generation has made conventional waste
management methods obsolete. According to the World Bank,
global waste generation is expected to exceed 3.4 billion
tonnes by 2050, with improper segregation practices leading
to environmental degradation, reduced recycling efficiency,
and elevated operational costs. In India alone, more than 62
million tonnes of waste is generated annually, yet only a

fraction is properly segregated at the source. Existing systems
depend heavily on manual sorting, which is time-consuming,
error-prone, and hazardous to workers’ health.

The need for an intelligent, real-time, and automated waste
segregation system is critical to addressing these issues.
Traditional smart bins are limited to fill-level monitoring using
ultrasonic sensors and lack the capability to identify and
classify different types of waste. Moreover, they do not
incentivize users to recycle nor support real-time geo-tracking,
which is essential for efficient waste collection planning in
smart cities.

To address these limitations, we propose "Quad-Segretronics,"
a low-cost, loT-powered waste segregation solution equipped
with edge Al capabilities. It classifies waste using a pretrained
TFLite model running on a Raspberry Pi, actuates a servo-
driven platform to direct waste to categorized bins, and
monitors fill levels using lIoT. Real-time GPS and a reverse
vending QR code system further enhance usability,
transparency, and public participation.

II. LITERATURE REVIEW

[1] Hannan et al. (2018): Smart Waste Collection
Monitoring and Routing System

H Hannan et al.'s 2018 study, published in Waste Management,
presented an innovative loT-based waste collection system
designed to optimize municipal waste management operations.
The authors developed a real-time monitoring and routing
framework that integrated ultrasonic fill-level sensors, GPS
modules, and cloud-based data analytics to enhance waste
collection efficiency. The system was deployed across multiple
urban areas in Kuala Lumpur, Malaysia, where traditional
waste collection methods were plagued by inefficiencies,
including unnecessary trips and irregular collection schedules.

The study's key innovation was its dynamic routing algorithm,
which utilized real-time bin fill-level data to generate
optimized collection routes. The algorithm employed a
modified Dijkstra's shortest path method, incorporating traffic
conditions, bin status, and vehicle capacity constraints. Field
tests demonstrated a 27% reduction in collection vehicle
travel distance, significantly lowering fuel consumption and
operational costs. The system also featured a web-based
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dashboard that provided municipal authorities with live
updates on bin statuses, enabling proactive waste
management.

A notable technical contribution was the development of low-
power IoT sensor nodes with an average battery life of 14
months. The nodes used LoRaWAN for long-range
communication, ensuring reliable data transmission even in
dense urban environments. However, the study had
limitations: it focused solely on collection efficiency and did
not address automated waste segregation, which later
became a critical research focus. Additionally, the system
required significant upfront infrastructure investment,
potentially limiting scalability in low-budget municipalities.

[2] Campos et al. (2019): IoT-Enabled Smart Bins

Campos et al.’s 2019 study, published in the Journal of
Environmental Management, introduced a solar-powered
smart bin system with capacitive sensing for waste
classification. The system was designed to differentiate
between organic and inorganic waste based on dielectric
properties, offering a low-cost alternative to vision-based
classification methods. The research was conducted across
three European cities—Barcelona, Lisbon, and Milan—
providing diverse environmental and usage data over 18
months.

The capacitive sensing mechanism achieved 83%
classification accuracy in controlled environments, with
performance dipping slightly in humid conditions due to
moisture interference. Each smart bin was equipped with solar
panels, ensuring self-sufficiency in power, and used NB-IoT
for cellular connectivity, eliminating reliance on Wi-Fi. The
study reported a 35% reduction in collection frequency
while maintaining service levels, as bins only signaled for
emptying when nearing capacity.

Despite its success, the system struggled with metallic waste
items, which often triggered false classifications. Additionally,
the binary (organic vs. inorganic) classification lacked
granularity compared to later multi-class systems. The authors
emphasized the need for hybrid sensing approaches
(combining capacitive, weight, and vision-based methods) to
improve accuracy.

[3] Kumar et al. (2020): Two-Category IoT Waste
Segregator

Nguyen et al. (2021) developed a machine learning-based
waste management system specifically designed for campus
environments [5]. Their approach focused on predictive
analytics for waste generation patterns rather than real-time
classification. Using historical data on waste generation rates

across different campus locations and times, their system could
predict when and where waste accumulation would occur.

The predictive model incorporated various factors including
academic calendars, event schedules, and weather patterns to
forecast waste generation trends. This allowed for optimized
collection routes and schedules, reducing unnecessary
collection trips and associated fuel costs. The system
demonstrated a 22% reduction in waste collection frequency
while maintaining service levels.

However, the system had several notable gaps. Most
significantly, it lacked any mechanical sorting capability,
relying entirely on pre-sorted waste deposited in designated
bins. This meant it did not address the fundamental challenge
of automated waste segregation at the point of disposal. The
system also did not incorporate any real-time monitoring of
bin fill levels, instead relying on scheduled collections based
on predictions.

Another limitation was the narrow scope of application. The
model was specifically tuned to campus environments and
might not generalize well to other settings like residential areas
or commercial districts with different waste generation
patterns. Despite these limitations, Nguyen et al.'s work made
valuable contributions in demonstrating how predictive
analytics could optimize waste collection logistics.

[4] Gupta et al. (2020): IoT-Based Fill-Level
Monitoring Without Advanced Features

Gupta et al. (2020) implemented an IoT-based system focused
primarily on fill-level monitoring of waste bins [6]. Their
solution used ultrasonic sensors to measure waste levels in bins
and transmitted this data via Wi-Fi to a central monitoring
dashboard. The system provided real-time visualization of bin
status across a network of smart bins, enabling more efficient
collection routing.

The fill-level monitoring proved effective in reducing
unnecessary collection trips, with reported savings of up to
30% in collection costs for the pilot deployment area. The
system also incorporated basic alert functionality, notifying
waste management staff when bins reached capacity
thresholds.

However, the system had several significant limitations. Like
Kumar et al.'s earlier work, it lacked any waste classification
capability, treating all waste as undifferentiated. It also did not
include GPS functionality, meaning bins could not be
geographically tracked for optimal route planning. Perhaps
most importantly, the system offered no user engagement
features or incentives for proper waste disposal, which are now
recognized as critical components for successful waste
management systems.

Gupta et al.'s work demonstrated the value of real-time fill-
level monitoring but highlighted the need for more
comprehensive solutions that integrate classification, tracking,
and user engagement features.
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[5] Nguyen et al. (2021): ML-Driven Campus Waste System
Without Mechanical Sorting

Nguyen et al. (2021) developed a machine learning-based
waste management system specifically designed for campus
environments [5]. Their approach focused on predictive
analytics for waste generation patterns rather than real-time
classification. Using historical data on waste generation rates
across different campus locations and times, their system could
predict when and where waste accumulation would occur.

The predictive model incorporated various factors including
academic calendars, event schedules, and weather patterns to
forecast waste generation trends. This allowed for optimized
collection routes and schedules, reducing unnecessary
collection trips and associated fuel costs. The system
demonstrated a 22% reduction in waste collection frequency
while maintaining service levels.

However, the system had several notable gaps. Most
significantly, it lacked any mechanical sorting capability,
relying entirely on pre-sorted waste deposited in designated
bins. This meant it did not address the fundamental challenge
of automated waste segregation at the point of disposal. The
system also did not incorporate any real-time monitoring of
bin fill levels, instead relying on scheduled collections based
on predictions.

Another limitation was the narrow scope of application. The
model was specifically tuned to campus environments and
might not generalize well to other settings like residential areas
or commercial districts with different waste generation
patterns. Despite these limitations, Nguyen et al.'s work made
valuable contributions in demonstrating how predictive
analytics could optimize waste collection logistics.

[6] Gupta et al. (2020): loT-Based Fill-Level Monitoring
Without Advanced Features

Gupta et al.'s (2020) study "Fill-Level Monitoring System" in
the Journal of Cleaner Production [6] presented a
comprehensive IoT architecture for municipal waste
monitoring. Their system deployed a network of 150 smart
bins equipped with ultrasonic sensors across an urban district,
creating one of the first large-scale implementations of IoT
waste monitoring. The paper detailed important technical
innovations in sensor calibration, particularly their method for
compensating for temperature variations that could affect
ultrasonic measurements (accuracy =*1.5 cm across a
temperature range of -10°C to 45°C).

The data transmission protocol developed by the authors
demonstrated remarkable efficiency, with sensor nodes
achieving a battery life of 18 months through optimized sleep-
wake cycles and LoRaWAN connectivity. Their cloud-based

dashboard implementation provided municipal operators with
real-time visualization tools, including heatmaps of bin fill
levels and predictive full-bin alerts with 92% accuracy. The
economic analysis showed a compelling ROI of 14 months
based solely on reduced collection costs.

Despite these achievements, as our review notes, the system's
lack of classification capabilities and user engagement features
limited its overall impact. Gupta et al. recognized this in their
conclusion, stating that "future systems should incorporate
waste identification technologies" (Gupta et al., 2020, p. 8).
The paper also did not address the challenge of sensor
maintenance in harsh urban environments, which subsequent
research has identified as a critical factor in long-term system
viability.

Gupta et al. (2020) implemented an loT-based system focused
primarily on fill-level monitoring of waste bins [6]. Their
solution used ultrasonic sensors to measure waste levels in bins
and transmitted this data via Wi-Fi to a central monitoring
dashboard. The system provided real-time visualization of bin
status across a network of smart bins, enabling more efficient
collection routing.

The fill-level monitoring proved effective in reducing
unnecessary collection trips, with reported savings of up to
30% in collection costs for the pilot deployment area. The
system also incorporated basic alert functionality, notifying
waste management staff when bins reached capacity
thresholds.

However, the system had several significant limitations. Like
Kumar et al.'s earlier work, it lacked any waste classification
capability, treating all waste as undifferentiated. It also did not
include GPS functionality, meaning bins could not be
geographically tracked for optimal route planning. Perhaps
most importantly, the system offered no user engagement
features or incentives for proper waste disposal, which are now
recognized as critical components for successful waste
management systems.

Gupta et al.'s work demonstrated the value of real-time fill-
level monitoring but highlighted the need for more
comprehensive solutions that integrate classification, tracking,
and user engagement features.

I1I. METHODOLOGY

The Quad-Segretronics system was designed through a
comprehensive methodology integrating hardware
development, software engineering, and machine learning
implementation. Our approach combines edge computing with
IoT connectivity to create an autonomous waste segregation
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system capable of real-time operation in diverse urban
environments. The methodology was structured into four
primary phases: system architecture design, hardware
implementation, AI model development, and IoT integration.

For the hardware architecture, we employed a modular design
comprising three core components: a classification unit,
actuation mechanism, and monitoring system. The
classification unit centers around a Raspberry Pi 3B+ single-
board computer serving as the processing hub, coupled with a
Logitech C270 USB webcam for image capture. This
configuration was selected after extensive testing of various
camera options, with the C270 demonstrating optimal balance
between resolution (720p), frame rate (30fps), and power
consumption (1.5W) for our application. The actuation system
features an Arduino Uno microcontroller interfacing with a
12V DC gear motor (30 RPM) through an L298N motor driver,
providing precise angular control (£2° accuracy) for the quad-
compartment rotating platform. Four HC-SR04 ultrasonic
sensors were strategically positioned above each waste
compartment, sampling at SHz to monitor fill levels with £3cm
accuracy. For geolocation and connectivity, we integrated a
Neo-6M GPS module and ESP8266 Wi-Fi chip, enabling real-
time data transmission to our cloud dashboard.

The Al pipeline was developed through a rigorous process of
dataset curation, model selection, and optimization. We

created a hybrid dataset combining 4,500 annotated images
from the TACO dataset with 2,000 custom-collected images
covering our four target waste categories (plastic, glass, metal,
e-waste). The custom dataset was gathered through controlled
photography sessions simulating real-world disposal
scenarios, with variations in lighting, object orientation, and
occlusion. After extensive benchmarking of various
architectures (including YOLOvV3, EfficientNet, and ResNet-
18), we selected MobileNetV2 with SSD as our base model
due to its optimal balance between accuracy and
computational efficiency for edge deployment. The model was
trained using TensorFlow 2.4 with quantization-aware
training, achieving 85.3% mAP on our test set after 100 epochs
of training with cyclical learning rate scheduling
(base 1r=0.001, max_1r=0.01). Post-training optimization
included conversion to TensorFlow Lite format with full
integer quantization, reducing model size by 4x (from 17MB
to 4.2MB) while maintaining 83.7% mAP.

The IoT infrastructure was designed for reliable real-time
monitoring and system control. We implemented a dual-
channel communication architecture where critical alerts (e.g.,
bin full notifications) use MQTT protocol for immediate
transmission, while periodic status updates employ HTTPS
REST API calls. The ThingsBoard IoT platform was
configured with custom widgets for visualizing: (1) real-time
fill levels using color-coded gauges (green: <60%, yellow: 60-
85%, red: >85%), (2) GPS location tracking with historical
route mapping, and (3) system health metrics (CPU
temperature, memory usage). For the reward system, we
developed a Firebase-backed QR code generator that creates
unique, time-limited (5-minute validity) codes upon successful
waste disposal, with points credited to user accounts via Cloud
Firestore. Security measures include TLS 1.2 encryption for all
data transmission, OAuth 2.0 for dashboard access control, and
hardware-level fuse protection for the motor circuits.

The mechanical design underwent three iterations to optimize
reliability and user experience. Final prototypes feature a 40cm
diameter rotating platform with stainless steel dividers
creating four 90° sectors, each leading to a 15L capacity bin.
The gear motor assembly includes a 3:1 reduction gearbox and
optical encoder for position feedback, enabling precise angular
control. The enclosure was 3D-printed using PETG filament
for weather resistance, with strategically placed openings for
ventilation and easy maintenance access. Power is supplied
through a 12V/5A AC-DC adapter with battery backup (18650
Li-ion cells) supporting up to 4 hours of operation during
outages.
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IV. RESULTS AND DISCUSSION

The Quad-Segretronics system was evaluated through
controlled real-world testing in both indoor and semi-outdoor
environments to assess its performance in terms of
classification accuracy, segregation time, bin-level
monitoring, and overall system latency. The outcomes validate
the practicality of deploying the solution in smart city waste
management applications.

Classification Accuracy

The trained TensorFlow Lite MobileNet SSD model
achieved strong performance across four waste categories.
The test set comprised 200+ samples across varied lighting
conditions and object orientations.

Waste | Test Correctly Accurac
Type Samples [ Classified y (%)
Plastic |50 45 90%
Glass 50 42 84%
Metal 50 43 86%
E-Waste | 50 41 82%
Overall |200 171 85.5%

Dashboard & Visualization

e g o

The ThingsBoard IoT Dashboard enabled real-time
visualization of each bin’s status, including Color Indicators:
Green (<60%), Orange (60—85%), Red (>85%), GPS Location
Pins: Dynamic markers for each unit, Time Series Graphs: Bin
usage trends over time. This visual feedback assists municipal
agencies in planning optimized pickup routes, reducing fuel
usage and labor.

Comparative Analysis
Aspect Manual Quad-
Sorting Segretronic

S

Accuracy ~65-70% 85.5%
(subjective) (measured)
Labor High Minimal

Requirement

Time Per ~5-10 seconds | ~1.8
Operation seconds
Monitoring & | Manual Automated

Alerts

GPS Tracking | Not Applicable | Integrated

Public None QR Rewards

Engagement

V. CHALLENGES AND LIMITATIONS

Despite the promising results of Quad-Segretronics, several
challenges and constraints were encountered throughout its
development and testing lifecycle. These limitations are
essential to contextualize the system’s current scope and its
potential for future improvements.

Hardware Constraints

While the Raspberry Pi 3B+ performed adequately for running
TensorFlow Lite models, it is limited in processing power
when executing complex inference tasks. Under low-light
conditions or for objects with overlapping features (e.g., a
shiny e-waste item resembling a can), classification accuracy
slightly dropped. Furthermore, using a USB webcam
introduced latency and resolution limitations compared to
CSI-based Pi cameras.

Additionally, the use of a gear motor and mechanical
rotation posed alignment and torque inconsistencies after
extended use, especially with heavier objects. The system
relies on mechanical calibration, which needs periodic
adjustments to ensure accuracy.

Model Accuracy and Dataset Limitations

The image classifier, while functional, was trained on a
moderate-sized dataset. Although techniques such as
augmentation and fine-tuning were applied, false positives
still occurred, particularly between plastic and metal
categories. Classifying e-waste accurately was also more
challenging due to its wide visual variety and presence of
multiple materials.

Environmental Sensitivity
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The system was tested in indoor and semi-outdoor
environments. It showed reduced reliability in poor lighting
conditions and uncontrolled backgrounds, where shadows
or reflective surfaces affected camera capture and sensor
readings. Moreover, ultrasonic sensors occasionally gave
spurious readings in noisy or high-humidity environments,
requiring multiple data-point averaging.

QR Reward System and User Engagement

The reward system, though functional, was implemented via a
static QR code generation logic. A full-fledged integration
with user identity, transaction tracking, and cloud-based point
systems is still under development. This makes it suitable for
demonstration but not yet ready for production-scale
incentivization.

Network and Cloud Dependence

The system's reliance on Wi-Fi connectivity (via ESP8266)
and cloud-based dashboards introduces dependency on
stable internet infrastructure. In deployment zones with poor
connectivity, real-time bin status updates and GPS tracking
may be delayed or unavailable. Offline fallback mechanisms
have not been implemented in this version.

Cost and Scalability

Although the system is cost-efficient (~X6,300), scaling it for
city-wide deployment may still involve bulk component
procurement, manufacturing precision, and reliable field
support for maintenance. Adding industrial-grade hardware
would also increase the cost significantly.

IV. CONCLUSION AND FUTURE WORK

The development and deployment of Quad-Segretronics mark
a significant advancement in the automation of municipal solid
waste management, especially for smart cities and institution-
level applications. The system integrates Edge Al-based
object classification, loT-powered bin monitoring, GPS-
enabled tracking, and a reverse vending mechanism to
enable real-time, intelligent waste segregation with minimal
human intervention.

By leveraging the power of TensorFlow Lite on the
Raspberry Pi 3B+, the system effectively classifies objects
into four major categories: Plastic, Glass, Metal, and E-
Waste. The integration of a servo-driven gear-based
rotational platform further automates the physical sorting
process. In parallel, the ESP8266 Wi-Fi module, Neo-6M
GPS, and ultrasonic sensors provide a robust communication
and monitoring framework that visualizes bin status, capacity
thresholds, and geolocation via a ThingsBoard IoT
dashboard.

With an overall classification accuracy of 85-90%, system
latency under 2 seconds, and successful implementation of

QR-based rewards, this project proves that low-cost, scalable
waste segregation is both technically viable and
environmentally impactful. The project directly aligns with
the United Nations Sustainable Development Goal 11
(Sustainable Cities and Communities) by promoting data-
driven waste handling and public participation.
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