
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 1

Real-Time CNN-Based Face Recognition Platform for Scalable Identity

Management and Alert Transmission

1A.Harsha Vardhan Reddy, 2A.Saiprashanth, 3S.Praneeth Reddy, 4Ch. Raja
1,2,3 Department of ECE, Mahatma Gandhi Institute of Technology (A), Gandipet, Hyderabad, Telangana, India.

Email: anthireddyh@gmail.com
4 Associate Professor, Department of ECE, Mahatma Gandhi Institute of Technology (A), Gandipet, Hyderabad,

Telangana, India. Email: chraja@mgit.ac.in

---***---

Abstract - This paper presents a comprehensive, cloud-

integrated face recognition-based attendance system that

combines machine learning, web technologies, and scalable

backend architecture. The backend server, built with Node.js

and MongoDB, securely stores user data, embeddings, and

supports authentication via JWT and RBAC. The core

recognition pipeline uses MTCNN for face detection, FaceNet

for embedding generation, and SVM for classification.

Recognized faces trigger SMS alerts via Twilio, with optional

email notifications. A React frontend allows image uploads,

result viewing, and user management, while a Flask layer

bridges UI and ML logic. The system is deployed on AWS

using Docker, ECS, and MongoDB Atlas, with CloudFront

enhancing frontend delivery. CI/CD pipelines automate

testing and deployment, while CloudWatch and Prometheus

ensure robust monitoring. Auto-retraining of the SVM model

accommodates new users, and comprehensive backup

strategies with multi-zone redundancy ensure disaster

recovery. Security enhancements such as hashed passwords,

rate limiting, CORS policies, and encrypted cloud storage

further strengthen system resilience. Designed for scalability,

the platform auto-scales backend containers, caches frequent

queries using Redis, and employs load balancing for high

availability. This modular, end-to-end solution provides a

robust framework for real-time, secure, and scalable facial

recognition applications across educational or enterprise

environments.

Key Words: Automatic Attendance System, Convolutional

Neural Networks (CNNs), Facial Recognition, MTCNN,

Smart Attendance Monitoring, FaceNet.

1. INTRODUCTION

Attendance monitoring systems are vital in schools,

workplaces and events for effective tracking of individuals.

Although Convolutional Neural Networks (CNNs) provide

high accuracy in facial recognition for identifying individuals,

identification of multiple faces in a crowd is challenging [1].

This paper seeks to transform attendance tracking by using

advanced facial recognition to automate the process with high

accuracy, thus minimizing administrative workload and

enhancing efficiency. It highlights the need for administrator-

friendly interfaces and paves the way for more general

applications in security, access control and surveillance [2].

 This paper describes a methodical way of creating a

CNN- grounded intelligent attendance system. It starts with a

literature review of attendance systems and CNN, followed by

an elaborate methodology that includes data collection,

preprocessing, designing the CNN model and svm model,

training and confirmation of them. The results are presented

through an intertwined homepage. The system generates an

Excel distance; this distance can be reviewed directly from the

interface. The system is tested on different scripts to check its

robustness. The conclusion presents results, crucial findings,

practical counteraccusations and motifs of unborn exploration

for perfecting automated attendance systems[3].

Figure 1 illustrates a Convolutional Neural Network

(CNN) for image processing. The input image passes through

convolution layers, where kernels extract features into feature

maps, followed by pooling to reduce dimensionality. This

process repeats, capturing hierarchical patterns. The flatten

layer converts maps to 1D data for fully connected layers,

which classify the image via probabilistic distribution. CNNs

excel in tasks like object recognition by automating feature

extraction.

In summary, the creation of a smart attendance

shadowing system grounded on Convolutional Neural

Networks(CNNs) is an important advance in attendance

shadowing. Exercising colorful facial recognition algorithms,

the system offers an extremely automated and precise result

that can be espoused by educational institutions, workplaces

and event organizers. The successional methodology from

data collection and preprocessing to model training and

testing guarantees the system's trustability and robustness. The

donation of this work is in its capability to explain operations,

improve productivity and drop executive burden, hence

encouraging better attendance operation practices. Unborn

exploration and development in this area can promise indeed

more advanced uses of facial recognition technology, further

boosting continuing invention in smart attendance covering

systems[4].

2. LITERATURE SURVEY

A. A Counterpart Approach to Attendance and Feedback

System using Machine Learning Techniques:

This paper implements the concept of two technologies

Student Attendance and Feedback System using a machine

learning approach. The system automatically monitors

student performance and maintains records such as

attendance and feedback on subjects like mathematics and

Fig -1 : Convolution Neural Networks

http://www.ijsrem.com/
mailto:anthireddyh@gmail.com
mailto:chraja@mgit.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 2

others. Consequently, student attendance is captured

through facial recognition. Upon successful recognition,

the system retrieves both attendance records and academic

performance details as feedback[5].

B. Automated Attendance System Using Face Recognition:

 Automated Attendance System based on Face

Recognition suggests that the system relies on face

detection and recognition algorithms, which is utilized to

automatically detect the student face upon his/her entrance

into the class and the system is able to mark the attendance

by identifying him. Viola-Jones Algorithm has been

implemented for face detection which detects the face by

using cascade classifier and PCA algorithm for feature

extraction and SVM for classification. Compared to the

conventional marking attendance this system provides a

saving of time as well as monitors the students[5].

C. Face Recognition-based Lecture Attendance System:

This paper suggests that the system is provided with

the attendance automatically recognition achieved through

continuous observation. Continuous observation assists in

estimating and enhancing the performance of the

attendance. For the purpose of acquiring the attendance,

positions and face images of the students within the

classroom are captured. Through continuous observation

and recording, the system estimates seating position and

location of each student for attendance marking. The task is

centered on how to achieve the various weights of every

focused seat based on where it is. The efficiency of the

image is also under debate to allow the quicker

identification of the image[5].

D. Fingerprint Based recognition system:

In the existing fingerprint-based attendance system, a

portable fingerprint device must first be configured with

each student's fingerprint. To mark attendance, students are

required to scan their fingerprint on the device either

during or before lecture hours. However, this approach can

be disruptive, as recording fingerprints during class may

divert students' attention from the lecture.

E. RFID(Radio Frequency Identification) Based

recognition system:

 In the existing RFID-based system, students are

required to carry a Radio Frequency Identification (RFID)

card and place it on a card reader to register their

attendance for the day. The system can connect to an

RS232 interface and store the attendance data in a

database. However, this method is vulnerable to fraudulent

activity, as students may use someone else’s ID card to

mark attendance for an absent peer or misuse the system in

other ways[7].

F. Iris Based Recognition System:

 In the iris-based student attendance system, students

stand in front of a camera, which scans their iris for

identification. The scanned iris is compared with the

student’s data in the database, and their attendance is

automatically marked. This system eliminates the paper-

and-pen process, reducing faculty workload. It also reduces

the risk of proxy attendance and ensures safe storage of

student records. As a wireless biometric method, it tackles

fraudulent attendance while avoiding complex networking

infrastructure.[8]

3. PROPOSED SYSTEM

Figure 2 illustrates the complete architecture of the face

recognition system, structured into five major blocks. Each

block represents a critical component in the development

pipeline, starting from server creation and moving through

recognition, integration, frontend, and cloud deployment. This

modular structure ensures a scalable, secure, and user-friendly

face recognition solution.

A. Server Creation with MongoDB (Backend)

Step 1: Setting Up the Server

• Initialize Node.js Server: Run npm init to create a

package.json file for managing server dependencies

and metadata.

• Install Core Dependencies: Install express for setting

up HTTP routes, mongoose for MongoDB interaction,

dotenv for environment variables and body-

parser for parsing incoming request payloads.

• Directory Structure: Create folders for organizing

code: /models (Mongoose schemas), /routes (API

endpoints), /controllers (business logic) and

/middleware (security layers).

Step 2: Environment Configuration

• .env File: Store sensitive configurations.

o MONGODB_URI for the database connection URL

and JWT_SECRET for signing authentication

tokens.

o TWILIO_SID and TWILIO_AUTH_TOKEN for en

abling SMS alerts in the application.

Step 3: Connecting to MongoDB

• Mongoose Setup: Use mongoose.connect

(process.env.MONGODB_URI) to establish a

connection to MongoDB and log success/failure

messages for debugging.

Step 4: Defining User Schema

• Fields

o Include username (for unique identification),

password (hashed with bcrypt for security) and role

(for distinguishing faculty and students).

o Add embeddings (for storing 128D face vectors) and

createdAt (for tracking user registration timestamps).

Step 5: Building REST API Routes

• Key Endpoints

o POST /add for storing user data and face

embeddings in the database.

o GET /users for retrieving all user records, and POST

/login for authenticating users and issuing JWT

tokens.

Step 6: Running the Server

• Start Server: Execute app.listen(5000) to launch the

server on port 5000 and verify its status.

Step 7: Security Enhancements

• JWT Authentication: Implement token verification for

protecting routes like /add and /users.

• Password Hashing: Use bcrypt to hash passwords and

prevent plaintext storage.

• Rate Limiting: Apply express-rate-limit to throttle

Fig -2 : Block diagram of face recognition system

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 3

repeated requests and deter brute-force attacks.

• CORS & Validation: Configure CORS for restricting

API access to trusted domains and sanitize inputs with

express validator.

• Role-Based Access (RBAC): Assign roles (e.g., faculty

or student) and restrict endpoints based on

permissions.

• Session Timeout: Set token expiration to enforce

periodic re-authentication.

B. Face Recognition System Pipeline

This figure illustrates the process of face recognition-

based attendance using MTCNN and FaceNet. The system

begins by detecting faces from a dataset using MTCNN, then

extracts embeddings with FaceNet and trains a model using

the SVM algorithm. During testing, the trained model

classifies input images to mark attendance.

Step 1: Dataset Preparation

• Image Collection

o Collect labeled images of individuals. Organize the

images into folders, where each folder represents a

unique individual (e.g., PersonA/, PersonB/).

o Ensure each folder contains multiple images of that

individual from different angles and lighting conditions

to improve the model’s generalization.

• Image Augmentation

o Random rotations: Rotate images to simulate various

orientations.

o Scaling: Resize images to simulate different distances.

o Flipping: Flip images horizontally to simulate different

perspectives.

These techniques help increase the dataset's diversity, making

the model more robust.

Step 2: Face Detection Using MTCNN

• MTCNN (Multi-task Cascaded Convolutional Networks)

detects faces in images and generates bounding boxes.

• After detection, the faces are aligned (i.e., normalized to a

standard position and scale) to ensure consistency in

facial features before passing them to the next stage.

Step 3: Face File Storage

• After cropping the faces from the original images, store

them in a structured format, such as name_timestamp.jpg,

to maintain a connection between the image and the

individual’s identity.

This ensures you can track which face belongs to which

person, making the data easy to manage.

Step 4: Generating Embeddings Using FaceNet

• Pass each detected and aligned face through FaceNet to

generate a 128-dimensional embedding.

• The embedding is a numerical representation of the

unique features of the face, making it possible to compare

different faces and measure their similarity.

Step 5: Training the Classifier (SVM)

• Use the generated face embeddings to train an SVM

classifier.

• The SVM will learn to differentiate individuals by

mapping their embeddings to high-dimensional space.

• After training, the classifier can distinguish between faces

based on the position of their embeddings.

Step 6: Face Recognition (Prediction Phase)

• Detect the face in a new, unseen image.

• Generate its embedding using the same FaceNet model.

• Compare this new embedding with the stored embeddings

using the trained SVM classifier.

• The classifier will help determine the closest match to an

existing user.

Step 7: Classifying the New Embedding

• The SVM model takes the new embedding and classifies

it, returning the identity (name) of the person.

• The confidence score associated with the classification

can also be returned, indicating the probability that the

recognition is correct.

Step 8: Model Storage and Management

• Save the trained SVM model and the embeddings to disk.

This allows you to reuse the model and embeddings in

future sessions without retraining.

• Model storage helps maintain continuity and reduces

processing time during subsequent uses of the system.

Step 9: Testing and Validation

• Use a test dataset that was not part of the training process

to evaluate the model's performance.

• Measure accuracy, precision and recall assessing how

well the model identifies individuals.

• Fine-tune the model if necessary, adjusting parameters to

improve performance and reduce errors.

Step 10: Exporting Results to Excel

• After recognition, export the results (e.g., names,

confidence score) into an Excel sheet for documentation.

• Columns could include:

o Name, Roll No.: Identified person.

o Status: Absent/Present of student.

o Timestamp: The time the recognition occurred.

This allows for easy analysis and record-keeping.

C. Integration of Server and Face Recognition System

Step 1: Storing Known Face Data (Face Embeddings)

• When a new face is registered (via the POST /add API),

its embedding (a 128-dimensional vector) is generated

and stored in the MongoDB database.

• This allows the system to maintain a collection of all

known faces for comparison during recognition.

Step 2: Accessing Stored Data During Prediction

• When a new face needs to be recognized, the system

retrieves all stored embeddings from MongoDB using the

GET /users API.

• This step is crucial as it allows the system to compare the

new face’s embedding against the stored ones and

determine the best match.

Step 3: Real-Time Prediction Flow

Fig -3 : Flowchart for face recognition

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 4

1. Image Upload: The user uploads a face image via the

frontend.

2. Face Detection: The system detects the face in the image

using MTCNN and generates its corresponding

embedding.

3. Fetch Data: The server fetches all stored embeddings

from MongoDB for comparison.

4. Recognition: The system compares the new embedding

with the stored embeddings using the trained SVM

classifier to identify the person.

5. Display Result: The predicted identity (with confidence

score) is displayed to the user, confirming the

recognition.

Step 4: Support for Continuous Learning

• Add New Users: New users can upload their face data,

generating embeddings that are stored in MongoDB for

future recognition.

• Retrain Model: As new users are added, the SVM model

can be retrained to include the new embeddings. This

enables the model to recognize additional individuals

without needing to rebuild the entire system.

Step 5: System Workflow Summary

• Training Phase:

Image → MTCNN → FaceNet → Embeddings → Store

in MongoDB → Train SVM.

• Recognition Phase:

Image → MTCNN → FaceNet → Embedding →

Compare with DB → Result Display.

 Step 6: Notification Enhancements

• Recognition Logging: Every successful face recognition

event is logged in the database, including the timestamp,

name, confidence score and IP address of the user.

• SMS Notifications via Twilio: When a face is recognized

and the confidence score is above a certain threshold

(e.g., >90%), an SMS notification is sent to the parent or

student using the Twilio API.

• Email Alerts (Optional): Use SMTP services (e.g., Gmail,

SendGrid) to send email alerts to admin or faculty in the

following cases.

o Repeated recognition failures.

o Attendance status also.

o Suspicious login or access patterns.

• Alert Throttling: To prevent spamming of notifications,

implement cooldown logic that ensures no more than one

alert is sent per user per 10 minutes.

D. Webpage Creation Using React and Styling with Flask

Step 1: Purpose and Importance of the Web Interface

• The web interface allows users (faculty and students) to

interact with the face recognition system.

• Users can upload face images, view recognition results,

and manage registered faces.

• It enhances accessibility, making the face recognition

system practical and easy to use.

Step 2: Frontend with React

• React Features

o Image Upload: Users can upload face images via a file

input or webcam.

o Face Preview: Displays the uploaded face image for

confirmation before submission.

o Submit Button: Sends the uploaded image to the

backend for recognition.

o Result Display: Shows the predicted identity and

confidence score to the user.

• Technologies Used

o Axios: Used for making API calls to the backend.

o React Router: Handles navigation between different

pages in the web application.

o Tailwind CSS or Styled components: Provides

responsive styling for a clean user interface.

Step 3: Backend Support Using Flask

• Flask for API Routing: Flask serves as the backend,

handling API requests.

o Face recognition.

o User registration.

o Retrieval of stored data.

• Serving Static Assets: Flask serves static assets like

images and CSS when integrated with the React frontend,

ensuring all assets are correctly loaded for a seamless

experience.

Step 4: Twilio API Integration for SMS Notifications

• Twilio API Setup: Store Twilio Account SID and Auth

Token securely in environment variables for use in the

backend.

• Sending SMS: When a face is recognized, the backend

uses the Twilio Node.js library to send an SMS to a

predefined phone number (either the student's or parent's

phone number).

▪ Example messages include: The predicted identity

and timestamp for the recognition event.

Step 5: Integration Between Frontend and Backend

• React Frontend: Sends image uploads or requests for user

data to Flask APIs.

• Flask Backend:

o Performs face recognition and Sends results back to the

React frontend.

o If required, sends an SMS notification via Twilio to the

designated phone number upon recognition.

Step 6: Deployment Considerations

• Docker: Containerize the Flask backend and React

frontend to simplify deployment.

• Nginx: Use Nginx as a reverse proxy and static file server

for optimal performance.

• Platform Deployment: Deploy the application on cloud

platforms like AWS, Heroku or Render for reliable

hosting.

Step 7: Frontend Security Enhancements

• Token Storage: Store JWT tokens in httpOnly cookies for

security (prevents XSS attacks).

• Role-based UI Rendering: Display or hide specific UI

elements based on the user role (e.g., show admin

controls only to faculty).

• CSRF Protection: Implement anti-CSRF tokens for state-

changing operations (especially if JWT is stored in

cookies).

• Captcha Integration: Add Google reCAPTCHA or other

captcha to the login and registration forms to prevent bot

attacks.

• Session Timeout Warning: Notify users when their

session is about to expire and log them out securely to

enhance security.

E. Cloud Integration and Scalability

This block ensures the face recognition system is

cloud-native, resilient, and scalable, supporting enterprise-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 5

level deployments. It includes the best practices for

DevOps, infrastructure, network management, and

performance optimization. It also integrates continuous

monitoring and automated recovery mechanisms to

maintain high availability and operational reliability under

varying workloads.

Step 1: Cloud Platform Integration

• Primary Cloud Platform: While the architecture is

designed for AWS, it is adaptable to Google Cloud

Platform (GCP) or Azure. This flexibility ensures

broader deployment options based on organizational

preferences or existing cloud ecosystems.

• Core Services Used:

o EC2: Hosts containerized services such as the Flask

API and recognition pipeline.

o S3:

▪ Stores uploaded face images, processed image

logs and Excel exports.

▪ Acts as a secure and versioned data lake.

o AWS Lambda (Optional): Handles lightweight

serverless functions like SMS fallback logic, log

rotation or post-recognition logging.

o ECS (Elastic Container Service) / EKS (Elastic

Kubernetes Service): Manage container

orchestration, supporting autoscaling, load

balancing, health checks and blue/green

deployments.

o RDS (Optional): Stores structured logs (e.g., login

attempts, recognition metadata) for reporting. Gives

best user experience.

o CloudFront (CDN):

▪ Serves the React frontend with low-latency, global

access.

▪ Supports SSL termination and caching.

• Database Hosting: MongoDB Atlas

o Built-in sharding for horizontal scaling.

o Supports IP whitelisting, RBAC and TLS/SSL for

secure access.

o Provides daily snapshots and restore points.

• Security Enhancements in Cloud Layer:

o Enable VPC peering to isolate databases from public

traffic.

o Apply IAM roles and policies for enforcing the least

privilege access.

o Configure CloudTrail for auditing sensitive actions.

Step 2: Containerization and Orchestration

• Dockerization: Each component is packaged into its

own Docker image.

o Flask API backend

o Face recognition engine (SVM + MTCNN +

FaceNet)

o React frontend

• Benefits of Dockerization:

o Environmental-agnostic deployment for dev,

staging, and production.

o Ensures reproducibility and security.

o Allows for quick rollback with versioned Docker

images.

• Docker Compose (for Local Dev): Manages a multi-

container setup with volumes, networks and health

checks for local development. It enables consistent and

replicable development environments, streamlining

team collaboration and testing.

• ECS/EKS for Production:

o Auto-restarts containers on failure.

o Supports auto-scaling based on

CPU/memory/network usage.

o Facilitates rolling updates and zero-downtime

deployments.

• Health Monitoring Probes: Define liveness and

readiness probes for each container to ensure fault

tolerance and early failure detection.

Step 3: CI/CD Pipelines

• CI Tools: GitHub Actions, GitLab CI, or Jenkins

o Lint, test, and build Docker images on each commit

or pull request.

o Secrets are injected using encrypted CI secrets or

AWS Secrets Manager.

• CD Tools:

o Push final Docker image to ECR (Elastic Container

Registry).

o Auto-deploy via ECS/EKS using Blue/Green or

Canary deployment strategies.

• Security Notes:

o Never store secrets in code.

o Validate image integrity using image signing or hash

verification.

Step 4: Logging and Monitoring

• Centralized Logging: Use AWS CloudWatch Logs or

ELK stack to capture logs.

o Face recognition attempts and results.

o Twilio SMS delivery statuses.

o User login logs, token issuance and failures.

• Monitoring Tools:

o Prometheus for metrics collection and Grafana for

dashboard visualization.

o Key metrics to monitor:

▪ Face recognition time (in ms).

▪ API error rate.

▪ SMS delivery failure rate.

▪ JWT token validation failures.

• Alerting Mechanisms: Alerts via SNS, Slack, or

PagerDuty.

o 5XX errors from the API.

o Breach of memory/CPU thresholds.

o Excessive failed logins indicating suspicious

behavior.

Step 5: Cloud Storage and Backup Strategy

• S3 Buckets: Public access is disabled, and encryption

is enabled (SSE-S3 or SSE-KMS).

o Stores:

▪ User face images.

▪ Training logs.

▪ Model checkpoints.

▪ Excel exports.

• MongoDB Atlas Backups:

o Point-in-time recovery enabled.

o Backup retention configured for 7-30 days

depending on the plan.

• Disaster Recovery (DR) Redundancy:

o Daily S3 syncs to a backup bucket in a different

AWS region.

o Run restore verification scripts weekly.

Step 6: Auto-Model Retraining Pipeline

• Trigger Events:

o New face data is added via the /add API.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 6

o Scheduled batch retraining every weekend.

• Job Orchestration Options:

o Celery + Redis for background task queues.

o AWS Lambda + CloudWatch Events for serverless

retraining.

o Kubernetes CronJobs if using EKS.

• Model Versioning:

o Models are saved with versioning (e.g.,

svm_model_v1.2_2025-05-06.pkl).

o Store metadata in the DB: accuracy, training time,

users.

• Rollback Strategy: If the new model underperforms, it

auto-rolls back to the last stable version.

• Notification System: Sends alerts via email or SMS

upon successful retraining or rollback events.

• Logging & Monitoring: Integrates with CloudWatch or

Prometheus to track performance, errors and usage.

Step 7: Scalability and High Availability

• Horizontal Scaling:

o Use an AWS ALB (Application Load Balancer) to

distribute requests across Flask API containers.

o The React frontend is hosted on S3 + CloudFront

with edge caching.

• Backend Scaling: Scale Flask container replicas

up/down based on the recognition load.

• Database Scaling:

o MongoDB Atlas auto-scales reads/writes.

o Enable read replicas to improve performance.

• Redis Cache Layer: Cache frequent results like user

info and embeddings to reduce DB load and latency.

• Auto Healing: Leverage ECS or EKS health checks to

automatically replace unhealthy containers and

maintain service uptime.

• Multi-AZ Deployment: Distribute critical services

across multiple Availability Zones to ensure fault

tolerance and disaster resilience.

Step 8: Disaster Recovery and Redundancy

• Multi-Zone Deployments:

o EC2 instances are deployed across multiple

Availability Zones (AZs) for fault tolerance.

o MongoDB Atlas is configured with region

redundancy for high availability.

• Backup and Restore Scripts:

o Scheduled cron jobs for EC2 snapshots.

o Backup verification scripts run weekly to ensure

recoverability.

• Automated Failover:

o Health checks trigger rerouting of traffic to a healthy

region.

o Admins are notified via Twilio SMS and email in

case of an outage.

4. RESULTS

The implemented Smart Attendance Monitoring

System effectively automates attendance tracking using

advanced facial recognition techniques. By leveraging

MTCNN for face detection, FaceNet for generating 128-

dimensional embeddings, and an SVM classifier for

identification, the system achieved over 90% accuracy on a

diverse dataset of students and faculty. The recognition

pipeline supports both single and multiple face detection

scenarios, ensuring reliable performance even in real-time

environments such as classrooms, workplaces. and large

events.

On the backend, a secure and scalable Node.js

infrastructure was developed, integrated with MongoDB

for efficient storage of user data and face embeddings.

RESTful APIs handle user registration, face data uploads,

authentication and recognition processes. Security was

prioritized using JWT-based authentication, bcrypt

password hashing, CORS configuration and role-based

access control (RBAC), ensuring data integrity and

controlled access across user roles (e.g., faculty vs.

student).

Figure 4 shows results using the MTCNN model in a

group photo. The model accurately identified all five

individuals by placing bounding boxes around their faces,

even in challenging lighting conditions, different facial

expressions and angles. This demonstrates MTCNN’s

robustness and reliability in real-world, unconstrained

environments.

Figure 5 shows the attendance sheet generated with

names, roll numbers, status marked as "Present",

attendance timestamp and number of faces detected at

single use, based on face detection. This automated system

demonstrates an efficient and contactless method of

recording attendance using real-time facial recognition

technology.

Fig -4 : Multiple Faces Detection using MTCNN

Fig -6 : Homepage Interface

Fig -5 : Attendance Data in Excel Spreadsheet

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 7

Figure 6 shows the homepage of the Smart Attendance

Monitoring System web application. The interface

welcomes users with a clear message and provides easy

navigation through options like Home, Students

Attendance, Faculty Login, and Contact. This front-end

serves as the main entry point for accessing the automated

attendance features powered by facial recognition system.

Figure 7 presents the student attendance interface

generated by the MTCNN-based face recognition system.

It shows each student's daily attendance status over five

days, along with their total attendance percentage.

Duplicate entries indicate the need for additional data

validation in the system.

Figure 8 shows the notifications received by students.

The system automatically sends alerts to students/parents

about attendance. This increases the reliability of the

system.

Additionally, the system enhances user experience

with a React-based web interface that enables image

uploads, result viewing, and user management.

Notifications via Twilio SMS and SMTP email alerts were

integrated to inform users or admins of attendance activity

and anomalies. The platform is containerized with Docker

and deployable on AWS using ECS, S3, CloudFront, and

MongoDB Atlas, supporting auto-scaling, monitoring,

CI/CD pipelines, and disaster recovery strategies—making

it a robust, cloud-ready solution for smart attendance

management.

5. CONCLUSION

The Smart Attendance Monitoring System effectively

exemplifies the convergence of facial recognition with

contemporary web technologies and cloud infrastructure to

automate and make attendance tracking secure. Through

the unification of MTCNN, FaceNet, and SVM classifier,

the system validates high accuracy and real-time

recognition and reduces manual administrative labor within

institutions and workplaces.

The modular construction—using Node.js backend,

React frontend, MongoDB database, and Twilio/SMTP

alerts—guarantees extendibility, flexibility and firm

communication. Combined with JWT security, role-based

access control and cloud provisioning through AWS, the

system not only scales reliably but is ready for production

with real-world implementation.

Finally, this paper opens doors to extensive uses of

face recognition in access management, intelligent

surveillance and business automation with data privacy,

system integrity and user-focused interaction guaranteed.

Its modular and cloud-agnostic design enables seamless

adaptation across industries with varying infrastructure

needs.

6. FUTURE ENHANCEMENTS

In the future, the system can be further developed to

enable multi-camera systems for real-time monitoring at

multiple entry points, enhancing its usefulness in large

corporate campuses or office spaces. This would include

integrating face tracking and video stream processing to

record attendance passively and continuously without manual

uploads of images [1].

Another significant improvement may be integration with

RFID or biometric systems to form a multi-factor attendance

system. Integration of facial recognition with other

authentication techniques would enhance reliability and

security, particularly in environments like examination halls,

secure laboratories or restricted office areas [2][9].

Finally, using AI-based analytics dashboards can allow

administrators to graph attendance patterns, late arrival times

or absent periods with interactive plots. Seamless integration

with LMS or HR systems will further simplify academic or

payroll operations. Additionally, privacy-first design and in-

device detection (e.g., utilizing edge devices such as

Raspberry Pi along with embedded models) will enhance

compliance with data privacy regulations as well as provide

support for offline access in the farthest points of reach [10].

REFERENCES

[1] Natesan, P., Mohana Karthikeyan, K., Gothai, V.,

Muthukumar, E., Rajalaxmi, V., & Naveen. (2021). Smart

staff attendance system using Convolutional Neural

Network. International Conference on Computer

Communication and Informatics (ICCCI).

[2] Zhang, X., Zhang, L., & Zuo, W. (2019). An Overview

of Face Recognition Systems: Challenges and Recent

Developments. IEEE Transactions on Systems, Man, and

Cybernetics.

[3] Lee, J., & Wang, M. (2020). A Study on Real-Time

Attendance System Using Deep Learning Techniques.

International Journal of Computer Applications.

[4] Brown, D., & Smith, R. (2018). Advancements in

Facial Recognition for Automated Systems. Journal of

Artificial Intelligence Research.

[5] Nandhini, R., Duraimurugan, N., & Chokkalingam, S.

P. (2019). Face Recognition Based Attendance System.

International Journal of Engineering and Advanced

Technology (IJEAT), 8(3S), 574–577. ISSN: 2249-8958.

Blue Eyes Intelligence Engineering & Sciences

Publication.

[6] Prasad, V. & Subramaniyan, M. (2020). Optimizing

Attendance Management Using Face Recognition

Technology, International Journal of Computer Science and

Technology (IJCST), 9(2), 204–208.

[7] Chandra, R., & Singh, A. (2018). "RFID-based

Fig -7 : Student Attendance Display

Fig -8 : Notification Alerts to Students

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47911 | Page 8

attendance management system: A review and its

vulnerability analysis," International Journal of Computer

Applications, 179(2), 1-6.

[8] Sharma, A., & Yadav, D. (2023). Face Recognition

Using CNN and Siamese Network. Materials Today:

Proceedings.

[9] Das, S., & Saha, S. (2024). Facial Recognition and

Discovery Using Convolution Deep Learning Neural Network.

Journal of Computer Science, 20(10), 1559–1568.

[10] Zeng, W., Wang, H., Liu, Y., & Li, Z. (2020). Edge AI

for Real-Time Multi-Person Face Recognition in Smart

Surveillance Systems. IEEE Internet of Things Journal.

http://www.ijsrem.com/

