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ABSTRACT: 

In this study we present a robust scalable and real time fraud 

detection system for credit card transactions.apache kafka is used 

for data ingestion and  Apache Spark Streaming  for real-time data 

processing, and Spark MLlib for implementation of  machine 

learning models. Macos environment is chosen for deployment of 

the architecture . We use a 5-node Spark cluster and 3 Kafka 

brokers. Using Our implementation enables immediate detection 

of fraudulent transactions, which  ensures rapid response and 

decision-making. The  paper elaborates on the methodology, 

architecture, and execution pipeline and discusses the potential of 

integrating advanced analytics and visualization in future 

iterations. 

 

INDEX TERMS: Apache Spark, Apache Kafka, 

PySparkSpark Streaming,  Spark MLlib 

 
1) Introduction 

We have seen exponential growth in online transactions, 

financial frauds have also become common, causing serious 

economic losses. Rule-based models of fraud detection are not 

capable of handling   emerging fraud trends and are not suitable 

for processing high-speed transaction volumes. ML-based 

models which are integrated with real-time big data platforms 

are  capable of overcoming these constraints. 

 The major issue which we are trying to address is real-time 

identification of fraud transactions in a stream of incoming 

financial data. High latency in identifying frauds and small 

capacity to work on huge transaction volumes.  

 

To detect fraudulent actions such as unauthorized access, 

identity theft, and transaction manipulation are very difficult 

in real time with traditional systems. The  system we 

designed enables us to achieve high accuracy, low latency, 

and scalability which guarantee successful fraud 

detection.Fraud detection  systems by minimizing false 

negatives and false positives by this project. Real time 

decision-making by banks can be improved which provides 

a scalable solution to handle large volumes of transactions. 

This implementation of a fraud detection system in real-time 

based on Apache Kafka, Spark Streaming, and MLlib. 

Detection of  transactions as fraudulent or legitimate in real-

time and make an efficient alerting system to notify 

everyone. 

Utilization of Apache Kafka for processing real-time 

transactional data. Usage of Apache Spark Streaming to 

execute data in parallel. Apply MLlib models to classify 

transactions. 

 

 

                      2)LITERATURE REVIEW 

 There has been extensive research on fraud detection. Previous 

researchers have employed various methodologies, which 

include Rule-based systems which are based on pre-decided 

rules but are extremely high false positives. Machine learning 

algorithms such as Decision trees, logistic regression, and 

neural networks are found to be more adaptable. 

Apache Kafka and Spark Streaming are successful for handling 

high-velocity data. Kafka allows real-time data ingestion, and 

Spark handles streams with low latency. MLlib for Fraud 

Detection, Machine learning library of spark, was utilized to 

classify transactions in real time. Other works are missing an 

integrated architecture with a scalable stream and reliable 

training of models.The relevant work completed in this area is 

shown in Table 1. 

 

Table 1. Related work and previous advancements in Fraud 

detection 

 

 

Title Author/S

ource 

Key 

Contribu

tions 

Distinctio

n from 

Our 

Work 

Apache 

Kafka 

Documen

tation 

Apache 

Software 

Foundatio

n 

This 

paper 

explains 

Kafka's 

distribute

d 

streaming 

capabiliti

es. 

Our 

method is 

to apply 

Kafka in 

a real-

time 

fraud 

detection 

system 

fully 

http://www.ijsrem.com/
mailto:009ashmitdubey@gmail.com
mailto:009ashmitdubey@gmail.com
mailto:009ashmitdubey@gmail.com
mailto:kunaldabas37@gmail.com
mailto:009ashmitdubey@gmail.com
mailto:ritukalonia.usar@ipu.ac.in
mailto:ritukalonia.usar@ipu.ac.in


           
           International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 05 | May - 2025                              SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                           

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47661                                                |        Page 2  

integrated 

with 

Spark 

Streaming 

and 

PySpark 

MLlib. 

Apache 

Spark 

Documen

tation 

Apache 

Software 

Foundatio

n 

The 

author 

Describes 

Spark 

architectu

re, RDDs, 

MLlib, 

Streaming

. 

We are  

extending 

Spark 

capabiliti

es by 

implemen

ting real-

time 

transactio

nal fraud 

detection 

over a 

multi-

node 

cluster. 

PySpark 

Documen

tation 

Apache 

Spark 

Project 

They 

researche

d to 

provide 

details on 

using 

Spark via 

Python 

APIs. 

We are 

leveragin

g 

PySpark 

not only 

for live 

data 

processin

g but also 

for 

machine 

learning 

model 

inference 

in a 

distribute

d 

environm

ent. 

IMOS: 

Improved 

Meta-

aligner 

and 

Minimap

2 on 

Spark 

Research

Gate 

(2019) 

Their 

study 

shows 

Spark 

scalability 

for 

genomics 

computati

ons. 

We are 

applying 

Spark’s 

scalability 

principles 

to 

financial 

fraud 

detection  

and not 

for 

bioinform

atics. 

Recent 

Trends in 

Big Data 

Using 

Hadoop 

Research

Gate 

(2019) 

Analyzes 

Hadoop 

and Spark 

in big 

data 

trends. 

We focus 

not only 

on 

comparis

on but we 

are 

actually 

deploying 

Spark 

Streaming 

and 

Kafka for 

a real-

world use 

case. 

Hadoop 

and Big 

Data 

Challenge

s 

Research

Gate 

(2019) 

They are 

Outlining 

big data 

handling 

challenge

s and 

solutions. 

The 

challenge

s are 

overcome 

by 

implemen

ting an 

efficient 

real-time 

distribute

d 

architectu

re. 

Real-

Time 

Fraud 

Detection 

using 

Kafka 

and Spark 

Streaming 

Singh & 

Reddy 

(2020) 

Proposing 

fraud 

detection 

using 

Kafka + 

Spark 

Streaming

. 

We are 

differenti

ating 

ourselves 

by 

employin

g 

PySpark 

MLlib 

models 

and 

validating 

on a 5-

node 

distribute

d Spark 

setup. 

Spark: 

Cluster 

Computin

g with 

Working 

Sets 

Zaharia et 

al., 

HotCloud 

(2010) 

They 

Introduce 

Spark’s 

in-

memory 

cluster 

computin

g. 

We are 

explainin

g 

theoretica

l 

advantage

s 

practicall
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y in our 

real-time 

fraud 

detection 

deployme

nt. 

Kafka: A 

Distribute

d 

Messagin

g System 

for Log 

Processin

g 

Kreps et 

al., 

LinkedIn 

(2011) 

They are 

presentin

g Kafka 

architectu

re for log 

processin

g. 

We are 

utilizing 

Kafka for 

ingestion 

and also 

for real-

time 

fraud 

classificat

ion result 

dissemina

tion. 

MapRedu

ce: 

Simplifie

d Data 

Processin

g on 

Large 

Clusters 

Dean & 

Ghemawa

t (2008) 

They 

introduce

d the 

concept 

of 

MapRedu

ce. 

We are 

adopting 

Spark's 

advanced 

in-

memory 

distribute

d 

computati

on to 

overcome 

the 

latency 

limitation

s of 

MapRedu

ce. 

Big Data 

Analytics 

with 

Spark 

Guller, 

M. (2015) 

This 

paper 

implemen

ts ractical 

applicatio

ns of 

Spark in 

big data. 

We are 

not 

applying 

Spark 

generally, 

but 

specificall

y to 

design an 

architectu

re for 

fraud 

detection 

with end-

to-end 

integratio

n. 

Learning 

Spark: 

Lightning

-Fast Big 

Data 

Analysis 

Karau et 

al. (2015) 

Practical 

guide to 

Spark 

program

ming and 

concepts. 

We build 

upon 

these 

insights 

to create a 

real-time, 

multi-

node 

fraud 

detection 

system 

using 

Spark and 

Kafka. 

Big Data 

Analysis: 

Apache 

Spark 

Perspecti

ve 

Shoro & 

Soomro 

(2015) 

The 

authors 

Reviewed 

Spark as a 

tool for 

big data 

analysis. 

We are 

extending 

beyond 

analysis 

by 

developm

ent of 

fraud 

detection 

solutions 

under 

streaming 

condition

s. 

Structure

d 

Streaming

: A 

Declarati

ve API 

for Real-

Time 

Applicati

ons in 

Spark 

Venkatara

man et al. 

(2016) 

They 

presented 

Structure

d 

Streaming 

in Spark. 

We are 

focused 

on classic 

Spark 

Streaming 

for 

greater 

control, 

integratin

g custom 

MLlib 

models 

within 

our 

pipeline. 

Real-time 

Fraud 

Detection 

using 

Machine 

Learning 

Techniqu

es 

Islam et 

al., 

Procedia 

Computer 

Science 

(2019) 

They 

Surveyed 

ML-based 

fraud 

detection 

technique

s. 

We are 

going to 

go 

beyond 

proposing 

technique

s by 

implemen

ting a full 

productio
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n-ready 

system 

along 

distribute

d 

machine 

learning 

on live 

streams. 

                

                

              3)METHODOLOGY 

The methodology which we have proposed is following a 

structured machine learning pipeline that enables us to leverage 

supervised learning algorithms such Decision Tree and 

Random Forest for the detection of fraudulent credit card 

transactions. There is a sensitive nature of financial data present 

in fraud datasets, we work on robust preprocessing, model 

training, evaluation, and interpretability. 

We use the Credit Card Fraud Detection dataset which is made 

available by Kaggle, it has real-world transaction data collected 

over two days by European cardholders. The dataset has a total 

of 284,807 transactions, out of which only 492 (0.172%) can be 

termed fraudulent..Every transaction has 30 features, such as 

Time in seconds. The amount and monetary value of the 

transactions. The dataset is fit to test the robustness of binary 

classification algorithms in financial anomaly detection. 

  

Accuracy and efficiency of classification models are ensured by 

preprocessing. The preprocessing pipeline has steps which 

include the data using bootstrapping and random feature 

selection. Prediction is only  made when majority voting across 

all trees is complete. Key parameters are the number of 

estimators .Typical variation is between 50 to 200. Class weight 

is set as balanced and is used to mitigate the imbalance in the 

class.Generalization is provided by Random Forest, which 

helps us to reduce overfitting, and gives feature importance 

scores, which makes it suitable for real-world fraud detection. 

The dataset is imbalanced in nature,conventional accuracy is 

not advised. The metrics used are Precision, Recall also known 

as sensitivity,F1-Score, ROC-AUC which is area under the 

curve and receiver operating characteristic curve.,Confusion 

Matrix. These metrics help us to grade model performance in 

fraud detection scenarios where false negatives are more costly 

than false positives. 

         Implementation Pipeline 

An overview of the pipeline in given below 

1)Import Libraries 

Loading pandas, numpy, sklearn, imblearn, matplotlib,   

seaborn. 

2)Load Dataset 

   Reading of the CSV file and inspection of class 

distribution. 

   3)Preprocess Data 

   Applying StandardScaler on Time and Amount.Using        

SMOTE on training data to balance classes.Split DataDivide 

dataset into training and testing subsets using train_test_split 

with stratification. 

4)Train Models 

Train Decision Tree on training set with grid search for 

hyperparameters.Train Random Forest using 10-fold cross-

validation.Predict on test set.Compute precision, recall, F1-

score, and ROC-AUC.Plot confusion matrix and ROC curve. 

5)Model Evaluation and Visualization 

The final stage in the credit card fraud detection pipeline 

involves thorough evaluation of the trained models—Decision 

Tree and Random Forest—using a diverse set of classification 

metrics and visualization tools. This step provides insights into 

the efficacy, robustness, and interpretability of the models in 

identifying fraudulent transactions.Given the significant class 

imbalance in the dataset, relying solely on accuracy would be 

misleading. Therefore, the following performance metrics are 

computed: 

Confusion Matrix: Quantifies true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). 

This matrix reveals how well the model distinguishes between 

fraud and legitimate transactions. 

 

Represents the proportion of correctly predicted fraudulent 

transactions out of all predicted frauds. High precision is critical 

in minimizing false alarms.Measures the model’s ability to 

correctly identify actual fraudulent transactions, minimizing the 

number of overlooked frauds.Harmonic mean of precision and 

recall, useful when there's a trade-off between false positives 

and false negatives.lots the True Positive Rate (TPR) against 

the False Positive Rate (FPR) across thresholds. A higher AUC 

reflects better model discrimination ability, especially 

important in imbalanced datasets. 

 Final Output 

Optimized credit card fraud detection model is a result of this 

pipeline which helps in achieving high classification accuracy 

and recall on the (fraudulent) class. It helps us in reducing 

cases of false positives, maintaining customer trust and 

reducing investigation costs.Tree-based feature selection 

technique reduces feature dimensionality.. 

http://www.ijsrem.com/
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Figure 1. Structured project pipeline 

 

                          4) Results 

Spark streaming pipeline connected to an Apache Kafka 

messaging system was for real-time fraud detection. One 

Kafka producer was used to  manually inject credit card 

transaction data into the input topic, consuming this data as  a 

PySpark application, using a pre-trained machine learning 

model (Decision Tree or Random Forest) was used for 

classifying transactions, with results sent to the output topic. 

 

a) Kafka Cluster: 3 Brokers, 1 Zookeeper (local 

deployment on macOS). 

 

b) Spark Cluster: 1 Master, 1 Worker node. 

 

c) Model Used: Random Forest Classifier was used to 

train on a balanced version of the dataset using 

SMOTE. 

 

d) Evaluation Dataset: Subset of the "Credit Card Fraud 

Detection" dataset (Kaggle) with anonymized features 

and labeled fraud cases. 

 
Figure 3. Model Performance 

 

The Random Forest model offered superior performance after 

seeing the results, it handled imbalanced data through better recall 

and F1-score. 

Real time streaming results were that the streaming system in near 

real-time (< 1 second per event) was able to process live 

transaction data. Each transaction was either "Fraud" or "Not 

Fraud" by the model tag and forwarded the result to the Kafka 

output topic. 

Figure 4. Sample real-time output (viewed using Kafka console 

consumer) 

The end-to-end functionality of the pipeline was confirmed by this 

output , integration of stream ingestion was successful, model 

inference, and result dispatch.System Efficiency was estimated to 

be 60 milliseconds and throughput was to be 150 transactions/sec 

(on 1 worker node). Scalability: Horizontal scalability 

demonstrated via Kafka broker and Spark cluster modularity. The 

system's capability to scale for industrial volumes of streaming 

transactions are confirmed. 

5) CONCLUSION AND FUTURE SCOPE 

A scalable and real-time credit card fraud detection system by 

integrating Apache Kafka for data ingestion, Apache Spark 

Streaming for real-time processing, and Spark MLlib for 

machine learning-based classification by this project. The 

system ensured low latency detection of fraudulent 

transactions and high throughput by utilizing a distributed 

environment.  Random Forest and Decision Tree classifiers 

had high accuracy and reliable performance metrics, so they 

were found to be suitable for fraud detection in imbalanced 

datasets. The integration of Kafka and Spark allowed real time 

streaming and prediction of incoming transactions as fraud or 

not, and usage of Spark’s distributed MLlib helped us to train 

models fast on large-scale datasets. The output of the fraud 

detection engine was transferred to Kafka topics for 

downstream analysis, to make real-time fraud detection 

http://www.ijsrem.com/
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possible. When simulated in a streaming environment this 

framework has shown strong adaptability, scalability, and 

performance and it can  detect anomalous behavior in real-

world transaction data  

 

 Apart from supervised classification, unsupervised 

inconsistency detection techniques like Isolation Forest, One-

Class SVM, or clustering  models can be used for detecting 

unknown fraud patterns. Deploying the solution in a 

production environment with secure REST APIs, dashboards 

for real-time monitoring using Grafana or Kibana, and 

compliance with financial data regulations (e.g., PCI DSS). 

Multiple machine learning models can be used like bagging, 

boosting, stacking which will make the model robustAdding 

new  features (e.g., transaction time gaps, merchant category), 

location-based metadata, or user behavior will improve model 

performance. 

 A real-time alerting system can be used to notify any detection 

of inconsistency  as soon as possible.  

6) REFERENCES  

[1]https://kafka.apache.org/documentation/ 

[2}  https://spark.apache.org/docs/latest/ 

[3] https://spark.apache.org/docs/latest/api/python/ 

[4] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., 

& Stoica, I. (2010). Spark: Cluster Computing with Working 

Sets. HotCloud. 

[5] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A 

Distributed Messaging System for Log Processing. LinkedIn. 

[6]    Dean, J., & Ghemawat, S. (2008). MapReduce: 

Simplified Data Processing on Large Clusters. 

Communications of the ACM. 

[7]    Guller, M. (2015). Big Data Analytics with Spark. 

Apress. 

 

[8]   Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. 

(2015). Learning Spark: Lightning-Fast Big Data Analysis. 

O’Reilly Media. 

 

[9] Shoro, N.Z., & Soomro, T.R. (2015). Big Data Analysis: 

Apache Spark Perspective. Global Journal of Computer 

Science and Technology. 

[10]          Islam, M.R., et al. (2019). Real-time Fraud 

Detection using Machine Learning Techniques. Procedia 

Computer Science. 

 
[11] Chio, C., & Freeman, D. (2018). Machine Learning and 

Security. O’Reilly Media. 

 
[12] Venkataraman, S., et al. (2016). Structured Streaming: A 

Declarative API for Real-Time Applications in Apache 

Spark. VLDB Endowment. 

 
[13] Singh, A., & Reddy, P. (2020). Real-time Fraud 

Detection using Kafka and Spark Streaming. 

International Journal of Advanced Research in Computer 

Science. 

 
[14] ResearchGate: IMOS: Improved Meta-aligner and 

Minimap2 on Spark. 

https://www.researchgate.net/publication/330614514 

 
[15] ResearchGate: Recent Trends in Big Data Using 

Hadoop. 

https://www.researchgate.net/publication/332541933 

 

 

 

 

 

 

 

http://www.ijsrem.com/
https://kafka.apache.org/documentation/
https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/api/python/
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/332541933
https://www.researchgate.net/publication/332541933
https://www.researchgate.net/publication/332541933
https://www.researchgate.net/publication/332541933

