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Abstract— The Real-Time Image Animation project is designed 
to revolutionize the way static images are transformed into 
dynamic animations by leveraging state-of-the-art 
advancements in computer vision, deep learning, and neural 
networks. At its core, the project utilizes generative adversarial 
networks (GANs) and convolutional neural networks (CNNs) to 
meticulously analyze static images and synthesize realistic 
motion patterns, facial expressions, and other dynamic elements 
in real-time. The system begins with an image processing 
pipeline that enhances the quality of input images and extracts 
crucial features necessary for generating animations.. 

I. INTRODUCTION 

Non-verbal cues play a crucial role in communicating emotion, 

regulating turn-taking, and achieving and sustaining rapport in 

conversation. As such, face-to-face conversation often is preferable 

to text-based exchanges. Until recently, real-time conversation over 

distance was limited to text or voice transmission. With increased 

access to fast, reliable broadband, it has become possible to achieve 

audio-visual face-to-face communication through video-

conferencing. 

Video-conferencing has become an efficient means to achieve 

effective collaboration over long distances. However, several factors 

have limited the adoption of this technology. A critical one is lack of 

anonymity. Unlike text- or voice systems, video immediately reveals 

person-identity. Yet, in many applications it is desirable to preserve 

anonymity. To encourage a wider adoption of the technology to 

realise its advantages, video-conferencing needs to incorporate a 

range of privacy settings that enable anonymity when desired.  

 

 

 

II. RELATED WORK 

Avatar animation is often referred to as facial pup- petry, where the 

avatar/puppet acts is controlled by the user/puppeteer’s facial 

expressions. A facial puppetry sys- tem consists of two main 

components: face tracking and expression transfer. Face tracking 

captures the user’s facial deformations. Expression transfer then 

animates an avatar so that its expression best matches that captured 

from the user. Non-rigid face tracking is one  of the most widely re- 

searched topic in computer vision. The reason for this is the difficulty 

in handling inter-personal variabilities stemming from both shape 

and appearance as well as extrinsic sources including such things as 

lighting and the camera noise. The difficulty is compounded by the 

typical expectation of real time performance. Most non-rigid face 

tracking systems use a linear model to characterise variability of the 

human face. Examples include active shape models [3], active 

appearance models [11], 3D morphable models [2] and constrained 

local models [4]. Alignment is effected via generative or discrim- 

inative approaches. In generative approaches [2][3][11], the 

parameters of a linear model that minimise the distance between the 

model and image appearance is searched for using some kind of 

deterministic optimisation strategy. Dis- criminative approaches 

[12][13] , predict the optimal model 

parameters from the appearance of the face in the image. 
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Fig. 1: Overview of the proposed system. Offline processing consists 
of four steps. 1: Learn generic shape deformation and appearance 
bases that account for changes due to expression. 2/3: Given an 
annotated image of an avatar/user, generate a set of pro- totypical 
expressions. 4: Learn a mapping between corresponding expressions 
of the user and avatar. The online process involves non- rigidly 
tracking the user’s facial features, performing expression transfer to 
the avatar and rendering the result. 

 

 

person specific basis can be learned. Alternatively, one can use an 

automatic expression recognition system to detect the user’s broad 

expression category and render the avatar with that expression [9]. 

Although such an approach requires a set of images for the avatar, no 

user-specific model needs to be learned. However, since transfer is 

performed at the coarse level of broad expressions only, this 

approach is not suited to applications where realistic avatar 

animation is desired. 

 

III. SYSTEM OVERVIEW 

An overview of the system proposed in this work is presented in 

Figure 1. It consists of two phases: offline and online. In the offline 

phase, models of the user and avatar are learned as well as the 

relationship between them. First a generic basis of variation that 

captures changes in shape and texture due to expression is learned 

from a training set 

of annotated images (§V-A). This same database is also used to learn 

a mapping between neutral facial shapes and a set of discrete 

expressions (§V-B). This map is used to generate synthetic 

expressive facial shapes for both the avatar and the 

user. A mapping is then learned between the user’s shapes and 
corresponding ones of the avatar, where the generic basis learned 

previously regularises the solution (§V-C). 

In the online phase, the user’s face in the video stream is 

tracked using a nonrigid face alignment algorithm (§IV). The 

tracking algorithm provides the user’s shape and texture 

that are then mapped onto the avatar using the mapping function 

learned in the offline phase. Finally, the avatar’s face is rendered 

onto an image of any desired background using the mapped shape 

and texture. 

It should be noted that whilst the generation of the user’s discrete 

facial expression (step three in Figure 1) are placed in the offline 

phase, the user’s neutral facial shape is captured using the same 

tracking algorithm used in the online phase. Given this shape, 

learning the mapping between the chosen avatar and the user takes 

less than a second, and new user registration can be performed 

seamlessly online. 

IV. NON-RIGID FACE TRACKING 

The real time non-rigid face tracking algorithm used in this work 

is based heavily on that in [15]. The approach is an instance of the 

constrained local model (CLM) [4] with the subspace constrained 

mean-shifts (SCMS) algorithm as an optimisation strategy. In the 

following we describe our additions to that work, which allows 

robust and real time nonrigid tracking suitable for avatar animation. 

A. 3D CLM 

Changes in head pose, such as nodding and shaking, are salient 

non-verbal cues in communication. In order to capture such 

variations we extend the work in [15] by using a deformable 3D 

linear shape model. Since the SCMS algorithm used for optimisation 

is invariant to the particular parameterisation of the shape model, the 

original fitting algo- rithm needs only be modified with respect to the 

computation of the shape Jacobian. The generative shape model we 

use takes the following form: 

Si(θ) = sR(s̄i + Γiγ) + t   ;   θ = {s, R, γ , t}, (1) 

where s̄i  is the 3D coordinate of the mean ith  point, Γ is a 3D 

linear shape basis, and {s, R, t} are the weak perspective projection 

parameters: scale, rotation and translation. 

 

B. Fast Re-initialization 

As with most face alignment algorithms, SCMS is initial- isation 

dependent. Empirically we observed that when head movement 

between frames is large, the CLM is prone to loosing track. 

However, due to its locally exhaustive search procedure, we also 

observed that rapid changes in rotation can be handled effectively by 

SCMS since its landmarks typically move only within the range of 

the effective search regions. As such, we found it sufficient to re-

initialise the model in each frame to account for head translation 

only. For this, we simply performed normalised cross correlation 

over the entire image for the location most similar in appearance to 

that of the face in the previous frame. Optimisation then proceeds 

from that location. The algorithm does not suffer from drift since the 

region describing the face in each image is inferred through the 

CLM optimisation procedure. 

C. Failure Detection 

To facilitate uninterrupted interactions, the system should be able 

to recover from cases where it fails to track the face. However, in 

order to recover from failure, the system must know when it has 

failed. Although this aspect is rarely discussed in the literature, it is 

a crucial component of a real-world system since there are no 

efficient algorithms that guarantee global convergence in each 

frame. 

In this work we propose a very simple yet effective failure 

detection mechanism. Specifically, we use a linear support vector 

machine (SVM) trained to distinguish aligned from misaligned 

configurations. For SVM features we use normalised raw pixels 

since linear dimensionality reductions typically fail to preserve 

variations in appearance due to 

http://www.ijsrem.com/
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misalignment, and we found nonlinear approaches too com- 

putationally expensive for real time evaluation. 

In order to specialise the failure detector to the particular fitting 

algorithm used in tracking, the SVM was trained with negative data 

that corresponds to local minima of the CLM objective in each 

training image. For this, we randomly initialised the CLM around the 

optimal configuration in each training image and the SCMS 

algorithm was run until convergence. If its distance at convergence 

from ground truth is above a user defined threshold, then the 

appearance at that configuration is used as negative data. 

D. Acquiring 3D Shapes 

In §V, we will describe a method for facial expression transfer 

that assumes 3D shapes for both the puppet and puppeteer in their 
neutral expression are available. The 

process of acquiring these shapes is described below. 

For human avatars, the 3D face alignment algorithm de- scribed 

above can be used. However, when the avatar is non- human, the face 

alignment algorithm cannot be used since the appearance may not 

correspond to that of a typical face and the shape may not be spanned 

by the basis of shape variation. In this case, we require the user to 

annotate the avatar image with a set of 2D landmark locations 

corresponding to the 3D landmarks in the face model. The problem 

then reduces to lifting these 2D landmarks to 3D. 

In order to perform lifting, we require that the non-human avatar 

is human-like, in the sense that the 3D geometry of its facial 

landmarks are similar to that of humans. This is not a very strong 

requirement in practice since the vast majority of virtual characters 

share many characteristics of the human face. We proceed then by 

assuming that the depths of each landmark point can be 

approximated by fitting the face shape model to the annotated 

landmarks and assigning the depths of those landmarks to that of 

the fitted face. Since the aim of this work is to provide a convincing 

avatar rather than an accurate 3D reconstruction, we find that this 

simplification works well in practice. Specifically, we solve: 

 

Fig. 2: 3D reconstruction from 2D landmarks. 

 

 

V. FACIAL SHAPE TRANSFER 

Given a pair of images, one of the puppet and the other of the 

puppeteer, along with the 3D shape of the face in each, which  we  

denote  x̄ and  ȳ,  the  problem  reduces  to  finding a mapping between 

them for various facial expressions, knowing only the 3D structure 

of their neutral expressions. 

A. Generic Basis 

In the absence of sufficient training data to build a fully 

descriptive model of shape variability, one can use a generic basis of 

variations. For example, in [1] the authors used the MPEG-4 facial 

animation parameters [10], which represent a complete set of basic 

facial actions, enabling the animation of most facial expressions. 

Using such a basis, the generative model of an avatar’s shape takes 

the form: 

x = x̄ + Φp, (4) 

where Φ is the generic expression basis and p are the deformation 

parameters. 

Although Φ exhibits sufficient capacity to generate most 

facial expressions, it does not preserve identity. During puppetry, this 

may lead to shapes that depart from the avatar’s space of variability. In 

works such as [16][17], this problem is alleviated by projecting the 

shape deformations onto the avatar’s person specific subspace Ψ1: 

x = x̄ + ΨΨT Φp. (5) 

Although such a projection ensures that a generated shape perserves 

the avatar’s identity, there are two shortcomings 

min 
{zi}n  

,θ 

Σn 
 

i=
1 

  
2
 

ρ   ǁ[xi; yi; zi] − Si(θ)ǁ  ; σ , (2) 
of this approach. First, as identified earlier, learning Ψ requires a 

large set of annotated data. For example, around 200 images and 

whole video sequences were used in [17] 

where ρ is a robust penaliser, {xi, yi} are the 2D-coordinates 

of the ith user supplied landmark, zi is its corresponding depth, and 

S is the 3D linear shape model in Equation (1). Following [14], we 

use the Geman-McClure function for the robust penaliser and derive 
σ from the median error. Equation (2) is minimised by the iteratively 

re-weighted least squares procedure. The pose normalised 3D 
shape of the 

avatar is finally obtained by inverting the image formation process, 

assuming a weak perspective projection: 

x̄  = s−1RT ([x  ; y ; z ] − [t  ; t  ; 0]), (3) 

where  x̄i  is  the  avatar’s  ith  pose  normalised  3D  landmark, and {s, 

R, tx, ty} are the rigid transformation parameters extracted from θ. 
Some example reconstructions using this approach are shown in 
Figure 2. 

and [16], respectively, to learn their person-specific sub- spaces. In 

practice, collecting and annotating such large amounts of data online 

can be cumbersome, difficult or impossible. Secondly, such a 

formulation assumes that corre- sponding expressions between 

individuals can be described entirely by the reconstruction of these 

deformations. This can lead to under-articulation when the 

underlying models of deformation between the two faces differ 

significantly as a result of inherent differences in facial structure. 

B. Semantic Expression Transfer 

Given a large number of examples of both the puppet and 

puppeteer, along with semantic correspondences be- 

 
1It should be noted that in [16], the subspace Φ relates to the person 

specific basis for the puppeteer rather than a generic basis. 

http://www.ijsrem.com/
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such as Multi-PIE [7] and KDEF [5], exhibit only a small set of facial 

expressions (typically corresponding to the seven basic emotions: 

neutral, joy, angry, sad, surprised, fear and disgust). Such small sets are 

insufficient for learning the map- ping between the deformation fields 

since Equation (6) will be underdetermined. Although this situation 

may improve in the future, in the following section we present an 

approach that can leverage existing databases to learn more meaningful 

mappings. 

C. Combined Generic-Specific Models 

Although the synthesised samples described in the pre- ceding 

section may not be sufficient to learn a complete mapping between the 

puppet and puppeteer, it is possible to leverage such data to learn a more 

meaningful mapping than that afforded by a generic deformation basis 

alone. Consider the following cost function for learning the mapping: 
Fig. 3: Semantic expression transfer examples. 

min α ǁR − Iǁ2 
Σ 

+ (1 − α) ǁRp  − q ǁ2, (9) 

 

tween them, expression transfer can be treated as a super- 

R `   ˛¸   x 
generic 

term 

` ˛¸ x 
specific term 

vised learning problem. Specifically, given pairs {xi, yi}N , where xi 
is the ith example of the puppet and yi an example 

of the puppeteer with the same expression, the problem can be 

formulated as finding a mapping that minimises the prediction error 

over deformations: 

ΣN 

where R is the desired mapping function, I is the identity matrix, 

E is the set of expressions in the database, α ∈ [0, 1], and: 

qe = ΦT (Me(x̄) − x̄) (10) 

pe = ΦT (Me(ȳ) − ȳ) (11) 

min 
M 

 

i=
1 

ǁ(xi — x̄) − M(yi — ȳ)ǁ2, (6) 
are the projections onto the generic deformation basis of the 

synthesised shapes for puppet and puppeteer respectively. 

where M denotes a linear mapping between the deformations 
of the puppet and puppeteer. Expression transfer then takes the 

form: 

x = x̄ + M(y − ȳ). (7) 

However, as noted previously, in this work we assume that only a 

single example of both the puppet and puppeteer are available. 

Therefore, we follow recent work on expres- sion synthesis [6] to 

generate synthetic examples which are used to learn this mapping. 

Specifically, given a database of multiple people, each captured 

displaying the same set of expressions, one can learn a set of 

mapping functions between the neutral face and each expression in 

the database: 

ΣN 

With the solution of Equation (9), expression transfer then takes the 

form: 

x = x̄ + ΦRΦT (y − ȳ). (12) 

The first term in Equation (9) assumes deformations between the 
puppet and puppeteer have the same semantic meaning. Specifically, 

as α → 0, the mapping approaches the identity mapping, which 

simply applies the deformation 

of the puppeteer directly onto the avatar in a similar fashion as [1]. 

The second term in Equation (9) encodes semantic cor- 
respondence between the puppet and puppeteer as defined by the 

database E. As α → 1, the problem approaches that 
in Equation (6), but with the addition of a generic subspace 

min ǁxe − M (x̄ )ǁ2, (8) 
i e i 

Me 

i=1 
th 

projection, which can be rewritten in matrix form2: 

min ǁRP − Qǁ2 , (13) 

where x̄i  is the neutral expression for the i    subject in  the R F 

database, xe is the same subject with expression e, and Me 

is the mapping function for expression e. Once the mapping 

functions have been learned, examples for both the puppet and 

puppeteer can be synthesised and used in Equation (6) to find the 

mapping between their deformation fields. Some examples of this 

mapping are shown in Figure 3, where 

kernel ridge regression with a Gaussian kernel was used to 

parameterise Me. 

The main problem with this approach to learning the 

relationship between the puppet and puppeteer’s deformation 

where the columns of P and Q are pe and qe respec- tively for e 

∈ E. Given the small set of expressions in existing databases 

(typically seven expressions) and the high dimensionality of the 

generic basis Φ (i.e. the MPEG-4 has 68 facial animation 

parameters), Equation (13) is typically underdetermined. However, 
this system of equations can be solved using truncated SVD as 
regularisation [8], which gives 

the solution: 

R = QPT Ṽ S̃−1Ũ T , (14) 

fields is its data requirements. Existing expression databases, 2ǁAǁ
2 

denotes the Frobenius-norm of matrix A. 

e e 
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Fig. 4: Comparison between shape transfer methods, where se- 
mantic correspondence was not learned for the scream expression. 
Although the generic method better captures deformations that are 
not accounted for in the training set, person specific characteris- tics 
of the avatar are lost during animation (i.e. the expression appears 
exaggerated due to significant differences in facial shape at neutral). 
The semantic method fails to capture eye closing in scream, and 
appears to display a surprised expression instead. The combined 
method both preserves the avatars specificity and enables the transfer 
of expression components not modelled by semantic 
correspondence. 

 

where, for PPT = USVT , we have: 

section. However, the problem is complicated by the curse of 
dimensionality, where inference must now be performed over the 
space of pixels (typically > 10000) rather than over a sparse set of 

fiduciary facial landmarks (typically ≈ 100). In the following we 

describe an efficient approach that is 

capable of efficiently generating plausible changes in facial texture 

stemming from expressions. 

A. Generic Texture Basis 

Following the work in [16], we model facial texture in a shape 

normalised reference frame, where instances of the puppet are 

generated by inverse-warping the texture onto the image using a 

piecewise-affine-warp [11]: 

I(W−1(x, y; x)) = T(x, y), (16) 

where I denotes the synthesised image, T denotes texture in the 

shape normalised reference frame, (x, y) denotes image coordinates 

in the reference frame and W denotes the piecewise affine warp 

which is parameterised by the avatar’s shape x as defined in 
Equation (12). 

In a similar fashion to the generic shape basis discussed in §V-

A, we use a generic basis of texture variation to model changes in 
appearance due to expression. In particular, we assume that changes 
in texture are linearly correlated with that of shape, and synthesise 
texture as follows: 

U =  Ũ 0  , V =  Ṽ 0 
 

and  S = 

 
S̃
   

0  
. (15) 

ΣK 
T(x, y) = T̄ (x, y) + piAi(x, y) ;  p = [p1; . . . ; pK ], 

0 0 

Since rank(R) ≤ |E| in this case, from Equation (12) it ¯ 
i=
1 

 
(17) 

is clear that the effective span of the puppet’s deformation is at 

most |E|. With such a mapping, the puppet will be able to mimic 

only those expressions spanned by the training database E. 

where T is the neutral texture, Ai are the bases of texture 

variation and p are the shape deformation parameters (see 

Equation (4)). The texture basis is learned from a training set by 

solving the following least squares cost3: 

By setting α to be a value between zero and one, one ef- 

fectively learns a mapping that is both respectful of semantic 

correspondences as defined through the training set as well as 

min 
A 

ΣN 
 

i=
1 

ǁt̄i + Api − tiǁ ; A = [vec(A1) . . . vec(AK )], 

(18) 

exhibiting the capacity to mimic out-of-set expressions, albeit 

assuming direct mappings for these directions. The optimal choice 

for α will depend on the number of expressions in the training set as 

well as their variability. As a general rule, one should decrease α as 

the number of training expressions in- creases, placing more 

emphasis on semantic correspondences as data becomes available. 

Figure 4 illustrates the advantages of using a combined model as 

opposed to generic or semantic model’s alone. 

VI. FACIAL TEXTURE TRANSFER 

Unlike more sophisticated parameterisations that model the face 

shape using a dense point set [2], in our approach changes in facial 

texture cannot be modelled by a generative lighting model. This is 

because the sparse set of tracked points can not capture detailed 

changes in shape that give rise to changes in texture (i.e. the labial 

furrow in disgust etc.). As such, we must complement changes in the 

avatar’s shape with that of texture. 

The problem of facial texture transfer has many similari- ties to 

that of facial shape transfer discussed in the preceding where pi 

denotes the shape parameters describing the ex-      pression in the 

ith image, ti is the vectorised texture for that image and t̄i is the 

vectorised texture for the same subject but in a neutral expression. In 

essence, Equation (18) learns a 

(non-orthogonal) basis that best models changes in texture as 

described through changes in shape. Since no further estimation is 

required apart from evaluating Equation (17) using the current shape 

parameters, this model yields rapid texture synthesis suitable for 

real-time applications. Figure 5 illustrates the utility of using this 

basis for rendering a more convincing avatar than that without 

texture augmentation. 

B. Gaze Transfer 

So far, the avatar is capable of mimicking the user’s facial 

expression, but not her eye movements. Since changes in gaze 

direction can embody emotional states, such as depression and 

nervousness, an avatar equipped with gaze mimicking can appear 

much more realistic than one with a fixed gaze. 

 
3The vec(X) operator vectorises the matrix X by stacking its 

columns. 

2 
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(a) Generic Basis 

 

(b) Rendering Examples 

Fig. 5: a: Generic shape deformation basis and their corresponding 
texture basis. b: Effects of rendering with and without the use of 
a texture basis. Notice that changes in texture due to expression, such 
as the appearance of the labial furrow in smile and disgust, add 
substantially to the perceived expression. 

 

 

Learning a statistical appearance model of the eyes with only a 

few point correspondences is challenging. This is because the 

appearance model must account for translational effects of the pupil 

relative to the eyelids. It is well known that linear appearance models 

work poorly in such cases, with synthesis often resulting in 

significant ghosting artefacts that are not visually appealing. 

Instead, in this work we explicitly synthesise the pupil within a 

region enclosed by the eyelids. The pupil is approx- imated by a 

circle whose appearance is obtained from the single training image. 

In addition to annotating the avatar’s facial landmarks, this requires 

the user to also annotate the centre of the avatar’s pupils and its 

radius. Parts of the pupil that are obscured by the eyelids in that 

image are replaced by assuming circular symmetry of the pupil’s 

appearance. An example of the extracted pupil appearance is shown 

in Figure 6. 

Gaze transfer is achieved by placing the avatar’s pupils at the 
same relative location as that of the user’s. First the location of each 

of the user’s pupils, xp, are estimated as the centre of mass within 

the eye region, Ω, as determined by the tracking algorithm 

described in §IV: 
Σ 

 

 
Fig. 6: An illustration of pupil extraction and gaze transfer. 

 

Fig. 7: Tracking example. Top row: Tracking using [15], Middle 
row: Tracking using fast re-initialisation (§IV-B). Bottom row: 
Tracking using fast re-initialisation and failure detection (§IV-C). 

 

 
we stress that the aim of gaze synthesis in our application is not 
to infer gaze direction precisely, but rather to capture coarse eye 

movements that convey non-verbal cues. In §VII, we shown that this 

approach adequately captures such cues 

with little processing overhead. 

C. Oral Cavity Transfer 

Modelling texture variation in a shape normalised frame allows 

one to build a model by considering a fixed number of pixels. 

However, since the shape of the mouth can change dramatically 

between expressions, a single reference shape can not adequately 

capture changes in texture in the oral cavity, resulting in poor 

synthesis. Furthermore, variations in teeth, gum and tongue make 

learning generative models for the oral cavity extremely 

challenging. 

As such, rather than modelling the appearance of the oral cavity, 

in this work we simply copy the user’s oral cavity onto the avatar, 

using the piecewise affine warp defined within the 

x   =   Σx∈Ω w(xp)xp ; w(x ) = N (I(x  ); µ, σ2), (19) mouth region. This way, the whole gamut of appearances can 

x∈Ω w(xp) 

where I denotes the grayscale image and N denotes the Gaussian 

distribution with mean µ and variance σ2. A simi- larity transform 
relating the inner and outer eye corners of the 

user and avatar is then applied to the pupil location, placing it in the 

avatar’s image. Finally, the avatar’s iris and sclera colours are scaled 

according to the eyelid opening to mimick the effects of shading due 

to eyelashes. An illustration of this process is show in Figure 6. 

It should be noted that the ad-hoc approach described above will 

not, in general, obtain the precise gaze direction. Although more 

principled approaches to this problem exist, 

be accounted for with little computational cost. Furthermore, 

such a mapping acts to obscure small misalignments of the tracker 

around the mouth region. Results in §VII show that this simple 

strategy is effective in practice. 

 

VII. RESULTS 

The evaluation of facial puppetry systems is inherently qualitative 

and is best seen through video. Nonetheless, in this section we 

present various snapshots of animation that act to highlight the 

various contributions of this paper4. 

 
4A collation of the videos used in all experiments in this section 

can be viewed at: 
http://www.youtube.com/watch?v=u6zTMQglQsQ 

p p p 

http://www.ijsrem.com/
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Fig. 8: Examples of gaze transfer for human and non-human avatars. 
The user’s inferred pupil location is marked with a green circle. 

 

 

A. Implementation Details 

The facial puppetry system was implemented in C++ on a 

2.66GHz MacbookPro with 4GB of memory. The average 

computation time for the various components of the system were: 

58ms for new user registration, 23ms for tracking, and 19ms for 

expression transfer. The effective frame-rate of the complete system 

is 23fps, which is suitable for videoconferencing applications. 

1) Tracking: The 3D CLM described in §IV was trained using 

3000 images from the Multi-PIE database [7]. The 

3D shape model was obtained by applying nonrigid struc- ture from 

motion [18] on a 66-point manual annotation of these images, which 

retained 30 basis of nonrigid variation. All other components of the 

CLM were set according to descriptions in [15]. 

2) Shape Transfer: The generic basis used in facial shape transfer 

described in §V-A was trained using the Multi-PIE database. Using 

the 3D reconstructions obtained from struc- ture from motion, the 
face was divided into three separate components: eyes, eyebrows 
and mouth/nose/jaw. For each 

of these components, a generic expression basis was learned by 

applying SVD to difference vectors between expressive and neutral 

shapes. The full basis was then constructed by appending the basis 

for each of the components: 
  
Φeyes 0 0 

Fig. 9: Examples of oral-cavity transfer for human and non-human 
avatars. 

 

 

expressions than those present in the training set [2]. The resulting 

generic expression basis consisted of 30 modes of expression 

variation. 

The synthetically generated expressive shapes described in §V-B 

were obtained using kernel ridge regression with a Gaussian kernel. 
The regressors were trained on images from the Multi-PIE [7] and 
KDEF [5] databases, where the total number of examples were 27, 
229, 27, 478, 27, and 204 for 

anger, disgust, fear, joy, sadness and surprise expressions, 

respectively. The kernel width and regularisation constant were 

found through cross validation. 

Finally, the weighting coefficient α in Equation (9) was set to 

0.001, which was found to give good qualitative results through 

visual inspection. 

3) Texture Transfer: The generic texture basis described in §VI-

A was defined in a reference frame described by the convex hull 
of the mean face shape with a total of approximately 20,000 pixels. 
Since changes in texture due to expression mainly effect the 
luminance of the face, and 

because differences in camera colour models can cause undesirable 

changes in facial colour, this basis was learned from grayscale 

images only. When applying changes to the neutral face texture as is 

Equation (17), the changes were applied to each RGB channel 

equally. 

B. Tracking Results 

Figure 7 illustrates the utility of the additions to the 

Φ =  0 Φeyebrows 0 
0 0

 Φmouth 

 . (20) 
method in [15] we outlined in §IV. In the second column of 

Figure 7, the subject executes rapid head movement, 

By learning a basis for each component independently of all 

others, the resulting expression basis can generate more 

resulting in the failure of the algorithm in [15]. With the fast re-

initialisation strategy described in §IV-B, the algorithm 

http://www.ijsrem.com/
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Fig. 10: Examples of animating youtube clips. 

 

 

continues to track effectively. The fourth column in Figure 7 

illustrates the case where there is gross occlusion of the face, 

resulting in tracking failure. However, the failure- detector described 

in IV-C successfully detects such cases and continues to track 

effectively once the occlusion is removed by re-initialising using a 

face detector. 

 

C. Gaze and Oral Cavity Transfer Results 

The puppeteering examples in Figure 8 and 9 were ex- tracted 
from video captured using the inbuilt webcam on a MacBookPro. 
Figure 8 illustrates the efficacy of the method for gaze transfer 

proposed in §VI-B. Despite significant differences in eye size and 

shape, the proposed method 

successfully transfers the user’s eye movements to the avatar. The 

method also allows the original pupil colour of the avatar to be used 

or changed in accordance with the user’s preference. For example, 

the V for Vendetta mask (third row in Figure 8) uses black pupils 

since the avatar image contains no pupils (see Figure 3). 

The efficacy of the oral-cavity transfer method proposed in §VI-

C is illustrated in Figure 9. Despite significant dif- ferences in mouth 
size and shape, the proposed method generates convincing 
renderings of complex oral cavity ap- pearances, including the 
presence of teeth and tongue. The 

method also has the effect of obscuring tracking inaccuracies, as 

exemplified in the last column of Figure 9. 

 

D. Animating Youtube Clips 

To illustrate the generalisation properties of the proposed system, 

we processed a number of youtube clips exhibiting people of varying 

ethnicity talking in front of a camera. Some example renderings are 

shown in Figure 10. These videos exhibit compression artefacts, 

sudden camera movements, discontinuous clips and unconstrained 

head motion. Despite these sources of variability, the proposed 

approach generates convincing animations without the need for user 

intervention. 

VIII. CONCLUSION 

Real-time image animation represents a transformative leap in 

visual media technology, offering unprecedented 

opportunities to create dynamic and engaging content from 

static images. Throughout this project, advancements in deep 

learning, particularly through the integration of generative 

adversarial networks (GANs) and convolutional neural 

networks (CNNs), have paved the way for generating lifelike 

animations with remarkable realism and fluidity. By 

harnessing these technologies, the project has not only pushed 

the boundaries of what is possible in animation synthesis but 

also opened new avenues for applications across diverse fields 

such as entertainment, education, virtual reality, and digital 

art. 

REFERENCE

S 

[1] A. Asthana, A. Khwaja, and R. Goecke. Automatic Frontal Face 
Annotation and AAM Building for Arbitrary Expressions from 
a Single Frontal Image Only. In International Conference on 
Image Processing (ICIP’09), Cairo, Egypt, November 2009. 

[2] V. Blanz and T. Vetter. A Morphable Model for the Synthesis 
of 
3D-faces. In International Conference on Computer Graphics 
and Interactive Techniques (SIGGRAPH’99), pages 187–194, 
1999. 

[3] T. Cootes and C. Taylor. Active Shape Models - ‘Smart 
Snakes’. In 

British Machine Vision Conference (BMVC’92), pages 266–275, 
1992. 

[4] D. Cristinacce and T. Cootes. Feature Detection and Tracking 
with Constrained Local Models. In British Machine Vision 
Conference (BMVC’06), pages 929–938, 2006. 
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