

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47661 | Page 1

Real-Time Fraud Detection using Apache Kafka, Apache Spark, and

PySpark MLlib
Kunal Dabas1, Ashmit Dubey2, Ritu Kalonia3

1Department of Artificial Intelligence and Data Science, University School of Automation and Robotics, Delhi,

India
2 Department of Artificial Intelligence and Data Science, University School of Automation and Robotics,

Delhi, India
3 Department of Artificial Intelligence and Data Science, University School of Automation and Robotics,

Delhi, India

Email: 1kunaldabas37@gmail.com, 2009ashmitdubey@gmail.com 3ritukalonia.usar@ipu.ac.in

ABSTRACT:

In this study we present a robust scalable and real time fraud

detection system for credit card transactions.apache kafka is used

for data ingestion and Apache Spark Streaming for real-time data

processing, and Spark MLlib for implementation of machine

learning models. Macos environment is chosen for deployment of

the architecture . We use a 5-node Spark cluster and 3 Kafka

brokers. Using Our implementation enables immediate detection

of fraudulent transactions, which ensures rapid response and

decision-making. The paper elaborates on the methodology,

architecture, and execution pipeline and discusses the potential of

integrating advanced analytics and visualization in future

iterations.

INDEX TERMS: Apache Spark, Apache Kafka,

PySparkSpark Streaming, Spark MLlib

1) Introduction

We have seen exponential growth in online transactions,

financial frauds have also become common, causing serious

economic losses. Rule-based models of fraud detection are not

capable of handling emerging fraud trends and are not suitable

for processing high-speed transaction volumes. ML-based

models which are integrated with real-time big data platforms

are capable of overcoming these constraints.

 The major issue which we are trying to address is real-time

identification of fraud transactions in a stream of incoming

financial data. High latency in identifying frauds and small

capacity to work on huge transaction volumes.

To detect fraudulent actions such as unauthorized access,

identity theft, and transaction manipulation are very difficult

in real time with traditional systems. The system we

designed enables us to achieve high accuracy, low latency,

and scalability which guarantee successful fraud

detection.Fraud detection systems by minimizing false

negatives and false positives by this project. Real time

decision-making by banks can be improved which provides

a scalable solution to handle large volumes of transactions.

This implementation of a fraud detection system in real-time

based on Apache Kafka, Spark Streaming, and MLlib.

Detection of transactions as fraudulent or legitimate in real-

time and make an efficient alerting system to notify

everyone.

Utilization of Apache Kafka for processing real-time

transactional data. Usage of Apache Spark Streaming to

execute data in parallel. Apply MLlib models to classify

transactions.

 2)LITERATURE REVIEW

 There has been extensive research on fraud detection. Previous

researchers have employed various methodologies, which

include Rule-based systems which are based on pre-decided

rules but are extremely high false positives. Machine learning

algorithms such as Decision trees, logistic regression, and

neural networks are found to be more adaptable.

Apache Kafka and Spark Streaming are successful for handling

high-velocity data. Kafka allows real-time data ingestion, and

Spark handles streams with low latency. MLlib for Fraud

Detection, Machine learning library of spark, was utilized to

classify transactions in real time. Other works are missing an

integrated architecture with a scalable stream and reliable

training of models.The relevant work completed in this area is

shown in Table 1.

Table 1. Related work and previous advancements in Fraud

detection

Title Author/S

ource

Key

Contribu

tions

Distinctio

n from

Our

Work

Apache

Kafka

Documen

tation

Apache

Software

Foundatio

n

This

paper

explains

Kafka's

distribute

d

streaming

capabiliti

es.

Our

method is

to apply

Kafka in

a real-

time

fraud

detection

system

fully

http://www.ijsrem.com/
mailto:009ashmitdubey@gmail.com
mailto:009ashmitdubey@gmail.com
mailto:009ashmitdubey@gmail.com
mailto:kunaldabas37@gmail.com
mailto:009ashmitdubey@gmail.com
mailto:ritukalonia.usar@ipu.ac.in
mailto:ritukalonia.usar@ipu.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47661 | Page 2

integrated

with

Spark

Streaming

and

PySpark

MLlib.

Apache

Spark

Documen

tation

Apache

Software

Foundatio

n

The

author

Describes

Spark

architectu

re, RDDs,

MLlib,

Streaming

.

We are

extending

Spark

capabiliti

es by

implemen

ting real-

time

transactio

nal fraud

detection

over a

multi-

node

cluster.

PySpark

Documen

tation

Apache

Spark

Project

They

researche

d to

provide

details on

using

Spark via

Python

APIs.

We are

leveragin

g

PySpark

not only

for live

data

processin

g but also

for

machine

learning

model

inference

in a

distribute

d

environm

ent.

IMOS:

Improved

Meta-

aligner

and

Minimap

2 on

Spark

Research

Gate

(2019)

Their

study

shows

Spark

scalability

for

genomics

computati

ons.

We are

applying

Spark’s

scalability

principles

to

financial

fraud

detection

and not

for

bioinform

atics.

Recent

Trends in

Big Data

Using

Hadoop

Research

Gate

(2019)

Analyzes

Hadoop

and Spark

in big

data

trends.

We focus

not only

on

comparis

on but we

are

actually

deploying

Spark

Streaming

and

Kafka for

a real-

world use

case.

Hadoop

and Big

Data

Challenge

s

Research

Gate

(2019)

They are

Outlining

big data

handling

challenge

s and

solutions.

The

challenge

s are

overcome

by

implemen

ting an

efficient

real-time

distribute

d

architectu

re.

Real-

Time

Fraud

Detection

using

Kafka

and Spark

Streaming

Singh &

Reddy

(2020)

Proposing

fraud

detection

using

Kafka +

Spark

Streaming

.

We are

differenti

ating

ourselves

by

employin

g

PySpark

MLlib

models

and

validating

on a 5-

node

distribute

d Spark

setup.

Spark:

Cluster

Computin

g with

Working

Sets

Zaharia et

al.,

HotCloud

(2010)

They

Introduce

Spark’s

in-

memory

cluster

computin

g.

We are

explainin

g

theoretica

l

advantage

s

practicall

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47661 | Page 3

y in our

real-time

fraud

detection

deployme

nt.

Kafka: A

Distribute

d

Messagin

g System

for Log

Processin

g

Kreps et

al.,

LinkedIn

(2011)

They are

presentin

g Kafka

architectu

re for log

processin

g.

We are

utilizing

Kafka for

ingestion

and also

for real-

time

fraud

classificat

ion result

dissemina

tion.

MapRedu

ce:

Simplifie

d Data

Processin

g on

Large

Clusters

Dean &

Ghemawa

t (2008)

They

introduce

d the

concept

of

MapRedu

ce.

We are

adopting

Spark's

advanced

in-

memory

distribute

d

computati

on to

overcome

the

latency

limitation

s of

MapRedu

ce.

Big Data

Analytics

with

Spark

Guller,

M. (2015)

This

paper

implemen

ts ractical

applicatio

ns of

Spark in

big data.

We are

not

applying

Spark

generally,

but

specificall

y to

design an

architectu

re for

fraud

detection

with end-

to-end

integratio

n.

Learning

Spark:

Lightning

-Fast Big

Data

Analysis

Karau et

al. (2015)

Practical

guide to

Spark

program

ming and

concepts.

We build

upon

these

insights

to create a

real-time,

multi-

node

fraud

detection

system

using

Spark and

Kafka.

Big Data

Analysis:

Apache

Spark

Perspecti

ve

Shoro &

Soomro

(2015)

The

authors

Reviewed

Spark as a

tool for

big data

analysis.

We are

extending

beyond

analysis

by

developm

ent of

fraud

detection

solutions

under

streaming

condition

s.

Structure

d

Streaming

: A

Declarati

ve API

for Real-

Time

Applicati

ons in

Spark

Venkatara

man et al.

(2016)

They

presented

Structure

d

Streaming

in Spark.

We are

focused

on classic

Spark

Streaming

for

greater

control,

integratin

g custom

MLlib

models

within

our

pipeline.

Real-time

Fraud

Detection

using

Machine

Learning

Techniqu

es

Islam et

al.,

Procedia

Computer

Science

(2019)

They

Surveyed

ML-based

fraud

detection

technique

s.

We are

going to

go

beyond

proposing

technique

s by

implemen

ting a full

productio

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47661 | Page 4

n-ready

system

along

distribute

d

machine

learning

on live

streams.

 3)METHODOLOGY

The methodology which we have proposed is following a

structured machine learning pipeline that enables us to leverage

supervised learning algorithms such Decision Tree and

Random Forest for the detection of fraudulent credit card

transactions. There is a sensitive nature of financial data present

in fraud datasets, we work on robust preprocessing, model

training, evaluation, and interpretability.

We use the Credit Card Fraud Detection dataset which is made

available by Kaggle, it has real-world transaction data collected

over two days by European cardholders. The dataset has a total

of 284,807 transactions, out of which only 492 (0.172%) can be

termed fraudulent..Every transaction has 30 features, such as

Time in seconds. The amount and monetary value of the

transactions. The dataset is fit to test the robustness of binary

classification algorithms in financial anomaly detection.

Accuracy and efficiency of classification models are ensured by

preprocessing. The preprocessing pipeline has steps which

include the data using bootstrapping and random feature

selection. Prediction is only made when majority voting across

all trees is complete. Key parameters are the number of

estimators .Typical variation is between 50 to 200. Class weight

is set as balanced and is used to mitigate the imbalance in the

class.Generalization is provided by Random Forest, which

helps us to reduce overfitting, and gives feature importance

scores, which makes it suitable for real-world fraud detection.

The dataset is imbalanced in nature,conventional accuracy is

not advised. The metrics used are Precision, Recall also known

as sensitivity,F1-Score, ROC-AUC which is area under the

curve and receiver operating characteristic curve.,Confusion

Matrix. These metrics help us to grade model performance in

fraud detection scenarios where false negatives are more costly

than false positives.

 Implementation Pipeline

An overview of the pipeline in given below

1)Import Libraries

Loading pandas, numpy, sklearn, imblearn, matplotlib,

seaborn.

2)Load Dataset

 Reading of the CSV file and inspection of class

distribution.

 3)Preprocess Data

 Applying StandardScaler on Time and Amount.Using

SMOTE on training data to balance classes.Split DataDivide

dataset into training and testing subsets using train_test_split

with stratification.

4)Train Models

Train Decision Tree on training set with grid search for

hyperparameters.Train Random Forest using 10-fold cross-

validation.Predict on test set.Compute precision, recall, F1-

score, and ROC-AUC.Plot confusion matrix and ROC curve.

5)Model Evaluation and Visualization

The final stage in the credit card fraud detection pipeline

involves thorough evaluation of the trained models—Decision

Tree and Random Forest—using a diverse set of classification

metrics and visualization tools. This step provides insights into

the efficacy, robustness, and interpretability of the models in

identifying fraudulent transactions.Given the significant class

imbalance in the dataset, relying solely on accuracy would be

misleading. Therefore, the following performance metrics are

computed:

Confusion Matrix: Quantifies true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN).

This matrix reveals how well the model distinguishes between

fraud and legitimate transactions.

Represents the proportion of correctly predicted fraudulent

transactions out of all predicted frauds. High precision is critical

in minimizing false alarms.Measures the model’s ability to

correctly identify actual fraudulent transactions, minimizing the

number of overlooked frauds.Harmonic mean of precision and

recall, useful when there's a trade-off between false positives

and false negatives.lots the True Positive Rate (TPR) against

the False Positive Rate (FPR) across thresholds. A higher AUC

reflects better model discrimination ability, especially

important in imbalanced datasets.

 Final Output

Optimized credit card fraud detection model is a result of this

pipeline which helps in achieving high classification accuracy

and recall on the (fraudulent) class. It helps us in reducing

cases of false positives, maintaining customer trust and

reducing investigation costs.Tree-based feature selection

technique reduces feature dimensionality..

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47661 | Page 5

Figure 1. Structured project pipeline

 4) Results

Spark streaming pipeline connected to an Apache Kafka

messaging system was for real-time fraud detection. One

Kafka producer was used to manually inject credit card

transaction data into the input topic, consuming this data as a

PySpark application, using a pre-trained machine learning

model (Decision Tree or Random Forest) was used for

classifying transactions, with results sent to the output topic.

a) Kafka Cluster: 3 Brokers, 1 Zookeeper (local

deployment on macOS).

b) Spark Cluster: 1 Master, 1 Worker node.

c) Model Used: Random Forest Classifier was used to

train on a balanced version of the dataset using

SMOTE.

d) Evaluation Dataset: Subset of the "Credit Card Fraud

Detection" dataset (Kaggle) with anonymized features

and labeled fraud cases.

Figure 3. Model Performance

The Random Forest model offered superior performance after

seeing the results, it handled imbalanced data through better recall

and F1-score.

Real time streaming results were that the streaming system in near

real-time (< 1 second per event) was able to process live

transaction data. Each transaction was either "Fraud" or "Not

Fraud" by the model tag and forwarded the result to the Kafka

output topic.

Figure 4. Sample real-time output (viewed using Kafka console

consumer)

The end-to-end functionality of the pipeline was confirmed by this

output , integration of stream ingestion was successful, model

inference, and result dispatch.System Efficiency was estimated to

be 60 milliseconds and throughput was to be 150 transactions/sec

(on 1 worker node). Scalability: Horizontal scalability

demonstrated via Kafka broker and Spark cluster modularity. The

system's capability to scale for industrial volumes of streaming

transactions are confirmed.

5) CONCLUSION AND FUTURE SCOPE

A scalable and real-time credit card fraud detection system by

integrating Apache Kafka for data ingestion, Apache Spark

Streaming for real-time processing, and Spark MLlib for

machine learning-based classification by this project. The

system ensured low latency detection of fraudulent

transactions and high throughput by utilizing a distributed

environment. Random Forest and Decision Tree classifiers

had high accuracy and reliable performance metrics, so they

were found to be suitable for fraud detection in imbalanced

datasets. The integration of Kafka and Spark allowed real time

streaming and prediction of incoming transactions as fraud or

not, and usage of Spark’s distributed MLlib helped us to train

models fast on large-scale datasets. The output of the fraud

detection engine was transferred to Kafka topics for

downstream analysis, to make real-time fraud detection

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47661 | Page 6

possible. When simulated in a streaming environment this

framework has shown strong adaptability, scalability, and

performance and it can detect anomalous behavior in real-

world transaction data

 Apart from supervised classification, unsupervised

inconsistency detection techniques like Isolation Forest, One-

Class SVM, or clustering models can be used for detecting

unknown fraud patterns. Deploying the solution in a

production environment with secure REST APIs, dashboards

for real-time monitoring using Grafana or Kibana, and

compliance with financial data regulations (e.g., PCI DSS).

Multiple machine learning models can be used like bagging,

boosting, stacking which will make the model robustAdding

new features (e.g., transaction time gaps, merchant category),

location-based metadata, or user behavior will improve model

performance.

 A real-time alerting system can be used to notify any detection

of inconsistency as soon as possible.

6) REFERENCES

[1]https://kafka.apache.org/documentation/

[2} https://spark.apache.org/docs/latest/

[3] https://spark.apache.org/docs/latest/api/python/

[4] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S.,

& Stoica, I. (2010). Spark: Cluster Computing with Working

Sets. HotCloud.

[5] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A

Distributed Messaging System for Log Processing. LinkedIn.

[6] Dean, J., & Ghemawat, S. (2008). MapReduce:

Simplified Data Processing on Large Clusters.

Communications of the ACM.

[7] Guller, M. (2015). Big Data Analytics with Spark.

Apress.

[8] Karau, H., Konwinski, A., Wendell, P., & Zaharia, M.

(2015). Learning Spark: Lightning-Fast Big Data Analysis.

O’Reilly Media.

[9] Shoro, N.Z., & Soomro, T.R. (2015). Big Data Analysis:

Apache Spark Perspective. Global Journal of Computer

Science and Technology.

[10] Islam, M.R., et al. (2019). Real-time Fraud

Detection using Machine Learning Techniques. Procedia

Computer Science.

[11] Chio, C., & Freeman, D. (2018). Machine Learning and

Security. O’Reilly Media.

[12] Venkataraman, S., et al. (2016). Structured Streaming: A

Declarative API for Real-Time Applications in Apache

Spark. VLDB Endowment.

[13] Singh, A., & Reddy, P. (2020). Real-time Fraud

Detection using Kafka and Spark Streaming.

International Journal of Advanced Research in Computer

Science.

[14] ResearchGate: IMOS: Improved Meta-aligner and

Minimap2 on Spark.

https://www.researchgate.net/publication/330614514

[15] ResearchGate: Recent Trends in Big Data Using

Hadoop.

https://www.researchgate.net/publication/332541933

http://www.ijsrem.com/
https://kafka.apache.org/documentation/
https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/api/python/
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/330614514
https://www.researchgate.net/publication/332541933
https://www.researchgate.net/publication/332541933
https://www.researchgate.net/publication/332541933
https://www.researchgate.net/publication/332541933

