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ABSTRACT  

Fitness activities offer numerous health benefits, but improper execution can lead to inefficiency and potential harm. 

When performing exercises incorrectly, individuals often fail to maintain the correct form or posture. In this research, a 

program has been developed to assess and provide feedback on the user's workout posture. Utilizing a camera, this system 

offers real-time interaction by detecting joints and evaluating workout accuracy through vector angles. The 

implementation leverages MediaPipe, a cross- platform ML framework compatible with Windows and Linux computers 

equipped with a webcam.  
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I. INTRODUCTION  

 Engaging in exercises is a commendable way to enhance one's fitness and overall health. However, the improper 

execution of exercises can pose significant risks, particularly when dealing with heavy weights that have the potential to 

cause severe muscle or ligament injuries. Many individuals enthusiastically participate in workout routines but often 

struggle to maintain the correct technique or posture. Such difficulties may stem from a lack of formal training, be it from 

fitness classes or a personal trainer, as well as the consequences of muscle soreness or attempting to lift weights beyond 

their capacity. Our goal is to offer a solution that helps individuals adopt proper exercise postures, thereby preventing 

injuries and enhancing the effectiveness of their workouts, using nothing more than a computer and a webcam.  

In this research, we delve into the utilization of skeleton- based representations, which offer the advantages of being low- 

dimensional, interpretable, person-independent, and privacy- preserving. These skeletal representations allow us to 

concentrate on the essence of motion while making generalizations about an individual's appearance and background. We 

present a real-time body tracking pipeline that predicts the hand skeleton and the overall body concept, leveraging the 

capabilities of MediaPipe, a versatile framework for developing cross-platform machine learning solutions. Our approach 

involves posture estimation techniques, where the accuracy of exercise execution is assessed by fine-tuning the range of 

angles between relevant joints.  

By combining these innovative techniques with the power of technology, we aim to revolutionize the way individuals 

approach exercise, making it safer, more efficient, and accessible to a broader audience. This system not only enhances 

the quality of workouts but also contributes to injury prevention and overall well-being. 

II.LITERATURE SURVEY 

[1] In this paper, the writer presents a body posture smart recommendation system, which detects user’s posture and guides 

them according to the selected back exercise using a gyroscope sensory module embedded in the smart fitness suite. They 

proposed the system for two exercises, T-bar and bicep concentrated dumbbell curl. Along with this, a bicep curl muscle 

health detection feature is added to the proposed system, which detects muscle health in real-time. EMG sensor is used to 

stop the user from exercising in the extreme fatigue stage to prevent muscle injury. KNN model is used for the forward 

feature selection technique with 89% of accuracy. Subsequently, a user-guided recommendation feature is added which 

is based on the trained dataset over the android application using the text-to-speech feature in real-time. Future scope: In 

the future, the smart fitness suite could be trained for other body workouts as well. To increase the accuracy of the proposed 

system, they can consider the gyroscope drift issue to stabilize the signals for better classification of exercises. Finally, 

the proposed smart fitness suite can be made specifically for male or female users by collecting datasets separately. 

[2] The detection of the 2D poses of many people in an image is done in this research using an efficient method. The 

method learns to associate body parts with people in the image using non- parametric representations known as Part 

Affinity Fields (PAFs). The technique uses the full image as the input for a two-branch CNN to jointly predict part affinity 
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fields for parts association and confidence maps for body part detection. To associate body part candidates, the parsing 

stage executes a series of bipartite matchings. Lastly, combine them into full-body positions for every per- son in the 

picture. No matter how many people are in the im- age, the architecture’s global context encoding enables a greedy 

bottom-up parsing step that retains high accuracy. The architecture is designed to jointly learn part locations and their 

association via two branches of the same sequential prediction process. The method placed first in the inaugural COCO 

2016 key points challenge and significantly exceeds the previous state-of-the-art result on the MPII MultiPerson 

benchmark, both in performance and efficiency. There is more improvement space in capturing spatial dependencies than 

in recognizing body parts appearances. 

[3] For the pose estimation component, they utilize a pre- trained real-time system, called OpenPose, that can detect human 

body key-points in videos. They evaluate their posture identifier in different ways depending on the algorithm: for heuristic 

algorithms, they feed in all videos for evaluation, while for machine learning algorithms, they evaluate by splitting their 

video dataset into train and test sets, and report results on the test set. Pose Trainer application from a technical perspective 

as a pipeline system, consisting of multiple system stages as follows • Record and crop video • Pose estimation (OpenPose) 

• Normalize, clean and save key-points • Exercise perspective detection • Evaluate exercise using geometry or ML • 

Provide specific feedback on exercise The results of Pose Trainer on four different dumbbell (free motion) exercises: 

bicep curl, front raise, shoulder shrug, and standing shoulder press. For each exercise, they take both a geometric/heuristic 

approach, as well as a machine learning approach using dynamic time warping. They identified several extensions as 

strong opportunities for future work past this course project. One path would be to export Pose Trainer to smartphones, 

building an application that allows users to record a video and get pose feed- back at any place or time. Another direction 

would be to improve the pose feedback, providing specific suggestions on where the user’s pose needs improvement (e.g., 

back, neck, shoulders), and suggesting targeted action. Also, they want to work on improved graphics, for instance, 

showing the user their labelled pose diagram, and comparing to the labelled pose diagram of a ground truth trainer. 

[4] This Paper presents a groundbreaking application of Deep Neural Networks (DNNs) for human pose estimation, 

showcasing the advantages of DNN-based regression to joint coordinates and the use of a cascade of regressors. The 

approach achieves state-of-art or superior results on challenging academic datasets, indicating its potential for real-world 

applications. Additionally, the adaptation of generic convolutional neural networks for localization tasks demonstrates the 

versatility of neural networks across different domains. Future research will focus on the development of specialized 

architectures for localization problems, particularly in the context of pose estimation. 

[5] This paper concludes by summarizing the key contributions of the proposed approach, particularly the incorporation 

of discriminative part template predictors within a pictorial structure framework for robust human pose estimation. The 

demonstrated superiority over independent part templates and state-of-the-art methods using tree structures underscores 

the potential of this methodology in real-world applications. 

 

III.METHODOLOGY 

3.1 Exercise Selection and Error Determination 

The proposed system focuses on four foundational exercises, selected based on several criteria such as the frequency of 

performance among independent exercisers, the statistical likelihood of improper execution, the potential for injury when 

performed incorrectly, and the diversity of movement patterns and muscle groups engaged. These exercises are critical 

for assessing common errors in exercise execution and ensuring safety during workouts. 

The selected exercises are as follows: The first exercise is the Bicep Curl, which is often performed incorrectly, with 

common errors including excessive shoulder movement (swinging), incomplete range of motion, and incorrect elbow 

positioning, such as drifting away from the torso. Additionally, asymmetrical execution between arms is another prevalent 

issue. The second exercise is the Basic Plank, where errors typically involve elevated or sagging hip positions, 

misalignment of the head and neck, issues with shoulder blade protraction or retraction, and incorrect foot positioning. 

The Basic Squat is the third exercise, with common errors like inadequate depth, knee valgus (knees collapsing inward), 

forward torso lean, heels raising off the ground, and asymmetrical weight distribution. The final exercise is the Lunge, 

which is prone to errors such as the front knee tracking beyond the toes, insufficient depth, instability or excessive torso 

lean, inadequate lowering of the back knee, and pelvic misalignment. Each of these errors was categorized based on 
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severity—minor, moderate, and severe—along with the associated injury risk to prioritize feedback delivery during the 

exercise performance evaluation. 

3.2 Data Collection and Preparation 

To develop a robust and generalized model, the data collection process included both self-collected data and publicly 

available datasets. The self-collected data was obtained from 15 volunteers (8 male, 7 female), who were chosen across a 

range of fitness levels. Various recording conditions were employed to ensure diverse datasets, including different lighting 

setups (bright natural, moderate indoor, and low light), camera angles (front, side, and 45-degree angles), and distances 

(ranging from 5–12 feet from the subject). Volunteers wore a mix of tight-fitted and loose attire during the exercise 

performance, and each participant performed 10 correct and 5 incorrect repetitions per identified error. This data resulted 

in approximately 1200 annotated exercise instances, with around 300 instances for each exercise. 

In addition to the self-collected data, public datasets were integrated to enhance the generalization capabilities of the 

model. These datasets included the Yoga Postures Dataset from Kaggle, which contributed 500 filtered plank images, the 

MPII Human Pose Dataset and Kinetics-400 for dynamic movement diversity, and several augmentation techniques like 

horizontal flipping, ±15° rotations, and ±20% brightness adjustments. This combination of self-collected and public data 

allowed for more robust training and better handling of varied exercise scenarios. The data was then cleaned and 

preprocessed through manual verification by certified fitness professionals to remove frames with occlusion or tracking 

failures. All frames were standardized in terms of resolution and frame rate, and exercise transition phases (e.g., from 

"down to up") were annotated to improve model accuracy. 

3.3 Real-Time Pose Detection System 

The system utilized MediaPipe Pose, a lightweight machine learning framework capable of real-time pose detection. 

MediaPipe Pose detects 33 anatomical landmarks in each frame and returns their 3D coordinates (x, y, z) along with a 

detection confidence score. The framework achieves real-time performance, providing 25 to 30 frames per second on 

consumer hardware. The configuration parameters were carefully chosen to balance performance and accuracy, including 

setting the minimum detection and tracking confidence thresholds to 0.7 and using a medium model complexity (1). 

Additionally, input frames were resized to 75% to optimize processing efficiency. 

To detect errors in exercise execution, the system analyzed the spatial relationships between the detected landmarks. This 

involved calculating angles between specific landmarks to assess joint alignment and determine exercise posture 

correctness. The angle calculation function computes the angle between three points (using vector mathematics) to 

determine the degree of alignment or misalignment, essential for error detection. Distance metrics were also employed to 

evaluate shoulder-to-hip alignment (for squats), elbow-to-torso proximity (for bicep curls), and hip elevation relative to 

shoulder-ankle (for planks). Threshold heuristics, informed by biomechanical literature and expert feedback, were applied 

to identify when certain movements deviate from the expected range. These heuristics were personalized for individual 

body dimensions to account for variability among participants. Temporal smoothing techniques were also applied to 

reduce jitter-based false positives, ensuring accurate real-time detection. 

3.4 Data Processing and Model Training 

The data processing pipeline began with feature extraction from each video frame. For every frame, 33 landmark positions 

were recorded, with each set of coordinates normalized relative to the participant’s body size. Additionally, relative 

displacements and joint angles were computed, alongside segment velocity and acceleration, which provided essential 

insights into the speed and motion of different body parts. Visibility confidence scores were also incorporated to indicate 

the certainty of the pose estimation. Moreover, each frame was classified based on the exercise phase, such as "start", 

"end", or "transition". 

The structured data was organized into CSV files for easy access and processing. These files included key fields such as 

frame ID, timestamp, exercise type, and phase, along with the 99 pose coordinates and derived metrics, and multi-class 

error labels. Each participant was assigned an identifier for stratified validation during model training. To ensure proper 

model evaluation and avoid overfitting, the dataset was divided into three parts: 80% for training, 20% for validation, and 

a hold-out test set representing 15% of the original data. This stratified approach maintained the diversity of body types, 

exercise patterns, and errors across the training, validation, and test sets. 
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3.5 Model Development and Evaluation 

For model development, several classical machine learning approaches were evaluated. These included Logistic 

Regression, Support Vector Classifiers, K-Nearest Neighbors, Random Forests, and SGD Classifiers. Each algorithm was 

fine-tuned with specific parameters: Logistic Regression was optimized with a regularization parameter (C=1.0) and 

multinomial classification; the Support Vector Classifier used an RBF kernel and a gamma setting of ‘scale’; K-Nearest 

Neighbors applied a distance-weighted approach with 5 neighbors; the Random Forest utilized 100 estimators with no 

depth restrictions; and the SGDClassifier was tuned for hinge loss and an alpha value of 0.0001 for efficiency in large-

scale online learning. These models were evaluated on several performance metrics, including precision, recall, F1-score, 

and accuracy, to assess their suitability for error detection in real-time exercise analysis. 

Neural network architectures were also explored to enhance model performance, using the Keras framework. The base 

architecture involved an input layer that matched the feature dimensions, hidden layers with ReLU activation, and an 

output layer using softmax activation for multi-class error classification. The models were trained using the Adam 

optimizer and categorical cross-entropy loss. Variants of the network included 3-layer, 5-layer, and 7-layer networks, with 

neurons configured as 64, 32, 128, 64, 32, 16, and 256, respectively. Additionally, dropout layers were added to prevent 

overfitting. The models were assessed using precision, recall, F1-score, accuracy, and inference time, with confusion 

matrices used for error type analysis, ensuring that the models could identify and classify exercise errors accurately and 

efficiently. 

 

IV.WORKING 

We utilized Method 3.1 for pose detection and correction, which involves using MediaPipe along with Python. The pose 

estimation model from MediaPipe helps in identifying body posture. Initially, the implementation was done in a Jupyter 

Notebook. When the code is run, the webcam activates and begins capturing live video. It detects 33 key body landmarks. 

For any specific exercise, we extract the coordinates of the relevant joints and calculate the angles between them. Based 

on predefined angle thresholds, we determine whether the exercise is being done correctly. If it meets the criteria, a counter 

is increased; otherwise, it stays unchanged.  

 

Take the Bicep Curl as an example: this movement primarily involves the shoulder, elbow, and wrist. We focus on the 

angle at the elbow joint. At the start of the curl, the arm is extended, and the angle ranges between 160 to 180 degrees — 

this is considered the "down" stage. As the user curls their arm, the elbow angle decreases. If the angle drops to 30 degrees 

or less while transitioning from the down stage, the counter increases, indicating proper form. However, if the angle 

doesn't reach these limits (below 30 or above 160 degrees), the counter doesn't increment, signaling an incorrect motion. 
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V.RESULTS  

5.1 Real Time Performance Analysis 

 

Fig.6 chart is updated in real-time as new frames are processed, allowing us to observe how the angle changes as the 

person raises and lowers their arm during the bicep curl exercise. It provides a visual representation of the dynamic 

changes in the angle of the arm during the exercise, which is used for tracking exercise performance and ensuring that the 

correct form is maintained. It allows to monitor their progress and make adjustments as needed to perform the exercise 

accurately. 

5.2 Angle Detection Accuracy 

Fig.7 enables a straightforward evaluation of the actual project's accuracy compared to the ideal benchmark, contributing 

valuable insights to the research. It enables a straightforward evaluation of the actual project's accuracy compared to the 

ideal benchmark, contributing valuable insights. 

By demonstrating the actual project's performance in comparison to the ideal benchmark, this contributes valuable 

findings to the broader field of human exercise correction and detection. 

 

 

5.2 Real Time Feedback 
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Fig.8 feedback graph serves as a dynamic representation of the real-time feedback mechanism in the context of bicep curl 

angle detection. 

 It’s an invaluable visual representation that demonstrates the real-time feedback mechanism's utility and its effectiveness 

in enhancing exercise quality and user experience. It is a vital component in the ongoing development of human exercise 

correction technologies. 

5.2 Comparative Assessment of Project Performance 

 

In Fig.9, the comparison graph plays a pivotal role in the evaluation and benchmarking of your project, specifically in the 

context of bicep curl angle detection and correction. This visual representation allows for an in-depth examination of how 

this project performs compared to another project, often considered an ideal or reference model.  

The primary purpose of this comparison graph is to objectively assess the performance of two distinct projects: y project 

(represented by the blue line) and another project (represented by the green line). This comparison emphasizes a data-

driven evaluation, enabling clear and unbiased insights into their relative performance. 

5.3 Real-Time Performance, Accuracy, and User Feedback 

5.3.1 Bicep Curl 

The real-time performance of our system runs at approximately 25–30 frames per second (FPS) on standard laptops. While 

this is sufficient for most scenarios, machine learning-based models may require a GPU for smoother output, especially 

in more complex environments. In terms of accuracy, we achieve around 92% accuracy (±5°) in detecting the elbow angle. 

Our method excels at identifying this specific motion, while machine learning can detect broader variations by learning 

patterns across different exercises and users. For user feedback, our system provides real-time alerts and angle graphs, 

offering immediate visual feedback. In contrast, machine learning-based approaches provide feedback in the form of cues 

like "incomplete curl" or "elbow drifting." In terms of overall evaluation, our method is lightweight and reliable, suitable 

for environments with limited computational power. However, machine learning models adapt better to noisy inputs and 

varied body types, offering a more flexible solution in scenarios with diverse users or environmental challenges. 

5.3.2 Squat 

Our method for detecting squats maintains stable FPS, ensuring smooth performance for real-time feedback. However, 

the speed of machine learning models can vary depending on the size of the model, with larger models potentially affecting 

real-time performance. We focus on tracking hip, knee, and ankle angles, which are crucial for assessing squat depth and 

form. In comparison, machine learning models tend to detect form breakdowns, such as knees collapsing inward, in a 

more intuitive and dynamic manner. When it comes to user feedback, our system alerts the user based on specific depth 

and posture thresholds, while machine learning-based approaches provide dynamic feedback, like "go deeper" or 

"straighten back." Our system works well in clear and unobstructed views of the user, but machine learning handles more 

complex motions and diverse body types better, providing more flexibility in tracking varying postures and angles. 
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5.3.3 Plank 

Both our system and machine learning-based models run smoothly in detecting planks, with our method being more 

resource-efficient due to its lightweight nature. In terms of accuracy, our system focuses on detecting critical alignment 

issues such as hip drops and back sag, which are common mistakes during a plank. Machine learning, however, is more 

adept at detecting subtle misalignments, even when the individual’s pose is slightly off from the standard form. For user 

feedback, our system shows alignment angles, providing precise, static feedback, while machine learning provides more 

nuanced cues like "hips too low" or "arch detected." Our method is ideal for static holds, providing reliable feedback when 

the user maintains a fixed position, while machine learning-based models are more effective at adjusting feedback for 

individual form differences and can accommodate a wider range of plank variations. 

5.3.4 Lunge 

In terms of real-time performance, our approach runs efficiently, providing stable feedback during lunges. Machine 

learning models, however, may experience variable performance depending on the complexity of the movement, 

especially with fast or uneven lunges. Our system tracks joint angles and torso lean, identifying issues like misalignment 

(e.g., the knee passing beyond the toe) with a high degree of reliability. On the other hand, machine learning models excel 

at recognizing motion errors, such as unstable posture, and provide more detailed feedback like "balance off" or "incorrect 

depth." Our system performs exceptionally well when the user performs consistent and controlled reps, while machine 

learning handles fast, uneven, or irregular movements more robustly, adjusting feedback based on real-time analysis of 

motion complexity. 

VI.CONCLUSION 

In this project, an application is presented which provides feedback on human posture while performing exercises using 

pose detection, visual geometry and machine learning. The output of pose estimation is used to calculate human body key 

points during live interaction. Machine learning algorithm is used for deciding posture correctness and geometric 

algorithms for providing feed- back on exercise based on increment counter. One exercise is considered which can be 

extended to many other exercises for future work. For increasing accuracy more than one angles can be considered. This 

model can be extended to accommodate two or more people working out together. 
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