
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 1

Real-Time Code Collaboration System Using MERN Stack

Prof. Onkar Patil1, Prof. S. M. Kale2 , Ganesh Shrikant Munde3, Aniket Nanasaheb Jadhav4 , Aniket

Deepak Ashtekar5 .
1,2,3,4,5Department of Information Technology,M.S. Bidve Engineering College, Latur .

Email Id : onkarmpatil@gmail.com1, smkale14jan@gmail.com2 , ganeshmunde8748@gmail.com3 ,

aniketjadhav6134@gmail.com4, aniketashtekar2355@gmail.com5

Abstract

Real-time collaboration tools have become essential

in modern software development due to the rapid

growth of distributed teams, remote working

environments, and online education platforms.

Traditional version control systems allow

collaboration but do not support real-time visibility

of code changes, often leading to conflicts and

reduced productivity. This paper presents the design

and implementation of a real-time code

collaboration system using the MERN stack. The

proposed system allows multiple users to

simultaneously write, edit, and view source code in

real time. Secure user authentication is implemented

using Clerk, and MongoDB is used for efficient and

scalable data storage. Event-driven communication

ensures low latency synchronization across all

users. Experimental results demonstrate improved

collaboration efficiency, reduced conflicts, and

reliable performance under multiple concurrent

users.

Keywords—Real-Time Collaboration, MERN

Stack, MongoDB, WebSockets, Cloud Computing,

Software Engineering

I. INTRODUCTION

The software development industry has witnessed a

major shift toward collaborative and distributed

development environments. Teams often consist of

developers working from different geographical

locations, making real-time communication and

coordination a critical requirement. Traditional

tools such as Git-based version control systems

provide collaboration support, but they lack real-

time synchronization, which can lead to merge

conflicts and delayed feedback.[1]

Real-time code collaboration systems allow

multiple developers to work on the same source

code simultaneously while instantly viewing

changes made by others. Such systems are

especially useful in pair programming, technical

interviews, online coding education, and

collaborative problem-solving environments. This

paper proposes a real-time code collaboration

platform built using modern web technologies,

focusing on scalability, security, and

performance.[7]

II. LITERATURE REVIEW

Several real-time collaboration tools have been

developed in recent years. Platforms such as Google

Docs demonstrate the effectiveness of real-time

collaboration for document editing. Similar

approaches have been applied to code editing

platforms like Visual Studio Live Share and

CodePen.[3]

Existing systems often rely on operational

transformation (OT) or conflict-free replicated data

types (CRDTs) to maintain consistency among

multiple users. Research shows that event-driven

architectures using WebSockets significantly

reduce latency in real-time applications. However,

many existing platforms are either proprietary or

require complex setup. The proposed system aims

https://ijsrem.com/
mailto:onkarmpatil@gmail.com1
mailto:smkale14jan@gmail.com2
mailto:ganeshmunde8748@gmail.com
mailto:aniketjadhav6134@gmail.com4
mailto:aniketashtekar2355@gmail.com5

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 2

to provide a simple, scalable, and open architecture

using the MERN stack.[6][7]

III. PROBLEM STATEMENT

 Latency: Delays in reflecting changes made by

remote peers.

 Concurrency Conflicts: Overwriting logic when

two users edit the same line.

 State Management: Maintaining a consistent

"single source of truth" across various client

states[7].

 Access Control: Ensuring only authorized users

can modify specific repositories[6].

IV. SYSTEM ARCHITECTURE

The proposed system follows a client-server

architecture, as shown below:

A. Frontend

The frontend is developed using React.js, providing

a dynamic and responsive user interface. It includes

a real-time code editor, user dashboard, and project

management interface [7].

B. Backend

The backend is built using Node.js and Express.js,

which handle API requests, authentication, and real-

time event management [7].

C. Database

MongoDB is used as the database for storing user

credentials, project details, and code snapshots. Its

NoSQL nature allows flexible schema design and

high scalability [2].

D. Real-Time Communication

Real-time communication is achieved

using WebSockets, enabling instant broadcasting

of code changes to all connected clients [5].

V. TECHNOLOGIES USED

 A. Frontend (React.js): Utilizes a component-

based architecture to render the code editor (using

libraries like Monaco or CodeMirror). It maintains

a local state that stays in sync with the server [7].

 B. Backend (Node.js & Express): Acts as the

orchestrator. It handles RESTful API routes for

project management and maintains the WebSocket

server for live traffic [7].

 C. Database (MongoDB) : Stores persisted data

such as user profiles, project structures, and code

snippets in JSON-like documents[2].

 D. Real-Time Layer (Socket.io/ WebSockets):

Facilitates the bidirectional communication channel

between the client and server [5].

VI. IMPLEMENTATION DETAILS

A. WebSocket Event Handling

We utilized Socket.io to manage the lifecycle of a

coding session. The server listens for a

CODE_CHANGE event and broadcasts the delta to

the specific room [5].

JavaScript

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 3

// Server-side Logic (Node.js)

io.on("connection", (socket) => {

 socket.on("join-room", ({ roomId, username })

=> {

 socket.join(roomId);

 socket.to(roomId).emit("user-joined", {

username });

 });

 socket.on("code-change", ({ roomId, code }) =>

{

 // Broadcast to everyone in the room except the

sender

 socket.in(roomId).emit("code-update", code);

 });

});

B. Client-Side Editor Integration

The frontend uses the useEffect hook to synchronize

the local editor state with incoming socket events.

To prevent infinite loops (where a change triggers

an emit, which triggers a change), we implement a

conditional check on the incoming data.

C. Database Schema

MongoDB stores the persisted state of the

collaborative project. A typical document structure

is as follows [2]:

JSON

{

 "_id": "project_uuid",

 "title": "Main.js",

 "content": "console.log('Hello World');",

 "ownerId": "clerk_user_id",

 "collaborators": ["user_1", "user_2"],

 "updatedAt": "2023-10-27T10:00:00

VII. ALGORITHMIC FLOW

The algorithm follows a structured sequence

starting from user authentication to real-time code

synchronization across clients, ensuring consistency

and responsiveness [1], [5].

1. User logs into the system

2. User creates or joins a project

3. Code editor initializes real-time session

4. User edits code

5. Changes are sent to server

6. Server broadcasts updates to all users

7. Clients update editor view instantly

VIII.TESTING AND RESULTS

A. Functional Testing

All modules were tested to ensure correct

functionality, including login, project creation, and

code synchronization.

B. Performance Testing

The system was tested with multiple concurrent

users. Results showed:

• Low latency (<100 ms) update propagation

• Stable performance under load

• No data loss during simultaneous edits

C. Security Testing

Authentication and authorization mechanisms were

tested to prevent unauthorized access.

The system was evaluated based on Propagation

Delay and Concurrency Stability.

Number of

Users

Average

Latency (ms)

Server CPU

Load (%)

2 35 4%

5 58 9%

10 92 18%

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 4

IX. APPLICATIONS

• Remote software development

• Online coding education platforms

• Technical interviews

• Pair programming

• Hackathons and coding competitions

X. ADVANTAGES

• Real-time collaboration

• Improved productivity

• Reduced merge conflicts

• Secure authentication

• Scalable architecture

XI. LIMITATIONS

• Requires stable internet connection

• Performance depends on network latency

• Limited offline support

XII.FUTURE ENHANCEMENTS

Future improvements include:

• AI-based code suggestions

• Support for multiple programming

languages

• Integration with version control systems

• Enhanced security mechanisms

XIII.CONCLUSION AND FUTURE WORK

The developed MERN-based system provides a

robust framework for real-time technical

collaboration. By integrating Clerk for security and

WebSockets for speed, the platform successfully

minimizes the friction found in traditional version

control [6][7].

Future Enhancements:

• Implementation of Conflict-free

Replicated Data Types (CRDTs) for better

offline-to-online reconciliation.

• Integration of a Virtual Execution

Environment (Docker-based) to run code

directly in the browser.

• AI-driven auto-completion using Large

Language Models (LLMs).

REFERENCE

[1] R. S. Pressman and B. R. Maxim, Software

Engineering: A Practitioner’s Approach, 9th ed.

New York, NY, USA: McGraw-Hill, 2019.

[2] I. Sommerville, Software Engineering, 10th ed.

Boston, MA, USA: Pearson, 2016.

[3] MongoDB Inc., “Data Modeling Introduction,”

MongoDB Documentation, 2023. [Online].

Available:

https://www.mongodb.com/docs/manual/core/data-

modeling-introduction/.

[4] M. Grinberg, Flask Web Development:

Developing Web Applications with Python, 2nd ed.

Sebastopol, CA, USA: O’Reilly Media, 2018.

[5] N. Gupta and S. Verma, “Comparative Analysis

of WebSockets and HTTP Long Polling for Real-

time Applications,” in Proc. 2021 Int. Conf. on

Computing and Communication Technologies

(ICCCT), 2021, pp. 245–250.

[6] Clerk Dev Inc., “Authentication and User

Management for React,” 2023. [Online]. Available:

https://clerk.com/docs.

[7] OpenJS Foundation, “Node.js Documentation,”

2023. [Online]. Available:

https://nodejs.org/en/docs.

https://ijsrem.com/
https://www.mongodb.com/docs/manual/core/data-modeling-introduction/
https://www.mongodb.com/docs/manual/core/data-modeling-introduction/
https://clerk.com/docs
https://nodejs.org/en/docs

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com | Page 5

[8] Facebook Open Source, “React – A JavaScript

Library for Building User Interfaces,” 2024.

[Online]. Available: https://react.dev/.

[9] Express.js Foundation, “Express.js

Documentation,” 2024. [Online]. Available:

https://expressjs.com/.

[10] Socket.IO, “Socket.IO Documentation,” 2024.

[Online]. Available: https://socket.io/docs/v4/.

[11] Mozilla Developer Network, “WebRTC: Real-

Time Communication in Browsers,” 2024. [Online].

Available: https://developer.mozilla.org/en-

US/docs/Web/API/WebRTC_API.

[12] A. Bieniusa, M. Zawirski, N. Preguiça, et al.,

“An Overview of Conflict-Free Replicated Data

Types,” Communications of the ACM, vol. 62, no.

2, pp. 58–66, 2019.

[13] Google Developers, “WebSockets API

Documentation,” 2023. [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/API/WebSockets_API.

[14] Docker Inc., “Docker Documentation,” 2024.

[Online]. Available: https://docs.docker.com/.

[15] GitHub Inc., “GitHub REST API

Documentation,” 2024. [Online]. Available:

https://docs.github.com/en/rest.

https://ijsrem.com/
https://react.dev/
https://expressjs.com/
https://socket.io/docs/v4/
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://docs.docker.com/
https://docs.github.com/en/rest

