

Real Time Soldier Health and Position Tracking System

Prof.Nishchitha T S*¹,Nithish K R*², Abhay Dinakar Chouhan*³, Srushti*⁴

¹*Assistant professor, Information Science and Engineering, R R Institute of Technology*

²*Student, Information Science and Engineering, R R Institute of Technology*

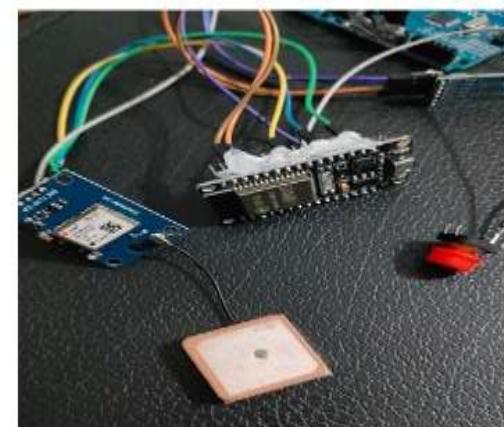
³*Student, Information Science and Engineering, R R Institute of Technology*

⁴*Student, Information Science and Engineering, R R Institute of Technology*

Abstract: Protecting the soldiers is now a top concern in modern military operations. In harsh environments such as hot temperatures and on the active battlefield, continuous communication and health tracking can be hard to keep up. Failure to diagnose medical problems in a timely manner could have severe ramifications. This paper presents a real-time soldier health and position tracking system based on IoT technology with an embedded wireless communication solution. Lightweight, wearable sensors that do not add to the burden of movement on warfighters provide real-time data in a readily accessible and straightforward manner because the system continuously collects key health information such as heart rate, body temperature and blood oxygen levels. An ESP32 microcontroller analyses this data for Wi-Fi and Bluetooth-based communication and is equipped with a GPS module to provide up-to-date location details.

Keywords: Soldier health monitoring, IoT, ESP32, GPS, wireless communication, wearable sensors.

1. INTRODUCTION


In today's military environments, soldiers work in conditions that are extreme and in remote areas where constant monitoring of their health can be impractical. In such cases, delayed diagnoses can result in disastrous outcomes, as they necessitate continuous monitoring of the military personnel's health.

The project suggests the development of a Real-Time Soldier Health and Position Tracking System, which tracks and monitors the health parameters like heart rate, body temperature, and blood oxygen levels using wearable biomedical sensors. The acquired data is further processed by the ESP32 microcontroller, which supports wireless communication through Wi-Fi and Bluetooth connectivity. Additionally, the use of the GPS module will help track the position, and GSM communication will send the information to the command control centre. In case of unusual health situations, alert messages are produced instantly.

2. Body of Paper

The system model comprises the combination of wearable sensors, processing, and wireless communication in an integrated unit. Biomedical sensors record data regarding heart rate, body temperature, and blood oxygen levels. This data is processed using the ESP32 microcontroller.

The ESP32 is used to interpret the sensor information by comparing it against the defined thresholds and removing noise so as to provide accurate information. The GPS module enables the real-time location of the individual, which is then coupled with the health information and sent remotely to the command centre via wireless communication.

Figure 1: Arduino Uno with Passive Buzzer Module Connected on a Breadboard

Sensed data is monitored and stored in a spreadsheet.

A	B	C	D	E	F
11/2025	19:58:40	heartRate	spo2	temperature	humidity
15/2025	7:43:01	0	0	27.4	38
15/2025	7:43:11	0	0	27.4	38
15/2025	7:43:16	0	0	27.4	38
15/2025	7:43:23	72	97	27.4	38
15/2025	7:43:25	65	98	27.4	39
15/2025	7:43:30	70	97	27.4	39
15/2025	7:43:34	74	96	27.4	39
15/2025	7:43:39	68	97	27.4	39
15/2025	7:43:43	65	96	27.4	39
15/2025	7:43:47	73	97	27.4	39
15/2025	7:43:53	71	96	27.5	39
15/2025	7:43:56	65	97	27.4	39
15/2025	7:44:01	69	96	28.7	40
15/2025	7:44:06	74	97	28.7	47
15/2025	7:44:10	68	96	28.7	55
15/2025	7:44:14	65	97	28.7	63
15/2025	7:44:19	73	96	28.8	71
15/2025	7:44:23	71	97	32.8	72
15/2025	7:44:28	65	96	32.2	77

Image of showing all normal.

Image of showing alert.

3. CONCLUSIONS

Real-time soldier health and position monitoring system successfully verifies the implementation of wearable biomedical sensors, ESP32 microcontroller, and wireless communication for monitoring soldiers in the field environment. It monitors important health-related parameters as well as the position of the soldier in real time, so this system helps in finding any health-related problems at an earlier stage and reacting appropriately in an emergency.

The system worked efficiently and was reliable and robust enough to withstand harsh environments. The capability of providing alerts enables effective decision-making and thus facilitates effective medical assistance. In conclusion, the proposed system improves the safety and efficiency of soldiers.

ACKNOWLEDGEMENT

They would like to thank their project guide, as well as the faculty members, for their priceless guidance, support, and encouragement in completing this project. It has been of immense help in enhancing the quality of the project.

The writers would like to extend their gratitude to their friends and classmates for their cooperation and help in the project. The writers would like to extend their sincerest appreciation to their families for the motivation and support they showed in the completion of this project.

REFERENCES

1. S. Umamaheswari, L. G., and B. Shuriya, "Integrated Real-Time Monitoring for Soldier Health and Operational Efficiency: A Multi-Metric Approach," 2025 3rd International Conference on Advancements in Electrical, Electronics, Communication, Computing Automation (ICAEC), 2025, pp.
2. A. M. Anitha, V. K. Vignesh, Y. D., and S. T. B. Sundeep Saravanan, "Soldier Monitoring and Tracking System Using ESP-NOW and SMTP Protocol," 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 2024, pp.
3. S. C. Aysola et al., "Real-time Soldier Health and Location Tracking System," MATEC Web of Conferences, vol. 392, pp. 1–7, 2024.
4. S. V. Sujitha et al., "IoT-Based Healthcare Monitoring and Tracking System for Soldiers using ESP32," 2022 6th International Conference on Computing Methodologies and (ICCMC), 2022, pp. Communication.
5. V. Patel et al., "Soldiers' Health Monitoring and Position Tracking System," 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2024, pp.
6. Mohit Beri, Bipin Kumar, and Saurabh Tiwari, "IoT-Based Health Monitoring System Built on ESP32," 2022 2nd International Conference on Advanced Computing and Innovative Technologies in Engineering (ICACITE), 2022.
7. Murli Gone, Sanchita Ghodse, Yashkumar Khaserao, Asawari Kulkarni, and Anagha Chaphadkar, "Real-time Soldier Health Monitoring System Using IoT and Blynk Cloud," 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), IEEE, 2023.
8. "IoT-based Real-Time System for Tracking and Monitoring the Health of Soldiers," ICEARS 2023 (IEEE), 2023.