L \3;\\
; o
@EE"?} International Journal of Scientific Research in Engineering and Management (I[JSREM)

Volume: 09 Issue: 12 | Dec - 2025

T

SJIF Rating: 8.586

ISSN: 2582-3930

Real-Time Code Collaboration System Using MERN Stack

Prof. Onkar Patil!, Prof. S. M. Kale? , Ganesh Shrikant Munde®, Aniket Nanasaheb Jadhav*, Aniket
Deepak Ashtekars.
1.2345Department of Information Technology,M.S. Bidve Engineering College, Latur .
Email Id : onkarmpatil@gmail.com', smkalel4jan@gmail.com? , ganeshmunde8748@gmail.com?’ ,

aniketjiadhav6134@gmail.com®, aniketashtekar2355@gmail.com’

Abstract

Real-time collaboration tools have become essential
in modern software development due to the rapid
growth of distributed teams, remote working
environments, and online education platforms.
Traditional version control systems allow
collaboration but do not support real-time visibility
of code changes, often leading to conflicts and
reduced productivity. This paper presents the design
and implementation of a real-time code
collaboration system using the MERN stack. The
proposed system allows multiple users to
simultaneously write, edit, and view source code in
real time. Secure user authentication is implemented
using Clerk, and MongoDB is used for efficient and
scalable data storage. Event-driven communication
ensures low latency synchronization across all
users. Experimental results demonstrate improved
collaboration efficiency, reduced conflicts, and
reliable performance under multiple concurrent
users.

Keywords—Real-Time Collaboration, MERN
Stack, MongoDB, WebSockets, Cloud Computing,
Software Engineering

I. INTRODUCTION

The software development industry has witnessed a
major shift toward collaborative and distributed
development environments. Teams often consist of
developers working from different geographical
locations, making real-time communication and
coordination a critical requirement. Traditional

tools such as Git-based version control systems
provide collaboration support, but they lack real-
time synchronization, which can lead to merge
conflicts and delayed feedback.[1]

Real-time code collaboration systems allow
multiple developers to work on the same source
code simultaneously while instantly viewing
changes made by others. Such systems are
especially useful in pair programming, technical
interviews, online coding education, and
collaborative problem-solving environments. This
paper proposes a real-time code collaboration
platform built using modern web technologies,
focusing on scalability, security, and
performance.[7]

II. LITERATURE REVIEW

Several real-time collaboration tools have been
developed in recent years. Platforms such as Google
Docs demonstrate the effectiveness of real-time
collaboration for document editing. Similar
approaches have been applied to code editing
platforms like Visual Studio Live Share and
CodePen.[3]

Existing systems often rely on operational
transformation (OT) or conflict-free replicated data
types (CRDTs) to maintain consistency among
multiple users. Research shows that event-driven
architectures using WebSockets significantly
reduce latency in real-time applications. However,
many existing platforms are either proprietary or
require complex setup. The proposed system aims

© 2025, IJSREM | https://ijsrem.com

| Page 1

https://ijsrem.com/
mailto:onkarmpatil@gmail.com1
mailto:smkale14jan@gmail.com2
mailto:ganeshmunde8748@gmail.com
mailto:aniketjadhav6134@gmail.com4
mailto:aniketashtekar2355@gmail.com5

L \3;\\
.
@E@ International Journal of Scientific Research in Engineering and Management (I[JSREM)

Volume: 09 Issue: 12 | Dec - 2025

Gl

SJIF Rating: 8.586

ISSN: 2582-3930

to provide a simple, scalable, and open architecture
using the MERN stack.[6][7]

III. PROBLEM STATEMENT

Latency: Delays in reflecting changes made by
remote peers.

Concurrency Conflicts: Overwriting logic when
two users edit the same line.

State Management: Maintaining a consistent
"single source of truth" across various client
states[7].

Access Control: Ensuring only authorized users
can modify specific repositories[6].

IV. SYSTEM ARCHITECTURE

The proposed system follows a client-server
architecture, as shown below:

A. Frontend

The frontend is developed using React.js, providing
a dynamic and responsive user interface. It includes
a real-time code editor, user dashboard, and project
management interface [7].

ME -

L >

Coa~ -
am A); ada

[

B. Backend

The backend is built using Node.js and Express.js,
which handle API requests, authentication, and real-
time event management [7].

C. Database

MongoDB is used as the database for storing user
credentials, project details, and code snapshots. Its
NoSQL nature allows flexible schema design and
high scalability [2].

D. Real-Time Communication

Real-time communication is achieved
using WebSockets, enabling instant broadcasting

of code changes to all connected clients [5].

V. TECHNOLOGIES USED

A. Frontend (React.js): Utilizes a component-
based architecture to render the code editor (using
libraries like Monaco or CodeMirror). It maintains
a local state that stays in sync with the server [7].

B. Backend (Node.js & Express): Acts as the
orchestrator. It handles RESTful API routes for
project management and maintains the WebSocket
server for live traffic [7].

C. Database (MongoDB) : Stores persisted data
such as user profiles, project structures, and code
snippets in JSON-like documents|[2].

D. Real-Time Layer (Socket.io/ WebSockets):
Facilitates the bidirectional communication channel
between the client and server [5].

VI. IMPLEMENTATION DETAILS

A. WebSocket Event Handling

We utilized Socket.io to manage the lifecycle of a
coding session. The server listens for a
CODE_CHANGE event and broadcasts the delta to
the specific room [5].

JavaScript

© 2025, IJSREM | https://ijsrem.com

| Page 2

https://ijsrem.com/

L \3;\\
.
@E@ International Journal of Scientific Research in Engineering and Management (I[JSREM)

Volume: 09 Issue: 12 | Dec - 2025

Gl

SJIF Rating: 8.586

ISSN: 2582-3930

/I Server-side Logic (Node.js)
10.on("connection", (socket) => {
socket.on("join-room", ({ roomld, username })
=> {
socket.join(roomld);
socket.to(roomld).emit("user-joined", {
username });
1)
socket.on("code-change", ({ roomld, code }) =>
{
// Broadcast to everyone in the room except the
sender
socket.in(roomld).emit("code-update", code);
1)
1)

B. Client-Side Editor Integration
The frontend uses the useEffect hook to synchronize
the local editor state with incoming socket events.
To prevent infinite loops (where a change triggers
an emit, which triggers a change), we implement a
conditional check on the incoming data.
C. Database Schema
MongoDB stores the persisted state of the
collaborative project. A typical document structure
is as follows [2]:
JSON
{
" 1d": "project uuid",
"title": "Main.js",
"content": "console.log('Hello World');",
"ownerld": "clerk user id",
"collaborators": ["user 1", "user 2"],
"updatedAt": "2023-10-27T10:00:00

VII. ALGORITHMIC FLOW

The algorithm follows a structured sequence
starting from user authentication to real-time code
synchronization across clients, ensuring consistency
and responsiveness [1], [5].

1. User logs into the system

User creates or joins a project

Code editor initializes real-time session
User edits code

Changes are sent to server

Server broadcasts updates to all users
Clients update editor view instantly

Al

VIILTESTING AND RESULTS

A. Functional Testing

All modules were tested to ensure correct
functionality, including login, project creation, and
code synchronization.

B. Performance Testing

The system was tested with multiple concurrent
users. Results showed:

e Low latency (<100 ms) update propagation
e Stable performance under load
e No data loss during simultaneous edits

C. Security Testing

Authentication and authorization mechanisms were
tested to prevent unauthorized access.

The system was evaluated based on Propagation
Delay and Concurrency Stability.

Number of||Average Server CPU
Users Latency (ms) ||Load (%)

2 35 4%

5 58 9%

10 92 18%

© 2025, IJSREM | https://ijsrem.com

| Page 3

https://ijsrem.com/

L ‘.?;\\
.
@E@ International Journal of Scientific Research in Engineering and Management (I[JSREM)

Volume: 09 Issue: 12 | Dec - 2025

Gl

SJIF Rating: 8.586

ISSN: 2582-3930

IX. APPLICATIONS

o Remote software development

e Online coding education platforms

o Technical interviews

e Pair programming

e Hackathons and coding competitions

X. ADVANTAGES

e Real-time collaboration
e Improved productivity

e Reduced merge conflicts
e Secure authentication

e Scalable architecture

XI. LIMITATIONS

e Requires stable internet connection
e Performance depends on network latency
e Limited offline support

XII.LFUTURE ENHANCEMENTS
Future improvements include:

e Al-based code suggestions
e Support for multiple
languages

programming

o Integration with version control systems
o Enhanced security mechanisms

XII.CONCLUSION AND FUTURE WORK

The developed MERN-based system provides a
robust framework for real-time technical
collaboration. By integrating Clerk for security and
WebSockets for speed, the platform successfully
minimizes the friction found in traditional version
control [6][7].

Future Enhancements:

e Implementation of Conflict-free
Replicated Data Types (CRDTs) for better
offline-to-online reconciliation.

o Integration of a Virtual Execution
Environment (Docker-based) to run code
directly in the browser.

e Al-driven auto-completion using Large
Language Models (LLMs).

REFERENCE

[1] R. S. Pressman and B. R. Maxim, Software
Engineering: A Practitioner’s Approach, 9th ed.
New York, NY, USA: McGraw-Hill, 2019.

[2] I. Sommerville, Software Engineering, 10th ed.
Boston, MA, USA: Pearson, 2016.

[3] MongoDB Inc., “Data Modeling Introduction,”
MongoDB Documentation, 2023. [Online].
Available:
https://www.mongodb.com/docs/manual/core/data-
modeling-introduction/.

[4] M. Grinberg, Flask Web Development:
Developing Web Applications with Python, 2nd ed.
Sebastopol, CA, USA: O’Reilly Media, 2018.

[5] N. Gupta and S. Verma, “Comparative Analysis
of WebSockets and HTTP Long Polling for Real-
time Applications,” in Proc. 2021 Int. Conf. on
Computing and Communication Technologies
(ICCCT), 2021, pp. 245-250.

[6] Clerk Dev Inc., “Authentication and User
Management for React,” 2023. [Online]. Available:
https://clerk.com/docs.

[7] OpenJS Foundation, “Node.js Documentation,”
2023. [Online]. Available:
https://nodejs.org/en/docs.

© 2025, IJSREM | https://ijsrem.com

| Page 4

https://ijsrem.com/
https://www.mongodb.com/docs/manual/core/data-modeling-introduction/
https://www.mongodb.com/docs/manual/core/data-modeling-introduction/
https://clerk.com/docs
https://nodejs.org/en/docs

e Jeurnal

s m,
" ‘- 0 " . - " "
@Ri"g International Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

[8] Facebook Open Source, “React — A JavaScript
Library for Building User Interfaces,” 2024.
[Online]. Available: https://react.dev/.

[9] Express.js Foundation, “Express.js
Documentation,” 2024. [Online]. Available:
https://expressjs.com/.

[10] Socket.IO, “Socket.IO Documentation,” 2024.
[Online]. Available: https://socket.io/docs/v4/.

[11] Mozilla Developer Network, “WebRTC: Real-
Time Communication in Browsers,” 2024. [Online].
Available: https://developer.mozilla.org/en-
US/docs/Web/API/WebRTC _API.

[12] A. Bieniusa, M. Zawirski, N. Preguica, et al.,
“An Overview of Conflict-Free Replicated Data
Types,” Communications of the ACM, vol. 62, no.
2, pp. 58-66, 2019.

[13] Google Developers, “WebSockets API
Documentation,” 2023. [Online]. Available:

https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets API.

[14] Docker Inc., “Docker Documentation,” 2024.
[Online]. Available: https://docs.docker.com/.

[15] GitHub Inc., “GitHub REST API
Documentation,” 2024. [Online]. Available:
https://docs.github.com/en/rest.

© 2025, IJSREM | https://ijsrem.com | Page 5

https://ijsrem.com/
https://react.dev/
https://expressjs.com/
https://socket.io/docs/v4/
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://docs.docker.com/
https://docs.github.com/en/rest

