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Abstract— In response to the growing demands of national 

defense and border security, this paper presents a real-time, 

intelligent surveillance system for the detection, classification, 

and tracking of military and civilian vehicles. The system 

leverages advanced deep learning architectures—YOLOv8 and 

YOLOv9—for high-speed object detection, trained on a publicly 

available labeled dataset containing diverse vehicle types. 

Through comparative analysis using precision, recall, F1-score, 

and mAP metrics, YOLOv9 emerged as the superior model and 

was integrated with the DeepSORT tracking algorithm to 

maintain consistent object identity across video frames. The 

final system is implemented using Python and supports real- 

time performance on both GPU-enabled platforms and edge 

devices like NVIDIA Jetson. Extensive testing confirms the 

system’s ability to accurately distinguish between military and 

civilian vehicles in varied conditions, offering a scalable, robust 

solution for defense surveillance. Extensive testing 

demonstrated that YOLOv9 achieved a mean Average Precision 

(mAP@0.5) of 76.8% and an inference speed of 52 FPS, making 

it suitable for real-time deployment in defense scenarios. When 

integrated with DeepSORT, the system maintained over 90% 

tracking consistency, even in the presence of occlusion and fast 

motion. This work lays the groundwork for future 

developments such as behavioral anomaly detection, automated 

alerts, and multi-camera integration, thereby enhancing 

situational awareness and decision-making in sensitive 

environments. 
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I. INTRODUCTION 

The increasing complexity of modern military threats— 
particularly in border zones, conflict regions, and high- 
security installations—has elevated the demand for 
intelligent surveillance systems capable of real-time 
situational awareness and threat identification [1]. Traditional 
surveillance systems, typically dependent on manual 
monitoring or rule-based video analytics, are often slow, 
error-prone, and difficult to scale. These limitations create 
vulnerabilities in national security, especially when rapid 
identification of hostile vehicles or unauthorized intrusions is 
required [2], [3]. 

Recent advancements in deep learning and computer 
vision have led to the development of robust and scalable 
object detection frameworks, capable of processing real-time 
video streams with high accuracy [4]. Among these, the You 
Only Look Once (YOLO) family of models has gained 
significant traction due to its ability to perform object 
classification and localization in a single pass, making it 
ideal for high-speed detection tasks [5], [6]. In parallel, 
multi-object tracking algorithms like DeepSORT have 
emerged to complement detection systems by preserving 
object identities across video frames, enabling consistent 
monitoring of vehicle movements and behaviors in dynamic 
environments [7]. Military zones, border crossings, and 
critical infrastructure sites frequently involve complex and 
cluttered scenes where both military and civilian vehicles 
operate in close proximity. 

However, most existing surveillance systems are not 
equipped to handle the challenges of occlusion, variable 
lighting, or fast-moving objects, and often lack the 
intelligence to differentiate subtle visual cues that separate 
civilian cars from military trucks, tanks, or aircraft [9]. 

To address these limitations, this research proposes a deep 
learning-based system that combines the YOLOv9 object 
detection model with the DeepSORT tracking algorithm to 
identify, classify, and track military and civilian vehicles in 
real time. The system is trained on a labeled dataset curated 
from Mendeley Data and other public sources, representing 
diverse vehicle categories and environmental conditions. 
YOLOv8 and YOLOv9 are both evaluated in terms of mean 
Average Precision (mAP), precision, recall, and F1-score, 
with YOLOv9 demonstrating superior performance for 
deployment. 

The system is designed to run on both high-performance 
GPUs and low-power edge devices such as the NVIDIA 
Jetson series, ensuring flexibility and scalability in various 
defense scenarios. Real-time visualization and output logging 
are implemented using OpenCV and Python-based tools to 
support operational monitoring and post-event analysis. The 
integration of deep learning with multi-object tracking not 
only enhances the accuracy of surveillance but also provides 
a foundation for future innovations in automated alert 
systems, behavior analysis, and multi-camera fusion [10], 
[11]. 

To ensure reliability and adaptability in real-world 
applications, the system has been rigorously tested under 
varied conditions, including partial occlusion, varying light 
levels, and high-speed object movement. The DeepSORT 
tracking module enhances robustness by maintaining object 
identity across video frames, even when vehicles overlap or 
temporarily exit the field of view. Such capabilities are 
essential in high-security environments where uninterrupted 
monitoring is critical. 

Moreover, the proposed approach emphasizes modularity 
and extensibility. By separating detection, tracking, and 
visualization into distinct components, the system allows for 
easy integration of future enhancements such as geospatial 
tagging, behavioral anomaly detection, and cloud-based 
analytics. This modular framework also supports rapid 
retraining or model updates as newer object detection 
algorithms emerge. 

The key contributions of this system include (1) a 
modular, real-time architecture for vehicle detection and 
tracking using state-of-the-art deep learning models 
(YOLOv8 and YOLOv9), (2) integration of the DeepSORT 
algorithm for identity-preserving multi-object tracking across 
video frames, and (3) deployment-ready implementation with 
support for GPU systems and edge devices such as NVIDIA 
Jetson. By combining real-time object detection, robust 
tracking, and scalable deployment, the system offers an 
effective and practical solution for enhancing surveillance in 
defense and border security applications. 
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In such contexts, distinguishing between different vehicle types 
in real time is essential to minimize false alarms, prevent 
accidental engagements, and improve operational decision- 
making [8].To address existing gaps in traditional surveillance 
systems, the proposed framework automates the detection and 
classification of military and civilian vehicles while maintaining 
high tracking consistency in dynamic environments. Leveraging 
labeled datasets, structured training pipelines, and Python-based 
visualization, the system delivers accurate, traceable, and real- 
time insights. Its modular design supports future enhancements 
such as behavioral analysis, multi-camera integration, and 
automated alerting—offering a scalable and intelligent 
framework for real-world defense monitoring. 

II. RELATED WORK 
The increasing need for intelligent surveillance and threat 
detection in defense applications has led to significant 
advancements in automated object detection and multi-object 
tracking technologies. Early efforts in vehicle detection and 
monitoring relied heavily on background subtraction, edge 
detection, and handcrafted features combined with traditional 
classifiers such as support vector machines (SVM) and random 
forests [1], [2]. Although useful in controlled settings, these 
systems lacked the scalability and robustness required for real-
time deployment in complex military environments. 
The introduction of deep learning-based models, particularly 
convolutional neural networks (CNNs), revolutionized object 
detection by allowing models to learn hierarchical spatial 
features directly from data. Among these, the YOLO (You Only 
Look Once) series emerged as a dominant architecture due to its 
ability to perform detection in a single pass, making it suitable 
for real-time applications [3], [4]. YOLOv4 introduced several 
architectural innovations such as CSPDarknet, PANet, and spatial 
pyramid pooling, which improved detection accuracy and speed. 
YOLOv8 and YOLOv9 further enhanced performance by 
incorporating anchor-free mechanisms, decoupled heads, and 
transformer-inspired components [5]. 
In parallel, tracking algorithms evolved to support identity 
preservation across video frames. While the original SORT 
(Simple Online and Realtime Tracking) algorithm used Kalman 
filtering and Intersection-over-Union (IoU) matching, it 
struggled in crowded scenes with occlusion. DeepSORT 
extended this by integrating a deep appearance feature extractor 
that enables more robust association between detections and 
object identities [6], [7]. 
Several studies have explored the integration of YOLO with 
tracking algorithms for defense and civilian surveillance tasks. 
For instance, Ali et al. [8] implemented a YOLO-based system 
for military tank recognition, demonstrating the potential of deep 
learning in battlefield reconnaissance. Similarly, researchers 
have proposed using YOLO variants in traffic surveillance, 
drone-based monitoring, and border security systems to identify 
moving vehicles and detect anomalies [9], [10]. 
Despite these advancements, many existing systems are limited 
in scope—they often target general object detection or traffic 
monitoring and do not specifically address the critical 
requirement of distinguishing military vehicles from civilian 
ones in real time. Moreover, most implementations are not 
optimized for edge deployment or integration into scalable, 
modular defense infrastructures. Tracking accuracy also remains 
a challenge in cases involving occlusion, rapid motion, or 
overlapping objects in video feeds. 
To overcome these limitations, the proposed system introduces 
an end-to-end, modular pipeline that combines YOLOv9 for 
high-performance object detection and DeepSORT for 
identity-consistent vehicle tracking. 

The system is trained on a labeled dataset consisting of 
diverse military and civilian vehicle classes, including tanks, 
trucks, helicopters, aircraft, and cars. It is designed for real- 
time deployment on GPU-based systems and edge devices 
like NVIDIA Jetson, and has been tested for robustness under 
occlusion, low light, and high-speed conditions. 

By integrating state-of-the-art deep learning models with 
real-time tracking and scalable deployment, this system 
advances the current state of research in surveillance for 
defense applications. It addresses key gaps in vehicle 
classification accuracy, tracking consistency, and field deploy 
ability, contributing to enhanced situational awareness and 
decision-making in high-security environments. 

III. PROBLEM STATEMENT 
Despite significant advancements in object detection and 

tracking, existing surveillance systems deployed in defense 
and border security applications face critical limitations in 
terms of accuracy, scalability, and real-time performance. 
Many traditional or semi-automated systems rely on outdated 
vision techniques or human monitoring, which fail to deliver 
the speed and consistency required for high-risk military 
environments [1], [4]. Additionally, most object detection 
frameworks are designed for general-purpose scenarios such 
as traffic monitoring or pedestrian detection and do not 
support the real-time differentiation of military and civilian 
vehicles. 

Another pressing challenge is the lack of robust multi- 
object tracking under dynamic and cluttered conditions. 
Current systems often fail to maintain object identity across 
frames, particularly during occlusion, fast motion, or when 
multiple similar vehicles appear simultaneously. This 
undermines the effectiveness of surveillance in critical zones, 
where continuous tracking of hostile targets or unauthorized 
entries is essential [5], [9]. 

Furthermore, most surveillance pipelines are not 
optimized for deployment on edge devices like NVIDIA 
Jetson, which are essential in remote or low-resource defense 
scenarios. They also lack modularity, making it difficult to 
update components (e.g., models or tracking algorithms) 
without rebuilding the entire system. In addition, these 
systems often do not offer scalability across different terrains, 
lighting conditions, or vehicle types, leading to high false 
alarm rates and compromised situational awareness. 

To address these limitations, this paper proposes a real- 
time, modular surveillance system that combines state-of-the- 
art YOLOv9 for accurate vehicle detection with DeepSORT 
for identity-preserving multi-object tracking. The system is 
trained on a curated dataset of military and civilian vehicles 
and optimized for performance on both high-end GPUs and 
low-power edge devices. Unlike conventional systems, the 
proposed solution provides consistent, real-time monitoring 
with the capability to distinguish between different vehicle 
types, enhancing threat detection, reducing false positives, 
and enabling rapid response in mission-critical defense 
operations. 

IV. METHODOLOGY 
The proposed vehicle detection and tracking system is 

designed as a modular, end-to-end pipeline for real-time 
surveillance in defense applications. Figure 1 depicts the 
overall architecture, which consists of the following 
components: data acquisition and preprocessing, object 
detection model training, multi-object tracking integration, 
real-time inference and visualization, edge deployment 
optimization, and performance evaluation. The overall 
architecture is illustrated in Fig. 1. 

A. Data Acquisition and Preprocessing 
A diverse dataset was compiled from Mendeley Data, 

COCO, Open Images, and custom drone footage. Images 

https://ijsrem.com/
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were annotated in YOLO format using LabelImg for six classes: 
military truck, tank, helicopter, aircraft, civilian car, and 
civilian aircraft. All images were resized to 640×640 pixels, 
normalized to [0, 1], and augmented using horizontal flips, ±15° 
rotations, brightness/contrast adjustments, and scaling. The 
dataset was split into 70% training, 20% validation, and 10% 
testing, ensuring balanced class representation. 

B. YOLOv9 Object Detection Training 

A dedicated YOLOv9 training module was developed 

using the annotated dataset via the Ultralytics 

implementation. YOLOv8 and YOLOv9 models were 

trained using stochastic gradient descent (SGD) with a 

momentum of 0.937 and weight decay of 0.0005. The 

learning rate was initialized at 0.01 and scheduled using 

cosine annealing across 300 training epochs. Model 

training was conducted with a batch size of 16 on an 

NVIDIA RTX 3080 GPU. Performance evaluation was 

based on standard object detection metrics, including 

mean Average Precision at IoU threshold 

0.5 (mAP@0.5), precision, recall, and F1-score. 

YOLOv9 outperformed YOLOv8 and was selected for 

deployment due to its superior accuracy and inference 

speed. The overall architecture is illustrated in Fig. 1. 

E. Edge Deployment Optimization 

To ensure efficient performance on edge devices, several 
optimization techniques were applied. YOLOv9 models were 
quantized to INT8 precision using NVIDIA TensorRT to reduce 
computational overhead and memory usage [9]. Additional pruning 
and graph-level optimizations were employed to accelerate model 
inference further [10]. An adaptive resolution strategy was also 
implemented, dynamically reducing the input resolution to 
416×416 pixels during low-activity periods. This approach 
conserves device resources while maintaining detection accuracy 
in real-time operations [11]. 

F. Performance Evaluation 

The system was evaluated using the test set under various 
challenging conditions, including occlusion, poor lighting, and 
high-speed vehicle motion. Detection accuracy was measured 
using standard metrics: mean Average Precision at IoU threshold 
0.5 (mAP@0.5), precision, recall, and F1-score [14]. Tracking 
effectiveness was assessed using Multiple Object Tracking 
Accuracy (MOTA), ID-switch count, and Mostly Tracked (MT) 
ratio [15]. Additionally, latency benchmarks were recorded on both 
high-performance GPUs and edge platforms such as NVIDIA 
Jetson to evaluate real- time responsiveness. 

G. Real-Time Monitoring and Automation 

The system’s modular architecture supports seamless integration of 
advanced capabilities, including multi-camera fusion for wider 
coverage and behavioral anomaly detection to flag irregular 
vehicle patterns such as loitering or route deviations [16]. Real-
time alerting mechanisms can also be implemented to notify 
security personnel upon detection of unauthorized or suspicious 
military vehicles. This flexible and extensible framework ensures 
adaptability to evolving defense surveillance needs, including 
large-scale deployments across border zones, restricted areas, and 
critical infrastructure. 

 

 

 

 

 

Fig 1 : Architecture Diagram 

C. DeepSORT-Based Tracking Integration 
YOLOv9 detections were passed to the DeepSORT module for 
real-time multi-object tracking. DeepSORT combines a CNN-
based appearance embedding [6], Kalman filter motion 
prediction [1], and Hungarian algorithm–based data association 
using a joint IoU and cosine distance metric [7]. To improve 
identity consistency, tracking hyper parameters were set with a 
maximum age of 30 frames and a cosine distance threshold of 
0.2 [6]. This integration enabled robust identity preservation 
across frames, even under occlusion or motion blur, ensuring 
reliable vehicle tracking for defense surveillance scenarios [8]. 

D. Real-Time Inference and Visualization 
A real-time inference pipeline was implemented using Python 
and OpenCV [12], enabling frame-by-frame object detection 
and tracking. Each video frame was processed sequentially to 
overlay bounding boxes, class labels, and persistent object IDs 
generated by the YOLOv9 and DeepSORT modules. The 
system consistently achieved an average throughput of 50 
frames per second (FPS) on an NVIDIA RTX 3080 GPU and 
approximately 20 FPS on an NVIDIA Jetson Nano edge device 
[13]. For downstream analysis and traceability, each detection 
was logged with metadata including timestamp, object ID, 
object class, and bounding box coordinates. The results were 
saved in CSV format to support post-event analysis and 
performance monitoring. 

V. EXPERIMENTAL SETUP 
The proposed vehicle detection and tracking system was 
experimentally evaluated using a test dataset comprising military 
and civilian vehicles collected from Mendeley Data, Open 
Images, and custom drone and surveillance camera footage [1], 
[8]. The dataset included varied scenes representing different 
environments, lighting conditions, and vehicle motion types to 
simulate real-world defense and border security scenarios. 
The system was implemented using Python with the Ultralytics 
YOLOv9 model [5] and the DeepSORT tracking algorithm [6]. 
Training and validation were conducted on an NVIDIA RTX 
3080 GPU, while deployment testing was also performed on edge 
devices such as the NVIDIA Jetson Nano [13]. The detection 
models were trained over 300 epochs using a batch size of 16, 
with data augmentation and image preprocessing standardized to 
640×640 resolution. All real- time inference and visualization 
components were built using OpenCV [12], with output results 
logged in CSV format, including timestamp, object ID, class 
label, and bounding box coordinates. The DeepSORT tracker 
maintained persistent IDs for each vehicle across frames to 
ensure consistent tracking and behavior analysis [6]. 

System performance was evaluated using detection metrics such 
as mean Average Precision at IoU 0.5 (mAP@0.5), precision, 
recall, and F1-score [14], along with tracking metrics including 
Multiple Object Tracking Accuracy (MOTA), Mostly Tracked 
(MT) ratio, and ID- switch count [15]. Additional latency analysis 
was performed to measure frame processing time across both 
GPU and edge hardware platforms [13]. 

While standard accuracy metrics such as precision, recall, 
and mAP@0.5 were used for evaluating detection 
performance [14], the primary focus of the system was on 
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achieving consistent real-time tracking and reliable 
classification of military and civilian vehicles. The tracking 
output was assessed based on metrics like ID-switch count, 
and Mostly Tracked (MT) ratio [15]. In addition, system 
responsiveness was measured in terms of frame processing 
latency across both GPU-based and edge-device 
deployments [13]. The system’s stability and tracking 
consistency were also qualitatively evaluated under 
challenging conditions such as occlusion, low lighting, and 
fast-moving vehicle scenarios, confirming its suitability for 
real-world defense surveillance applications [8]. 

Sl.No Component Details 

1 Data Sources Mendeley Data, COCO, 
Open Images datasets, 
custom drone/camera footage 

2 Evaluation 
Context 

Military and civilian vehicle 
detection in border security 

environments 

3 Models 

Used 

YOLOv8 and YOLOv9 

(Ultralytics); DeepSORT for 
multi-object tracking 

4 Deployment 

Platform 

Python-based system using 
OpenCV; deployed on GPU and 
NVIDIA Jetson Nano 

5 Optimizati 

on Strategy 

TensorRT-based INT8 quantization, 
model pruning, and adaptive 
resolution] 

6 Output 

Format 

Real-time video with bounding 
boxes and object IDs, metadata 
logged as CSV 

This configuration ensures that the system remains adaptive, 
efficient, and suitable for deployment in real-world defense 
and border surveillance operations. 

VI. RESULTS AND ANALYSIS 
The effectiveness of the proposed YOLOv9-based 

military and civilian vehicle detection and tracking system 
was validated through rigorous experimental testing on real- 
world video streams and curated datasets. The dataset 
included a wide range of vehicular imagery captured under 
various lighting conditions (daylight, dusk, night), weather 
variations (clear, foggy), and angles (aerial, ground-based). 
Six vehicle classes—military truck, tank, helicopter, aircraft, 
civilian car, and civilian aircraft—were used to evaluate the 
system’s robustness and accuracy. 

The YOLOv9 model was trained and validated on 
annotated datasets in YOLO format using Ultralytics’ 
implementation. Compared to its predecessor, YOLOv8, the 
YOLOv9 model showed a notable improvement in precision 
and speed, largely due to architectural enhancements such as 
decoupled head prediction and anchor-free detection [5]. The 
model achieved a mean Average Precision (mAP@0.5) of 
76.8%, with an overall precision of 82.1% and recall of 
78.4%, which indicates balanced detection capability across 
all six vehicle classes [14]. In particular, detection accuracy 
was highest for tanks and military trucks, likely due to their 
distinct geometric shapes and size. Civilian aircraft showed 
slightly reduced accuracy, attributed to their smaller visual 
footprint in aerial imagery. The system was resilient to 
background clutter, motion blur, and partial occlusions. 
YOLOv9 also outperformed YOLOv8 in bounding box 
tightness and reduced false positives under challenging 
scenarios [14]. 

The DeepSORT algorithm was integrated to provide 
reliable multi-object tracking across video frames. It utilized 
appearance embeddings, motion prediction via Kalman 
filtering, and Hungarian-based data association [6]. The 
system achieved a Multiple Object Tracking Accuracy 
(MOTA) of 74.3%, a Mostly Tracked (MT) ratio of 88%, and 
an average ID-switch rate of just 0.9%, demonstrating strong 

identity preservation even in dynamic scenes [15]. The tracker was 
able to handle crossing paths, vehicle entry/exit, and overlapping 
movement without significant identity fragmentation. Scenarios 
with multiple similar-looking vehicles (e.g., convoys of military 
trucks) still maintained identity integrity due to the strength of the 
re-identification embeddings used in DeepSORT [6]. 

Real-time performance was benchmarked on both a high- end 
NVIDIA RTX 3080 GPU and a resource-constrained NVIDIA 
Jetson Nano [13]. The model achieved an average inference 
latency of 19 ms per frame on GPU and 48 ms per frame on 
Jetson, delivering frame rates of approximately 50 FPS and 20 
FPS, respectively. o optimize inference on edge devices, the 
system was compressed using INT8 quantization with NVIDIA 
TensorRT, pruning, and layer fusion. An adaptive resolution 
scaling mechanism dynamically reduced the input frame size from 
640×640 to 416×416 in low-activity scenes, significantly reducing 
computational overhead without sacrificing detection integrity [9], 
[10]. 

The real-time pipeline, developed in Python using OpenCV 
[12], displayed annotated video streams with color- coded 
bounding boxes, class labels, and unique object IDs. It included a 
built-in logging mechanism that recorded metadata for each 
frame—comprising timestamp, object ID, class, bounding box 
coordinates, and confidence score—into structured CSV logs for 
further offline analysis. The visualization was responsive and 
intuitive, enabling operational users to monitor high-security zones 
with minimal delay. The consistency of bounding box overlays and 
tracking lines allowed for fast visual threat recognition. 

To evaluate the system’s robustness, a series of experiments 
were conducted under simulated operational scenarios 
representative of real-world defense and surveillance 
environments. In occlusion tests, the YOLOv9 model consistently 
detected vehicles that were partially blocked by objects such as 
trees and buildings, achieving confidence scores exceeding 70% 
due to its enhanced feature fusion and object localization 
capabilities [5]. 

 

During low-light testing, detection precision experienced a 

moderate drop of approximately 8%, but still remained above 70% 

for military vehicles, likely because of their pronounced structural 

outlines and silhouette consistency [14]. The system also 

demonstrated high resilience to high- speed movement, 

successfully detecting and tracking fast- moving targets such as 

aircraft flyovers and rapidly advancing tanks, while maintaining 

minimal ID-switches and high tracking consistency through the 

DeepSORT algorithm [6], [15]. In aerial surveillance simulations 

using drone footage, the model maintained detection accuracy 

across varying altitudes and zoom levels, affirming its adaptability 

and scalability for wide-area monitoring tasks [8]. 

 

Fig. 2. Tracking Confidence Over Time 

 

This line plot visualizes the average confidence level of 
tracking predictions across 250 sequential frames. The y-axis 
represents the response confidence, while the x-axis tracks 
time in frames. The system maintained an average 
confidence level consistently above 90%, even during object 
transitions and movement across the frame. This reflects the 
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robustness of the DeepSORT algorithm in maintaining reliable 
identity associations across multiple frames, despite dynamic 
environmental changes or partial occlusion. The stability of 
confidence over time ensures dependable multi-object tracking 
for applications requiring sustained situational awareness, such 
as defense surveillance and convoy monitoring [6], [15]. 
 

Fig. 3. Per-Class Detection Precision 
 

This bar chart displays the per-class detection precision for all six 
trained vehicle categories: tank, military truck, helicopter, 
aircraft, civilian car, and civilian aircraft. Military truck and tank 
categories demonstrated the highest precision, surpassing 90%, 
indicating the model’s ability to recognize large, distinct vehicle 
features. Helicopters and civilian cars also performed well but 
showed minor variation due to overlapping profiles and 
background interference. Detection of aircraft had the lowest 
precision, likely due to high-altitude views reducing resolution 
and distinct feature representation. These insights can inform 
future dataset balancing and augmentation strategies to improve 
aerial vehicle detection reliability [5], [14]. 
 

Fig. 4. Latency Comparison: GPU vs Edge 

This bar graph compares frame-level latency across two 
deployment platforms—NVIDIA RTX 3080 (GPU) and 
NVIDIA Jetson Nano (edge). Across all classes, GPU inference 
consistently maintained sub-20 ms latency, while Jetson Nano 
achieved 2.5× performance gains after INT8 quantization and 
adaptive resolution scaling (640×640 to 416×416). This figure 
highlights the system’s deployability in both high-performance 
and low-power environments. Efficient edge performance 
makes the model suitable for remote, autonomous, or energy-
constrained deployments such as drones, border surveillance 
posts, or embedded defense systems [9], [13]. 
 

Fig. 5. Vehicle Frequency Heatmap 

This heatmap depicts the frequency distribution of detected 
vehicle classes across different test scenarios. Civilian cars 

appeared most frequently, suggesting a higher density in 
urban and semi-urban datasets. Military aircraft and 
helicopters showed lower occurrences, reflective of their 
sparse presence in publicly available datasets. This 
visualization provides insight into class imbalance, helping in 
future dataset collection or synthetic data generation to 
ensure a more balanced representation across vehicle types. 
Balanced datasets can directly impact model generalization 
and reduce false positives, particularly in underrepresented 
categories [1], [8]. 

 

Fig. 6. ID Retention in Varied Environments 

This bar chart compares tracking stability—measured by 

Mostly Tracked (MT) count and ID-switches—in different 

environments: cluttered (urban), open (rural), and 

structured (e.g., airfields). In cluttered scenes, ID-switches 

increased due to visual overlap and occlusion, while open 

environments maintained near-perfect identity retention 

due to lower object density and background simplicity. 

This finding confirms the system’s strength in open-area 

surveillance, such as border patrol and no-fly zone 

monitoring, where reliable trajectory mapping is critical 

[6], [15]. 

 
Fig. 7. Frame-by-Frame mAP Fluctuation 

This time-series line graph tracks changes in the mean 
Average Precision (mAP) per frame over the course of a 500- 
frame sequence. The model began with an initial mAP near 
65%, which rapidly improved and stabilized above 85% as 
the detection layers adapted to temporal consistency and 
feature-rich frames. Occasional dips occurred during sudden 
motion blur or shadow interference but were promptly 
corrected, demonstrating the system’s resilience and 
convergence stability. This figure emphasizes the model’s 
ability to maintain detection accuracy in live streams, even 
with fluctuating scene quality or camera motion [14]. 

VI.CONCLUSION AND FUTURE WORK 

This paper presents a real-time, scalable, and edge- 
deployable framework for military and civilian vehicle 
detection and tracking, leveraging the YOLOv9 object 
detection model in combination with the DeepSORT tracking 
algorithm. The system was designed and evaluated under 
diverse operational conditions, including occlusion, low 
lighting, high-speed movement, and aerial surveillance, to 
simulate  real-world  defense  and  border  monitoring 
environments.  The  results  demonstrate  high  detection 
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accuracy (mAP@0.5 = 76.8%), robust identity tracking 
(MOTA = 74.3%), and real-time inference capability (~50 
FPS on GPU and ~20 FPS on Jetson Nano), establishing the 
model’s practical applicability for both high-performance 
and edge computing platforms. 
Key strengths of the system include its modular design, 
adaptability to constrained environments, and robust 
performance under environmental challenges. The 
integration of model quantization (INT8), resolution 
scaling, and TensorRT acceleration enabled significant 
latency reduction on edge hardware, without compromising 
detection fidelity. Real-time visualization and structured 
logging further support actionable deployment in 
surveillance applications. 
However, the system is not without limitations. Detection 
accuracy for small-scale or high-altitude objects—such as 
aircraft—was lower, primarily due to dataset imbalance and 
object scale. Additionally, ID-switches increased under 
heavy occlusion in cluttered scenes. While the current 
model supports six predefined vehicle categories, extending 
it to new or evolving vehicle types would require retraining. 
Furthermore, the absence of contextual behavior analysis 
(e.g., loitering or unauthorized route deviations) limits 
situational reasoning beyond object recognition and 
tracking. 
Future work will focus on enhancing model robustness 
through domain adaptation and expanding the dataset to 
include more varied military assets, aerial perspectives, and 
regional terrains. Integration with multi-camera fusion 
systems and geospatial mapping layers will be explored to 
broaden coverage and tracking continuity. We also plan to 
incorporate behavior recognition modules for anomaly 
detection, along with automated alert mechanisms for real- 
time operator notification. Additionally, evaluating system 
performance with real-world field data and human-in-the- 
loop testing will be essential to validate reliability and 
usability in active defense scenarios. 
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