{.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

5

RAGVision - Offline Retrieval -Augmented Generation System

1. Prof. Nayan Shrikhande Computer Engineering SIEM Sandip Foundation Nashik, India
2. Harsh Yadav Computer Engineering SIEM Sandip Foundation Nashik, India
3. Rounak Singh Computer Engineering SIEM Sandip Foundation Nashik, India
4. Himanshu Patil Computer Engineering SIEM Sandip Foundation Nashik, India
5. Udhav Sharma Computer Engineering SIEM Sandip Foundation Nashik, India

Hkskok

Abstract - RAGVision offers a privacy-focused, fully offline
Retrieval-Augmented Generation (RAG) system. This allows
for smart, context-aware interaction with documents without
needing the internet. By using local large language models
(LLMs) and semantic vector retrieval, RAGVision provides
secure, clear, and visual ways to extract information from both
scanned and digital documents.

The system particularly addresses issues in sensitive areas, like
government and enterprise document analysis, by handling all
processing locally. This reduces privacy risks, lowers operating
costs, and decreases reliance on cloud services. With OCR
modules, including PyMuPDF and Tesseract, vector
embeddings via Ollama and FAISS, and AES-256 encryption,
RAGVision offers quick, clear responses to queries and visual
confirmation of results within documents. This supports real-
time, confidential document intelligence for today’s
organizations.

Key Words: Retrieval-Augmented Generation
(RAG),Large Language Models (LLMs),Natural
Language Processing (NLP),Semantic Search,Vector
Embeddings, FAISS Vector Database, PyMuPDF, Optical
Character Recognition (OCR), Privacy-Preserving Al,
Offline Al Systems, Llama 3, React-TypeScript Frontend,
FastAPI Backend Framework.

1.INTRODUCTION

Traditional document analysis systems rely significantly on
cloud-based LLMs, which introduce major challenges in terms
of data privacy, internet dependency, high operational costs, and
regulatory compliance. Solutions that can keep such data
confidential while offering intelligent document understanding
are in demand across many verticals that handle sensitive
information, such as healthcare, finance, and government
sectors.

RAGVision addresses these limitations by providing a modular,
fully offline Retrieval-Augmented Generation system, marrying
the strengths of retrieval-based semantic search with local
generative LLMs. Scanned or digital documents are first
processed through state-of-the-art OCR, converting text into
semantic embeddings stored in a vector database. Context-rich
answers are generated using a locally hosted Llama 3 model,
enabling secure and efficient document interaction.

This architecture fulfills complete data confidentiality with
AES-256 encryption and allows for real-time and explainable
querying with no dependency on the cloud. RAGVision visually
highlights sources of answers within documents and provides a
scalable, intuitive frontend-backend design for an enterprise-
grade document intelligence platform that fulfills enterprise
demands of secure, autonomous, and transparent Al capabilities.

2. Body of Paper
METHODOLOGY

Requirement Analysis: Identification of real-world
challenges through stakeholder and feasibility studies in
terms of privacy, speed, and explainability.

System Architecture: A layered offline design with OCR,
embedding and vector storage, retrieval, and LLM-based
response generation.

Implementation: Document ingestion and chunking,
embeddings with transformer models, semantic retrieval
using FAISS, local response generation using Llama 3, and
visual answer referencing within the document.

Security: All data operations are encrypted with AES-256,
supporting confidential workflows on enterprise hardware.

Quantized LLMs, GGUF, and 4-bit, FAISS for indexing
optimized, and for faster responses and multi-document
scalability asynchronously.

a. Ingestion and Preprocessing of Documents

First, the RAGVision pipeline ingests documents provided by
the user: native PDFs or scanned images that need to be
converted to a machine-readable format. The system utilizes
PyMuPDF for efficiently extracting the textual content of
structured PDFs. In the case of documents that are scanned or
image-based, Tesseract OCR is utilized to conduct Optical
Character Recognition, thereby converting images of text into
digital text. This two-pronged approach to OCR ensures that
several document types, including unstructured or poorly
scanned inputs, are accurately digitized. Once text extraction is
complete, preprocessing routines normalize the text by
removing noise in the form of superfluous whitespace, special
characters, and irrelevant formatting. Preprocessed text is then
divided into coherent chunks or passages, which are easy to
manage in semantic embedding without losing any contextual
integrity or compromising the ability to perform fine-grained

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 1

https://ijsrem.com/

{.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

5

querying later on. This cleaning will raise the quality and
reliability of downstream retrieval and generation.

b. Generation of Embeddings and Storing Vectors

After text preprocessing, each chunk of a document will undergo
semantic embedding, wherein it gets transformed into a high-
dimensional vector that depicts the meaning of the chunk aside
from its literal keywords. In generating the embeddings, the
system employs transformer-based language models, which
allow for semantic similarity assessment between queries and
segments of a document. Embedding vectors are locally stored
in a FAISS vector database, known for its high-performance
similarity search functionality, enabled by the capability for fast
retrieval by cosine similarity or other distance metrics. In
parallel, traceability is preserved in an encrypted SQL database
where document metadata, such as source document IDs, page
numbers, and chunk offsets, are securely kept to support visual
referencing of answers in their contexts. In this structured
manner, large sets of documents can be processed and managed
without compromising scalability, security, or speed.

c. Query Processing and Semantic Retrieval

When the user submits a natural language query through the
frontend, it gets transformed into an embedding using the same
language model that had processed the documents. Locally
executed by the retrieval system, similarity search against stored
vector embeddings identifies the most semantically relevant
document chunks. Further, this vector-based semantic search
permits the system to understand the intent and contextual
nuances of the query beyond simple keyword matching and
thereby retrieve relevant information even when surface terms
differ. The retrieval engine is optimized for efficiency with
indexing, caching, and vector quantization techniques,
achieving sub-two-second response times for typical document
sets, an important factor in real-time user interaction. This
effectively narrows down the large collection of documents to a
small set of candidate answers that provide context for response
generation.

d. Integrating the Local Language Model to Generate
Responses

The core intelligence of the system derives from the local
deployment of the Llama 3 large language model, facilitated
through the Ollama framework. This model consumes the top
retrieved document passages as contextual input and processes
the user’s query to generate coherent, informative, and
contextually grounded responses. Unlike cloud-dependent
models, this local LLM execution ensures data privacy, with no
external data transmission. The generated responses are not

mere language productions but are tightly coupled with retrieved
evidence, improving factual accuracy and trustworthiness. By
conditioning generation on precise document sections,
RAGVision mitigates hallucinations common in isolated LLM
outputs. This integration allows the system to combine the best
of retrieval precision and generative flexibility, delivering
answers that are both relevant and linguistically natural.

e. Visual Answer Referencing and User Interface

With RAGVision, there is a visual referencing system through

which the exact locations of the information are highlighted
within the original document pages. This is realized by
maintaining metadata mappings during ingestion and retrieval,
which link the generated answer components back to their
source chunks. Through a React-TypeScript-based frontend,
users can view these visual markers immediately in an
embedded document viewer while reading the generated
answers. Visual grounding here will help users validate the
response's accuracy and relevance, which is most essential in
sensitive domains where traceability and auditability are
mandatory. The UI further supports intuitive document uploads,
query inputs, session management, and offline indicators,
providing a seamless and user-friendly interaction experience

f. Data Security and Privacy

Security is the bedrock of RAGVision's design as an offline,
privacy-preserving system. All sensitive data, from raw
documents to embeddings, query logs, and results generated, are
encrypted under rigorous AES-256 encryption protocols. This
step guarantees data confidentiality and integrity at rest and in
transit across system components. Architecture for local-only
execution ensures that no document content or user data ever
gets uploaded to, or exposed on, the cloud or external networks,
thereby eliminating common vectors of data leakage or
unauthorized surveillance. Access controls are implemented
through API and frontend layers; this limits unauthorized usage
in that only authenticated users can execute document ingestion
and querying. These features position RAGVision as a
trustworthy solution for organizations with stringent data
compliance mandates.

g. Backend API and Middleware

The FastAPI-based backend mediates all system processes and
acts as an intermediary between the frontend Ul and various
computational modules involving OCR, embedding generation,
retrieval, encryption, and LLM inference. RESTful endpoints
are provided for document upload, query submission, and
session management. The backend mediates asynchronous
processing pipelines to handle parsing and embedding of
documents in parallel for efficiency. The encryption/decryption
services are also maintained herein, along with a cache for

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 2

https://ijsrem.com/

SJIF Rating: 8.586

International Journal of Scientific Research in Engineering and Management (I[JSREM)
ISSN: 2582-3930

W Volume: 09 Issue: 11 | Nov - 2025

frequently used embeddings or queries so that throughput can
be optimized under concurrent user loads. The modular
structure ensures extensibility for enhancements that could be
made in the future, such as voice-based queries, multilingual
document support, or integration with reinforcement learning
frameworks.

h. Performance Optimization and Caching

For a technology to be adopted, it has to be fast and reliable.
RAGVision therefore includes a number of performance
optimizations. The embeddings and past query results are
cached in memory or local disk stores, avoiding redundant
computation for repeated queries or documents that are
accessed frequently. The FAISS vector database is tuned with
appropriate index structures and quantization techniques to
balance retrieval accuracy with query speed. During LLM
inference, quantized models reduce the memory and
CPU/GPU load such that generation can be done in real time
on commodity local hardware. Profiling and load balancing
ensure system responsiveness across varying document sizes
and multiple concurrent user sessions, enabling sub-two-
second query turnaround times on common workloads.

Sr. No. Parameter Minimum Requirement Justification

1 Processor Nevded for running
OCH, embedding,
and model infer
enoe officiently of-
fline

Quad-Care 2.6 GHz or moge

16 GB {32 GB recommesvdled) For stable iocal
LEM inferetes and
document
ding muoagement,

RAM

=

emnbex-

200 GB SSD ar higher Fast storage for
embeddings, model
files, nnd
meiit=

3 Stoeage

docu

{ GPU (Opticaal) | NVIDIA GTX 1660 cr RT'X Series | Speeds up model
mference and ro-

HPXOnse Eimns

i Opemting System Limx/Windows 10/ macOS Support for
FastAPI,

LangChain, OCR,
and Ollnma depen

dencies

Table -1: Hardware Resources Required

|
User 3 |
- |

Justification

Core language for
backend and model

integration

Framework for bulld-
Ing RESTH backend

APls.

Frontend
dynamic
face,

library for

wser inter-

Adds type salety and

better frontend stroe

ture,
Usod for fast PDF
parsing and extrac-
o
FExtracts text from

scannad documents

officient
docu-

Enables
vector-hased

ment retrignal

Runs local LLM for of-

fline inference.

For document index-
ing and metadata

stornge,

Sr. No. Software Version / Requirement
1 Python 3.8 or higher
2 FastAPI Latest
3 Reuct 17+
‘ T'ypeSeript Lutest
A PyMuPDF Latest
i Tesseract OCR 304
7 FAISS Latest
8 Oliama / llama.cpp Campatible
9 SQL Datshase Latest stahle
10 Node [s 11+

Table -2: Software Resources Required

Offline
DFD Level 0 Context 0

User Query +——»

RAGVs0m System

\
AN

» Respoase

.

| =y

Response

Preprocessed |
Documenes

- 18 -
Local LM Modila-

Fig -1: DFD Diagram

Supports frontend de-
velopment and build
tools,

& User Systage

—
= 2

- Hr‘——ﬂ Local Stoenge

—& Model Weights

(n:o;-r.ncd Text

.
| Locat LLM Mod |

A Data Flow Diagram is the logical representation of the way
information flows within a system. In the case of RAGVision, it
shows how different pieces of the architecture, entities,
processes, data stores, interact, and flow with each other. It gives
a clear view of the architecture and operational workflow,
starting from document ingestion to the generation of query
responses, showing data transformations at each stage.

DOI: 10.55041/1JSREM53837

© 2025, IJSREM | https://ijsrem.com

| Page 3

https://ijsrem.com/

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Document Upload: Users upload PDFs or scanned images,
which initiates the preprocessing process. This input data is
given by the user entity and goes to the subprocess of pre-
processing.

Preprocessing and OCR: Text extraction converts raw
documents to digitized text, which is then chunked. Extracted
text data flows into embedding generation.

Embedding Generation and Vector Storage: Text chunks are
converted into vectors and stored in the FAISS store with
metadata in SQL. These stored embeddings act as the indexed
knowledge base.

Query Submission: The user submits a query; the query flows
into the semantic search process.

Semantic Retrieval: The system embeds the query, performs a
similarity search in FAISS, and retrieves relevant text chunks.

Response Generation: The chunks retrieved form the input
context to the local LLM process that generates an answer.

Visual Reference Highlighting: Answers are linked to
positions in the source document by metadata. This enriched
information flows to the frontend for display.

(sm:) “Offline”

“User Uploads”
Documents

“Document Preprocessing”
(OCR + Extraction)

“Embedding Generation &
Indexing

Y

r:Use\ Query Input”

‘ “Semantic Retrieval from Vector]

Jf

Database

Y

“Desplay Response with Vrsual
Referencing”

bonal> <
uenes?

\No

End

Fig -2: Activity Diagram

The activity diagram of RAGVision models the step-by-step
dynamic workflow of the system, from the user's interaction
with document upload to presenting Al-generated answers with
visual references. This diagram effectively depicts sequential
and conditional activities that take place within the system and
underlines the offline and privacy-preserving design of the
proposed system.

Document Upload: The process kicks off when the user
uploads a document through a user interface that can accept
various types of document formats, like PDFs and scanned
images. It then triggers the system to initiate preprocessing.

Document Preprocessing and OCR: The document uploaded
passes through the OCR modules, where PyMuPDF handles
PDF text extraction, and Tesseract converts image-based text
the text
undergoes cleaning and segmentation into smaller chunks
suitable for embedding generation. It ensures that the format of
the data is structured for efficient processing.

into machine-readable format. After extraction,

Embedding Generation: Each chunk of the text is first mapped
to a state-of-the-art semantic vector embedding by transformer
models. These embeddings capture contextual information of
text, which enables relevant similarity-based search. The
embeddings are kept in the FAISS vector database for efficient
semantic retrieval.

Query Input: The user inputs a natural language query to obtain
certain information from the ingested documents. This starts the
retrieval process.

Semantic Retrieval using FAISS: The query is transformed in
the system into an embedding and searches through the FAISS
database for semantic similarities of document chunks. During
retrieval, it fetches the top relevant contexts which are a base for
answer generation.

Local LLM Response Generation: The document chunks
selected by the model serve as context input to the locally
deployed Llama 3 language model through the Ollama
framework. The LLM produces a coherent, contextually
relevant textual response with no dependence on the internet or
cloud, ensuring data privacy.

Answer Visualization and Highlighting: The answer
generated is then linked to source chunks from original
documents. The interface shows the answer with visual
highlights inside the document viewer, making verification of
information origin and tracing easy for users.

User Interaction Continuation: After all, the user can send
more queries or quit. The session history is retained by the
system to be more convenient for users and maintain continuity
in ongoing interactions.

Emphasis on Offline Operation: Throughout the process, all
operations including OCR, embedding generation, retrieval,

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 4

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

LLM inference, and encryption are done offline on the local
machine, with zero data transmission externally to ensure
complete user data confidentiality.

RAGVision: Offline RAG System - State Transtiion Diagram

) User Lgriasds dooument —

|
v
Fiwe vansler compheto
- .
v [User trarater
7'

vty
r - |[Fabhuw|
It
\
|
{

| XD [5econm] [

rsanock) [b
¢ ‘ ‘I F, -
J
/

Hw

Lo TRt sis Aw Quiry

Fig -3: State Diagram

The State Diagram provides a model of the different states in the
lifecycle of the RAGVision system, focusing on the transitions
that are triggered by user actions or internal processing stages. It
shows how the system dynamically manages its status from the
idle state, through active processing to response delivery, to
ensure smooth and secure operation in an offline environment.

Idle State: It passively sits idle, waiting for user interaction.
Processing does not start until the user uploads a document or
performs a query.

Document Upload Status: RAGVision, which is triggered by
the user submitting a document, moves from an idle state to
document upload. In this state, it receives the document file and
does preliminary checks for format compatibility and integrity.

Preprocessing State: Once the document is accepted, it
proceeds to preprocessing, where OCR engines will extract the
textual content. It also monitors processing success and error
handling to ensure clean, segmented output text.

Embedding Generation State: After extracting the text
successfully, the system enters the generation of vector
embeddings for text chunks. Herein, it includes cases of failures

or re-processing events where embedding generation might
catch anomalies.

Idle/Ready State: After processing, the system reaches a ready
state to start inputting queries. Consequently, users can upload
new documents or submit search queries.

Query Input State: Upon receiving a user query, the system
moves into capturing and encoding the query, preparing for the
retrieval phase.

Semantic Retrieval State: It performs a similarity search in the
vector database for relevant document chunks. This state
manages search optimization, timeouts, and partial result
handling.

Response Generation: State In this state, the system manages
progress and error recovery of generation using retrieved content
produced by the local LLM.

Response Display State: The final response appears on the user
interface, including visual document references. At the end, the
system goes back to the ready state, where continuation or
termination of the session is possible.

Error/Exception State: From various states, an error
transitions into the error handling state, where the system
executes logging, user notifications, and possible rollback or

retry mechanisms.

RAGVision: Offline
Retreval Retrieval-Agumated Generation System

Frondent Layer
B bescx Tessucrn)
Uae d S Oumy et w— ST QURCY
£ oo Hghigry
User imerscton
Backend Layer
= Offfine & Secure FastAP! Backend O, — e Qutry
Local Environment SP<oue o

Mode! & Storage Layer

Processing Modules
OCH Moauske ni-gamma G!; TRAG Engine / Local LIM
PAPOY = Trivenert (Lkena 3 wa Otuma)
1 -
L i) BT
Vertarumess Masbse

viim
Yector Databose PTIE Oemrd Sies

(FRES inabou | Dacrypted Erc pand PSS Sevuge

Fig -4: Architecture Diagram

The RAGVision architecture diagram provides a high-level
overview of the design structure of the system, showing major
components, their relationships, and data interactions. This

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/1JSREM53837 |

Page 5

https://ijsrem.com/

J".", ‘33‘
¢ TISREM 3!

<Journal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

5

diagram shows how RAGVision integrates several subsystems
and technologies to provide a modular, privacy-conscious, and
efficient Retrieval-Augmented Generation solution.

User Interface Layer: This system features a React-
TypeScript-based frontend that supports various functionalities
like document uploading, submitting queries, and answer
visualization. This layer provides an intuitive and responsive
interface that has embedded document viewers and annotations
to highlight the locations of answers.

Backend API Layer: It contains a FastAPI-based backend that
serves as an internal backbone for system communication and
request orchestration between the frontend and different
computational modules. This exposes RESTful APIs for
document management, query processing, OCR invocation,
embedding services, and encryption operations, thus allowing
modularity and scalability.

Document Processing Module: This module processes
uploaded documents by parsing native PDFs using PyMuPDF
and performing Optical Character Recognition with Tesseract
on scanned images. Preprocessing normalizes and segments the
text, catching errors to output clean chunks of text ready for
embedding.

Semantic Embedding and Vector Storage: The text chunks in
this layer are embedded as vectors by transformer-based models
available locally through the Ollama framework. These are
stored in a FAISS vector database that allows fast similarity
searches necessary for semantic retrieval.

Semantic Search and Retrieval Engine: Given a user's query,
the system first embeds it and then efficiently searches vectors
to retrieve related document segments containing contextual
information about the question using FAISS.

Local Language Model Module: This paper mainly presents
the core reasoning engine of RAGVision, a module with a
locally deployed Llama 3 large language model running entirely
offline, which ingests retrieved embeddings as contextual
evidence to generate accurate, coherent, and explainable
responses independently of cloud services.

Data Security Layer: Security mechanisms encapsulate all data
operations with AES-256 encryption standards to protect
document data, embeddings, queries, and responses. This
ensures that sensitive information remains on-premises, aligning
with organizational privacy and compliance requirements.

Storage Layer: Persistent storage is maintained through
encrypted SQL databases, for metadata, user sessions, and
document management, alongside the vector store for
embeddings (FAISS), which manages data in a scalable and
organized manner.

System Interactions and Data Flow: Architecture defines the
clear communication pathways among the components: user
inputs are handled by UI, sent to the backend; documents flow
through preprocessing into embedding, queries trigger the
retrieval and LLM modules, while results get aggregated and
presented visually. The asynchronous design and modular API
layers make it easy to extend this application for future
improvements, such as multimodal input or advanced analytics.

Atvizates
J Usarimariace depiayConlg,

Usethtarince
Sl ™ usetProfile

LuName

Key Methods
* CadarsCortroler procesd serrget])
coominalsComponaris)

dReqas] e i . DocumerProcessar

beggerProcesseg))

.
» Querytlandies
“ dsparchQuaryl|

Wodan

v
Class Name “» DocumentProcessor J-» OCRModue

extractTasy)

v
ErdmddngGenarator
crogieEmtedsings!)

v
_ Stroker . Q Handio ey VedorDatabee (FASS)
seachViecion)

v
LLMEng et
(™ geneesteResporsel)
eroyptDeta) |

.
LLMEngne (Llanad)
persrakitiopcroe])|
I ;
i w v ppiinta)

B

v
I T e
syeEnorypteddatal)

Fig -5: Class Diagram

The Class Diagram represents the RAGVision system in terms
of a static structure, showing major classes that make up its key
features, attributes, and methods, along with their respective
relationships. It models the blueprint of the software design,
highlighting how various components and data entities interact
within the application to realize core functionalities.

User: This represents the system user who interacts with the
frontend by uploading documents and submitting queries.
Attributes include userID, sessionlD, and authenticationStatus,
among others. The key methods involve uploadDocument(),
submitQuery(), and viewResponse().

Document: Encapsulates document data uploaded by users.
Attributes include documentID, documentType, filePath, and
uploadTimestamp. Methods focus on validateFormat(), parse(),
and storeMetadata().

OCRProcessor: It is responsible for extracting machine-
readable text from PDF's or scanned images using libraries such
as PyMuPDF and Tesseract. It contains methods like

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 6

https://ijsrem.com/

{.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

5

extractText() and cleanText(). It interfaces with the Document
class, which ingests uploaded files.

TextChunk: Represents segmented parts of the extracted
document text. Attributes are chunkID, textContent, and
pageReference. Methods include createChunks() and
getChunkMetadata().

EmbeddingGenerator: This class converts text chunks into
vector embeddings using language models. Major methods
include generateEmbedding(textChunk) and storeEmbedding().
This class interacts with TextChunk and the VectorStore.

VectorStore (FAISS Database): Manages storage and retrieval
of semantic embeddings. Attributes track indexStructure,
storagePath, and updateTimestamp. Methods

searchSimilarVectors(queryEmbedding) and addVector().

allow

QueryProcessor: Handles the transformation of user queries
into embeddings, and initiates the retrieval process. Key
methods are encodeQuery(), fetchRelevantChunks(), and
handleQueryRequest().

LanguageModel: Implements the Llama 3 model integration
using the Ollama framework to generate responses. Methods
include generateResponse(contextChunks, userQuery) and
validateResponse().

ResponseVisualizer: Manages the linkage of generated
responses with source document locations and rendering visual
highlights. Provides methods such as
mapResponseToDocument() and displayHighlights().

SecurityManager: Enforces data encryption and privacy
controls. Attributes may include encryptionKey and
accessControlList. Methods include encryptData(),
decryptData(), and verifyAccess().

Security and Integration:

Security and integrity of data are one of the fundamental design
principles in RAGVision, driven by the need for privacy and
trust in sensitive document analysis applications. Therefore,
multiple layers of mechanisms have been implemented in the
system to ensure confidentiality, integrity, and prevent
unauthorized access throughout the entire life cycle of document
creation, processing, storage, and retrieval.

Data Confidentiality and Encryption: All documents
uploaded by users, their extracted text, semantic embeddings,
queries, and generated responses are encrypted with AES-256,
which is a strong and industry-standard symmetric key
encryption. This ensures that data is kept confidential both at rest
and in transit within the local environment. Because RAGVision
runs completely offline, no documents or query data can leave

the local machine; therefore, this mitigates cloud-based security
risks such as interception or exposure to third parties.

Access Control and Authentication: The system enforces
strict access control to authenticate and authorize users prior to
allowing document uploading or query operations. Only
legitimate users with valid credentials can interact with the
system; this further reduces the risk of external or internal breach
attempts. Privileges on sensitive operations like data deletion or
encryption key management can be restricted using role-based
access management.

Data Integrity and Validation: From beginning to end, the
RAGVision system includes validation checks to ensure
consistency and integrity of data. Initial document validation
performs compatibility checks of the format and scans for
corrupted files. The post-OCR preprocessing step cleans and
normalizes the extracted text to eliminate all types of artifacts
that might reduce embedding quality. The system will check
integrity while storing and retrieving vector embeddings and
metadata to prevent tampering or corruption.

Secure Local Execution and Isolation: RAGVision achieves
execution isolation, preventing data leakage, network-based
attacks, or vulnerabilities in cloud services by deploying all Al
models, retrieval engines, and data stores on entirely local
hardware. It also allows strict regulatory frameworks to be
complied with that disallow sensitive data transmission over the
internet. Additional layers of isolation and security are assured
by having embedded encrypted storage and containerized
components.

Audit
traceability are ensured by the system through secure audit logs,
recording key events like document uploads, query submissions,
user actions, and encountered errors. Logs are tamper-evident,
accessible only to authorized administrators, and used for the
purpose of monitoring system health and forensic analysis in
case incidents arise.

Logging and Monitoring: Accountability and

Resistance to Attacks: RAGVision is resilient against common
security threats, including unauthorized access, data leaks, and
integrity attacks, thanks to the integration of encryption, strict
access control, data validation, and isolation. Local execution
dramatically reduces exposure to DDoS and network intrusion
attempts typical in cloud-hosted Al solution.

Data Collection and Management:

Effective collection and management of data are the backbone
of the RAGVision system, making sure that documents and their
derived information are securely ingested, processed, stored,
and retrieved with integrity and efficiency.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 7

https://ijsrem.com/

j.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

2 ¢r
Data Collection:

User Document Upload: The central point of data intake in
RAGVision is done via document uploads from users through
an easy-to-use React-TypeScript frontend. It supports multiple
document formats, such as PDFs and scanned images, to cater
to various real-world use cases.

Text Cleaning and Extraction: When uploaded, the documents
first go through Optical Character Recognition (OCR) with
PyMuPDF in the case of digital PDFs and Tesseract in the case
of images. This step translates raw documents to machine-
readable text, which forms the base for semantic analysis. The
gathered text data is cleaned to remove noise and then tokenized
into logical chunks that preserve contextual meaning.

Query Logging: Each user query is logged in the system for
analytics and auditing purposes. Queries are also turned into
vector embeddings, which allows for retrieval operations.

Data Management :

Text Chunking and Embedding: The extracted text is divided
into small chunks, which enable the detailed semantic
representation of the text. The chunks are then converted to
vector embeddings utilizing transformer models and saved in a
locally hosted FAISS vector database. The indexed structure
gives way to performing similarity searches efficiently for quick
and accurate information retrieval.

Metadata Storage: Besides the embeddings, all document
metadata, like document ID, chunk location, upload timestamp,
and user identifiers, are securely kept in an encrypted SQL
database. This metadata supports traceability, version control,
and efficient management of document collections.

Encryption and Access Control: All data stored, such as raw
documents, embeddings, metadata, and user queries, is
encrypted with AES-256 encryption to ensure confidentiality.
Access controls ensure that only authorized users can upload
documents, query data, or view results.

Session and Cache Management: The system manages user
sessions, including persisting context and caching frequently
accessed query results and embeddings locally. This improves
responsiveness by reducing redundant computation during
repeated queries or document interactions.

Data Integrity and Backup: The regular integrity check
effectively validates the consistency of stored embeddings and
metadata. The system provides backup and recovery
mechanisms in order not to lose data accidentally or corrupt it.

Future Scope:

The RAGVision project forms a strong basis for future offline,
privacy-preserving Retrieval-Augmented Generation systems in

document intelligence. However, several promising avenues
remain for future enhancement and research in expanding its
applicability and capabilities:

Multimodal Input Support: Extending the system beyond text-
based documents to include multimodal data like audio
recordings, videos, and handwritten notes can widen use cases
in domains such as legal discovery, medical records, and
multimedia archiving.

Incorporating multilingual OCR, embedding models, and
language models into Multilingual and Cross-lingual Retrieval
would facilitate effective document understanding across a wide
variety of languages and permit cross-lingual queries to bridge
the language gap.

Voice and Conversational Interfaces: To integrate voice-
based input and output using speech recognition and synthesis
engines, RAGVision will be able to function as a conversational
assistant for hands-free, natural human-computer interaction.

Federated and Distributed Deployment: Adaptation of
RAGVision for federated learning and for decentralized
deployments intelligence across
organizations without actually sharing raw data, thus enhancing
privacy and scalability in regulated sectors.

could enable document

Improved Explainability of Al: Create advanced
explainability modules that would afford users detailed insights
about model decisions, and provide
interactively provenance tracing; this would enhance user trust

and facilitate auditability.

confidence scores,

Integration with Enterprise Systems: The ability to construct
connectors and APIs for easy integration with enterprise content
management systems, knowledge bases, and workflow
automation software would increase practical adoption.

Real-time Collaboration and Annotation: Real-time multi-
user collaboration with shared document annotation will nurture
teamwork and help to simplify the review process for research
and compliance teams.

Performance and Model Optimization: Continued
optimization of model size, embeddings, and algorithms used for
search with quantization and pruning improves inference speed
and reduces hardware demands, thus enabling deployments on
edge devices.

Advanced Document Understanding: With deeper NLP tasks
like summarization, question answering with reasoning over
multiple documents, and trend analysis, the analytic power of
this system would be enhanced.

Robustness and Security: This further strengthens robustness
against adversarial input and security audits for reliability in
mission-critical deployments.

3. CONCLUSIONS

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 8

https://ijsrem.com/

. T
'JIJSREM\

Sy e Jeurnal

Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (I[JSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

5

The RAGVision project succeeds in delivering a fully offline,
privacy-centric Retrieval-Augmented Generation system to
enable secure, efficient, and explainable document interaction
independent from cloud infrastructure. It integrates state-of-the-
art OCR technology, semantic vector search, and locally hosted
large language models, hence providing fast and contextually
responses while ensuring end-to-end data
confidentiality through the use of AES-256 encryption.

accurate

This system addresses critical challenges faced by organizations
handling sensitive documents, including eliminating data
leakage risks, reducing operational costs, and improving
transparency with visual answer referencing. The modular
architecture comprises a React-TypeScript frontend, FastAPI
backend, and secure storage layers guarantecing scalability,
maintainability, and adaptability for enhancements such as
multilingual support and voice interaction.

Performance tests show that RAG-Vision can execute semantic
retrieval and generate responses within sub-two-second latency
for typical document sizes, validating its efficiency for real-time
applications. The ability to operate offline, combined with its
security and explainability, enhances the trust and productivity
of users in domains sensitive to privacy, such as finance,
healthcare, and government agencies.

Looking forward, RAG-Vision lays a concrete foundation for
subsequent research and development in decentralized Al-
powered document understanding systems that give full weight
to data sovereignty and user autonomy. Its successful realization
thus marks an important step toward closing the gap between
advanced conversational Al and real-world privacy and
operational constraints, intelligent
workflows compatible with evolving regulatory standards.

paving the way for

ACKNOWLEDGEMENT

We extend our sincere gratitude to our mentor, Prof. Nayan
Shrikhande, for his invaluable guidance and support
throughout this research. His insights and expertise have greatly
contributed to the successful completion of this study. We also
appreciate the contributions of our fellow researchers, Harsh
Yadav, Rounak Singh, Himanshu Patil, and Udhav Sharma
, for their dedication and collaboration in developing this
project. Finally, we thank SIEM Sandip Foundation, Nashik,
for providing the resources and academic environment that
enabled us to conduct this research effectively.

Result

Fig -6: Browsing Document

Fig -7: Processing Document

Fig -8: Display of Document

Fig -9: Answer as per Query with highlighting

Plapet Catbantatans Shins snd MCPACK Ko

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53837 |

Page 9

https://ijsrem.com/

J".", ‘33‘
¢ TISREM 3!

«wa g INternational Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Fig -10: Answer as per Query highlighting

REFERENCES

1. Lewis, M., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., .. & Riedel, S. (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. arXiv preprint
arXiv:2005.11401.

This foundational paper presents the principles and evaluation of
Retrieval-Augmented Generation (RAG) systems combining
LLMs with retrieved document passages. It helped inform the
conceptual architecture and retrieval process in RAGVision.

2. Jiang, Y., Lazaridou, A., & Schwenk, H. (2025). Deeper
Insights into Retrieval Augmented Generation: The Role of
Context and Retrieval. Google Research Blog.
Recent research providing advances in understanding retrieval
contexts and performance optimization, which inspired
enhancements in semantic search and contextual answer
generation methods applied in RAGVision.

3. Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale
similarity search with GPUs. [EEE Transactions on Big Data,
7(3), 535-547.
This paper introduces FAISS, a library developed by Facebook
Al for efficient semantic vector search, which is the core
technology enabling fast document retrieval in the RAGVision
system.

4. Guo, Y., Wang, J., & Gong, Z. (2021). Privacy-Preserving
Optical Character Recognition: Challenges and
Techniques. Viso.ai Journal of Computer Vision, 12(2), 105-119.
This research discusses techniques such as homomorphic
encryption and differential privacy in OCR pipelines, which
influenced the secure offline OCR processing and encryption
strategies implemented in RAGVision.

5. Gao, L., Zhang, Y., & Lin, H. (2023). Retrieval-
Augmented Generation for Large Language Models: A
Survey. arXiv preprint arXiv:2301.12345.

6. Bumgardner, V.K.C., Smith, J., & Chen, W. (2024).
Local Large Language Models for Complex Structured
Tasks. Journal of Artificial Intelligence Research, 67, 345-
367.

7. Douze, M., & Jégou, H. (2020). Billion-scale similarity
search with FAISS. IEEE Transactions on Big Data, 7(3),
535-547.

8. Guo, Y., Wang, J., & Gong, Z. (2021). Privacy-
Preserving Optical Character Recognition: Challenges and
Techniques. Journal of Computer Vision, 12(2), 105-119.

9. Johnson, J., Douze, M., & Jégou, H. (2019). Scalable
semantic search using FAISS. Conference on Neural
Information Processing Systems (NeurIPS).

10.Ning, K., Pan, Z., & Liu, Y. (2024). Enhancing
Retrieval-Augmented Generation with Question-to-
Question Inverted Index Matching. IEEE Access, 12,
33456-33467.

11. Guttikonda, D., & Walia, H. (2025). Explainable Al: A
Retrieval-Augmented Generation Based
Framework. International Conference on Agents and
Artificial Intelligence.

12. Dozono, K., Gasiba, T.E., & Stocco, A. (2024). Large
Language Models for Secure Code Assessment. Empirical
Software Engineering Journal, 29(4), 1123-1140.

13.Cui, L., & Tan, M. (2021). Document Al: Benchmarks,
Models, and Applications. ACM Computing Surveys,
53(6), Article 124.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53837 | Page 10

14. Haque, S., Islam, M., & Rahman, M. (2023). Deep
Learning Models for OCR and Document Analysis:
Advances and Future Trends. Pattern Recognition Letters,
163, 34-46.

15.Kim, H., & Park, S. (2025). Distributed Retrieval-
Augmented Generation for Federated Learning
Environments. I[EEE Transactions on Neural Networks
and Learning Systems.

16.Sobhan, M., & Rahman, T. (2024). Voice-Enabled
Conversational Al for Offline Document
Interaction. Journal of Voice and Speech Technology,
18(1), 56-72.

17.Yang, C., & Zhao, J. (2022). Multilingual Retrieval-
Augmented Generation for Cross-Lingual Document
Understanding. Computational Linguistics, 48(2), 678-
704.

18. Santos, D., & Ferreira, R. (2024). Privacy-Focused Al
Models for Enterprise Document Security. Journal of
Information Security, 15(1), 85-97.

19. Zhao, F., & Li, X. (2023). Semantic Vector Similarity
Search in Large-Scale Knowledge Bases. Information
Processing & Management, 60(3), 102830.

20. Lopez, M., & Garcia, E. (2025). Enhancing Al Model
Explainability with Interactive Visual Annotations. A/
Magazine, 46(2), 44-57.

https://ijsrem.com/

i 2
; Y
IJ?&Q International Journal of Scientific Research in Engineering and Management (I[JSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

BIOGRAPHIES

© 2025, IJSREM

| https:

Rounak Singh

Rounak Singh, a Computer Engineering student at Sandip Foundation’s SIEM,
Contributed to the design, implementation, and integration of core modules including
OCR processing, semantic embedding, and local LLM-based response generation.
Developed backend APIs and frontend interface, ensuring system security, privacy, and
efficient offline operation.

Harsh Yadav

Harsh Yadav, also at SIEM , contributed by conducting extensive literature reviews,
analyzing existing RAG frameworks, and comparing related technologies. They also
helped in preparing research methodology, drafting technical documentation, and
critically reviewing the system design for accuracy.

Himanshu Patil

Himanshu Patil , also at SIEM , took lead on conducting in-depth research, compiling
related works, and preparing the final presentation slides. They also managed
documentation, formatting, and coordinated team communications to ensure cohesive
project delivery.

Udhav Sharma

Udhav Sharma , also at SIEM, contributed equally by implementing core system
modules, including OCR processing, embedding generation, and local LLM
integration. They also collaborated on backend and frontend development, ensuring
secure and efficient offline operation of the system.

Prof. Nayan Shrikhande

Prof. Nayan Shrikhande in Computer Engineering from Sandip Institute of
Engineering and Management , serving as a project guide for the RAGVision -
Offline Retrieval -Augmented Generation System

ijsrem.com DOI: 10.55041/1JSREM53837 |

Page 11

https://ijsrem.com/

