
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Quad Tree Visualization for Effective Learning

Akash Sutar, Bhavesh Sutar

Department of Computer Engineering from Mumbai University, India

sutaraakash123@gmail.com , bhaveshsutar622@gmail.com

Mr. Sharique Ahmad

Designation - Assistant Professor, Universal College of Engineering, Mumbai University, India

sharique.ahmad@universal.edu.in

Abstract:

we intend to develop a program that provides a

visualization of the quadtree structure and its data model

architecture in modern times numerous digital mapping

applications require the capability to display vast

amounts of precise point data on a map such data can

include meteorological information or demographic

statistics for various towns with the expansion of the

internet of things iot the volume of such data is expected

to increase significantly however handling and searching

through such an immense dataset poses a challenge as it

demands considerable computational time quadtrees are

an efficient data structure used for storing point data in a

two-dimensional space each node in this hierarchical tree

can have up to four children compared to other data

structures quadtrees offer a more effective method for

visualizing and processing large datasets rapidly the goal

of this project is to create an application that enables

interactive visualization of extensive point data this will

be achieved through a combination of grid-based

clustering and hierarchical clustering techniques

alongside quadtree spatial indexing the application will

serve as a simulation to demonstrate how the quadtree

data structure functions in managing and displaying

large-scale data efficiently

Keywords — QuadTree Visualizer, Q-Tree, Data

Structure, Spatial Indexing, Coefficient of Restitution,

Collision Detection, QuadTree Algorithm.

1. Introduction

The QuadTree is a hierarchical spatial data structure used for

efficient space partitioning. Each level of the tree represents

a progressively refined subdivision of the space it

encompasses. Although QuadTrees can take on different

forms, they serve multiple purposes across various domains.

The fundamental principle can be extended to any dimension,

as it recursively divides space to store information while

highlighting crucial or relevant details.

In a QuadTree, the structure begins with pointers to the root

node, which represents the entire possible space. When the

number of points within a node surpasses a predefined

threshold, the node splits into four child nodes. This process

continues recursively as child nodes reach their maximum

capacity, further dividing into smaller sections.

QuadTrees find applications in several areas, including

internet services managing vast numbers of requests, image

compression, geolocation services, efficient node searching

in two-dimensional areas, and collision detection. Collision

detection plays a significant role in numerous video games,

both in 2D and 3D environments. Properly detecting when

two entities collide is essential, as poor collision detection can

result in unintended behaviors. Many games rely on collision

detection algorithms to determine whether objects interact,

but these methods can be computationally expensive and

slow down performance.

This paper focuses on QuadTrees and their ability to optimize

collision detection by excluding object pairs that are too far

apart to interact. We aim to develop a general-purpose,

scalable, and reusable QuadTree library in TypeScript, which

will be integrated into a visualization tool to illustrate its

internal mechanisms.

The goal of this project is to build a web application that

visually represents the QuadTree structure. Users will be able

to explore the functionality of the QuadTree and interact with

the simulation through the web interface. The visualizer will

provide an interactive environment where users can modify

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

QuadTree configurations and environmental settings in real-

time to observe their effects.

2. Literature Survey

A Modern Approach to Electoral Delimitation using the

Quadtree Data Structure - The paper explores electoral

delimitation using the quadtree data structure to address

inefficiencies, gerrymandering, and uneven seat-to-

population ratios in current methods. The proposed approach

automates districting by recursively subdividing

geographical space into four quadrants based on population.

This model efficiently allocates constituencies while

maintaining location-specific information. The algorithm is

evaluated against existing techniques and proves to be

effective in terms of computational complexity and boundary

visualization, offering an optimized solution for political

districting.[1]

Quadtree Generating Networks: Efficient Hierarchical Scene

Parsing with Sparse Convolutions - Quadtree Generating

Networks (QGNs) optimize semantic segmentation by using

quadtrees instead of dense pixel grids, significantly reducing

memory usage. This approach applies computationally

intensive layers only to image regions with class boundaries,

improving efficiency. It also enables flexible inference for

constrained environments like embedded devices.

Experiments on Cityscapes, SUN-RGBD, and ADE20k

datasets show a 3% mIoU gain over similar-memory

networks and a 4× reduction in memory consumption with

minimal accuracy loss.[2]

Using Quadtree Representations in Building Stock

Visualization and Analysis - This article explores the use of a

quadtree representation for managing building data in

Germany, addressing data protection concerns when

aggregating geospatial information. Unlike traditional

administrative zones, the quadtree approach enables flexible

grid sizes for statistical and cartographic analysis. Using

Hamburg and its surrounding areas as a case study, the

method demonstrates improved data visualization and

analysis, making it applicable to other sensitive datasets and

regions. The approach supports European cooperation

standards (INSPIRE) and facilitates future cell-based

analyses. [3]

“An Effective Way to Represent Quadtrees" - A quadtree can

be efficiently represented without pointers by encoding each

black node as a quaternary integer, forming a “linear

quadtree.” This approach reduces storage requirements by at

least 66% compared to traditional quadtrees. Several

algorithms utilizing linear quadtrees are introduced,

including encoding pixels, finding adjacent nodes,

determining node colors, and superposing images. The first

three algorithms run in logarithmic time, while image

superposition operates in linear time relative to the number of

black nodes. Additionally, the dynamic behavior of quadtrees

can be effectively simulated using this method. [4]

3. Proposed system

Fig 3.1

An architectural model is a simplified abstraction of a system,

capturing its essential characteristics. It serves as a structured

representation that includes all the key components of the

system. The process of architectural modeling involves

identifying the system's features and representing them as

models to enhance understanding. These models provide a

visual framework that helps in analyzing and interpreting the

system’s structure and behavior. Figure 1.0 illustrates the

model architecture of the web application. The Quadtree

Visualization System consists of a structured interface that

allows users to observe and interact with a quadtree-based

spatial partitioning system. The system is designed with a

home page that presents the initial visualization and a settings

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

sidebar that provides extensive configuration options for fine-

tuning the simulation.

A. Home Page

When a user accesses the application, the server processes the

request and delivers the home page, which displays the initial

quadtree visualization. By default, the system presents a 4x4

quadtree, showcasing the concept of spatial partitioning,

where objects are divided into hierarchical regions. This setup

enables users to understand how data is organized within the

quadtree structure. Additionally, a settings button is

available, allowing users to access further configuration

options to modify various aspects of the simulation.

B. Settings Sidebar

Upon clicking the settings button, a sidebar panel appears on

the left side of the screen, providing users with multiple

customization options. The sidebar consists of five

configuration sections, each dedicated to specific aspects of

the simulation. These options empower users to manipulate

the quadtree properties, collision settings, simulation

behavior, and visualization preferences effectively.

1. Collision Settings

This section allows users to adjust the collision speed of

objects, directly influencing the dynamics of interactions

within the system. Higher collision speeds cause objects to

interact more rapidly, impacting their movement and

behavior. This setting is essential for controlling the realism

and responsiveness of the simulation.

2. Quadtree Configuration

The quadtree configuration settings enable users to define

critical properties that govern the structure and efficiency of

the quadtree. Users can modify the Node Capacity, which

determines the maximum number of objects a node can

accommodate before it subdivides into smaller sections.

Additionally, the Maximum Tree Depth setting establishes a

limit on the depth of the quadtree, preventing excessive

subdivisions that could degrade performance. These

parameters significantly influence data organization,

computational efficiency, and object grouping within the

system.

3. Simulation Settings

This section provides controls for managing the properties of

objects within the simulation. Users can adjust the Radius,

which defines the size of objects and impacts their visibility

and interaction range. Additionally, the Spawn Count

determines how many objects are generated during each

spawning event, influencing the density of elements within

the quadtree environment. These settings play a crucial role

in balancing performance and visual complexity.

4. Display Body Options

Users have the ability to enable or disable various body-

related features that affect how objects are generated and

managed. The Spawn Bodies option allows users to

dynamically generate new objects within the quadtree,

enhancing the simulation’s variability. The Clear Bodies

function removes all existing objects, providing a reset

mechanism to start a fresh simulation state. Additionally, the

Random Bodies option spawns objects with randomized

attributes, including size, position, and velocity, making each

simulation instance unique and unpredictable.

5. Show FPS and Quads

This section offers visual debugging tools that assist in

performance monitoring and spatial analysis. Enabling the

Show FPS (Frames Per Second) option displays the current

rendering speed, allowing users to assess the efficiency and

responsiveness of the system. The Show Quads option

toggles the visibility of quadtree boundaries, making spatial

divisions within the environment clearly distinguishable.

This feature is particularly useful for understanding how the

quadtree adapts to object distribution and subdivision

thresholds.

Quadtree Algorithm Explanation

A quadtree is a data structure that organizes points in a 2D

space by recursively subdividing the space into four regions.

There are three types of nodes in a quadtree:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

1. Point Node – Represents a single point in the

quadtree and is always a leaf node (a node without

children).

2. Empty Node – Acts as a leaf node when there are

no points in a specific region.

3. Region Node – An internal node that represents a

larger area. A region node always has four child

nodes, which can be either point nodes or empty

nodes.

Insertion in a Quadtree

To insert a point into a quadtree, a recursive function is used:

1. Start at the root node of the quadtree.

2. If the given point is outside the boundary of the

current node, stop the insertion process (since the

point cannot be stored in the quadtree).

3. Identify the correct child node where the point

should be placed.

4. If the child node is empty, replace it with a point

node that stores the new point, and stop the insertion

process.

5. If the child node already contains a point node,

convert it into a region node (since multiple points

need to be stored in this area). Then, insert the

existing point into the new region node and proceed

with inserting the new point.

6. If the child node is already a region node, move to

that node and repeat the process from Step 2.

Searching in a Quadtree

The search operation in a quadtree is a boolean function that

checks whether a specific point exists in the 2D space. The

process follows these steps:

1. Start at the root node of the quadtree.

2. If the target point is outside the boundary of the

current node, stop the search (as the point cannot be

stored in the quadtree).

3. Identify the child node where the point would be

located.

4. If the child node is empty, return FALSE (indicating

that the point is not in the quadtree).

5. If the child node is a point node and matches the

target point, return TRUE. Otherwise, return

FALSE.

6. If the child node is a region node, move to that node

and repeat the process from Step 2.

Collision Handling in Quadtree

In a Quadtree visualization, data points (represented as

moving circles) are constantly shifting, making collisions

inevitable. A collision occurs when two objects come into

contact with each other. In this case, it refers to two moving

points colliding within the simulation.

The Quadtree visualization system is built on a 2D collision

detection system that includes a restitution coefficient. This

coefficient determines whether a collision is elastic (where

objects bounce off each other with minimal energy loss) or

inelastic (where energy is lost upon impact).

Collision detection is a computationally expensive task,

especially when dealing with multiple moving objects. One

efficient way to speed up collision detection is by using

Quadtrees. By organizing objects into a hierarchical structure,

Quadtrees minimize the number of collision checks required,

improving performance significantly.

Coefficient of Restitution

The coefficient of restitution (denoted as e) is a measure of

how much energy is retained after two objects collide. It is

calculated as the ratio of the relative speed after collision

to the relative speed before collision.

This coefficient is unitless and has a value between 0 and 1,

depending on how much kinetic energy is conserved:

• Perfectly Elastic Collision (e = 1) – The objects

bounce off each other without losing any kinetic

energy.

• Perfectly Inelastic Collision (e = 0) – The objects

stick together after colliding, losing all kinetic

energy in the process.

• Real-World Collisions (0 < e < 1) – Most real-

world impacts fall between these two extremes,

meaning some energy is lost, but objects do not

completely stick together.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

The mathematical formula for the coefficient of restitution is:

Coefficient of Restitution (e) = 𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑺𝒑𝒆𝒆𝒅 𝑨𝒇𝒕𝒆𝒓

𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 / 𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑺𝒑𝒆𝒆𝒅 𝑩𝒆𝒇𝒐𝒓𝒆 𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏

4. Implementation

A. Experimental Setup

-To set up the project environment, we first need to install

Node.js since our web application is built using Next.js.

-The application runs locally on http://localhost:3000,

allowing us to test and interact with the Quadtree

visualization in a development environment.

-To run the project on our local machine, we must install all

the necessary dependencies. This is done using the npm

install command, which reads the package.json file and

installs all required packages automatically.

-Once the installation is complete, the command prompt will

display the list of installed dependencies, as shown in Figure

4.1.

Fig 4.1 Experimental Setup

-After installing all the required dependencies, we start the

development server by running the command: npm run -dev

-This command launches the Next.js development server,

allowing us to test and modify the application in real time.

-Once executed, the server compiles the code and starts

running. The application becomes accessible at

http://localhost:3000, where we can interact with the

Quadtree visualization.

-Figure 4.2 illustrates the process of compiling and running

the server, confirming that it is successfully up and running.

Fig 4.2 Compile and Run Server

5. Results:

A. Homepage

Fig 5.1 Homepage

The homepage of the web application provides a visual

representation of a Quadtree, displaying data points and the

way the Quadtree dynamically subdivides as objects are

added. Figure 5.1 showcases this visualization, allowing

users to observe how the Quadtree partitions space.

B. Clearing the Quadtree

Fig 5.2 Clearing The QuadTree

http://www.ijsrem.com/
http://localhost:3000/
http://localhost:3000/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

Users have the option to clear the Quadtree, removing all

existing data points while keeping the structure intact. When the

Quadtree is empty, only the grid structure remains visible, as

shown in Figure 5.2.

C. Spawning Bodies

Fig 5.3 Spawning Bodies

The spawn bodies feature allows users to generate new objects

(circles) inside the Quadtree. As objects are added, the Quadtree

dynamically adjusts, subdividing regions as necessary. Figure 5.3

demonstrates how the Quadtree adapts to the placement of

spawned objects.

D. Generating Random Bodies

Fig 5.4 Generating Random Bodies

The application also supports randomly generating bodies

within the Quadtree. This feature creates circles at random

positions in the environment, leading to varied and unpredictable

spatial divisions. Figures 5.4 illustrate how objects are randomly

distributed within the Quadtree.

E. Combining Random and Spawn Bodies

Fig 5.5 Combining Random and Spawn Bodies

Users can combine both random and manually spawned

bodies to observe how the Quadtree handles different types

of object placements. This creates a more complex

environment with varied spatial distribution and

subdivisions. Figures 5.5 visualize this combined scenario.

F. Control Panel

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

Fig 5.6 Control Panel

-The control panel allows users to fine-tune the simulation

settings. It enables adjustments such as:

• Selecting different object types

• Modifying the coefficient of restitution (which affects

collision behavior)

• Monitoring frames per second (FPS) for performance

analysis

-Figure 5.6 illustrates how the control panel provides flexibility

in configuring different simulation parameters within the

Quadtree.

6. Future Scope

Quadtrees are a specialized tree data structure where each

internal node is divided into exactly four child nodes. They are

commonly used to partition two-dimensional spaces, breaking

them down into four smaller regions. These regions can take

various shapes, including squares, rectangles, or other forms.

Quadtrees have been widely applied in spatial indexing, such as

in the Maps SDK for iOS Utility Library, where they help

organize geographical data efficiently. They also play a

significant role in image compression algorithms and have been

used in classic 8-bit games, such as Super Mario, for efficient

rendering and collision detection.

Looking ahead, Quadtrees could be highly beneficial for memory

management in large hierarchical databases. They provide an

efficient way to store, organize, and search data, making

querying large datasets much faster.

One potential enhancement to this project is to allow users to

generate and visualize their own Quadtree structures using

custom datasets. By providing their own dataset as input, users

could observe how the Quadtree adapts to different data

distributions.

7. Conclusion

In this project, we explored Quadtrees, a tree-based data

structure used to efficiently represent and manage two-

dimensional spaces. Through our research and

implementation, we gained insights into why and how

Quadtrees are applied across various domains, from

handling large-scale internet services that process millions

of requests per minute to their essential role in geolocation-

based applications like Maps.

Our work demonstrated that Quadtrees are a highly efficient yet

underutilized data structure with significant potential for broader

adoption in both industry and community-driven projects.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 8

Throughout the development process, we gained hands-on

experience in building scalable and reusable codebases,

deepened our understanding of API design and interaction, and

enhanced our ability to work collaboratively on complex, time-

sensitive tasks. This project not only strengthened our technical

skills but also provided valuable experience in structuring and

optimizing spatial data processing systems.

References

[1] Sahil Kale, Gautam Khaire, Jay Patankar, and Pujashree

Vidap (February 2024). "A Modern Approach to Electoral

Delimitation using the Quadtree Data Structure" by arXiv for

Quadtree model for automated electoral districting and boundary

visualization.

[2] Kashyap Chitta, Jose M. Alvarez, and Martial Hebert

(September 2019). "Quadtree Generating Networks: Efficient

Hierarchical Scene Parsing with Sparse Convolutions" by arXiv

Quadtree networks for memory-efficient scene parsing.

[3] Martin Behnisch, Gotthard Meinel, Sebastian Tramsen, and

Markus Diesselmann (June 2013). "Using Quadtree

Representations in Building Stock Visualization and Analysis"

by Erdkunde Journal of Human and Physical Geography for

Quadtree use in building data visualization and analysis.

[4] Hanan Samet (August 1989). "An Effective Way to Represent

Quadtrees" by The ACM Digital Library for Efficient quadtree

representation for image compression and spatial indexing.

http://www.ijsrem.com/

