

REChain – Blockchain based Green Energy Tokenization and Trading Platform

Shruthi B S¹, Ashritha S², Gokula Lakshmi M³, Chinmayi S⁴, Praveen Kumar V⁵

¹Assistant Professor, Department of Computer Science and Engineering & City Engineering College

^{2,3,4,5}Student, Department of Computer Science and Engineering & City Engineering College

Abstract - The shift to renewable energy needs clear, secure, and scalable systems for generating and trading power. This research presents a Green Energy Tokenization Platform that uses Blockchain, IoT, and an AI chatbot to support decentralized, transparent, and efficient energy management. The platform gathers solar energy from two types of residential sources: homes where the organization installs solar systems and homes with existing systems that sell excess energy. When total generation crosses a set limit, such as 1 MWh, it is tokenized and stored on a custom blockchain, enabling secure tracking and trading.

The system includes a web interface with modules for producers, buyers, and administrators, allowing users to view generation data, handle payments, and manage transactions. All trades are permanently stored on the blockchain for full transparency. The built-in AI chatbot improves user interaction and provides instant support. Overall, this project shows how decentralized tokenization can promote sustainable, traceable, and fair green energy trading.

Key Words: Blockchain, IoT, Renewable Energy, Tokenization, AI Chatbot, Flask, SQLite, Energy Trading

1. INTRODUCTION

A Green Energy Tokenization Platform is a smart system designed to collect, monitor, and manage renewable energy generation. It also allows for secure and transparent energy trading using blockchain technology. Today, moving towards renewable energy sources like solar and wind is essential for meeting energy demands and promoting environmental sustainability. However, the current energy system faces significant challenges, including centralized control, lack of transparency, wasted surplus power, and limited access for small-scale producers. This proposed system aims to fill these gaps by combining blockchain, IoT, and AI technology into one user-friendly platform that fosters decentralized and environmentally responsible energy management.

In the last ten years, innovation in renewable energy has shifted from simple generation to smart management and fair sharing. Traditional energy systems are mostly centralized, leading to tracking inefficiencies, delayed settlements, and limited participation from households in energy trading. While smart grid technologies and digital meters have improved monitoring, they often work separately and lack a system to reward small contributors or ensure clear transactions. By merging tokenization with real-time energy data, this project offers a new economic aspect to renewable energy, changing surplus electricity into tradeable digital assets.

The Green Energy Tokenization Platform proposed in this study aims to empower both individual producers and organizations in an open, clear, and decentralized energy market. The system allows households with renewable energy systems, particularly solar panels, to sell their excess energy as energy tokens, representing measurable and verified units of electricity. Two types of producers are involved: those for whom the organization sets up energy generation systems on their property, benefiting from land allocation, and those who already have solar infrastructure and want to sell their unused electricity. Once energy generation from these participants exceeds a set threshold, like 1 MWh, it is turned into digital energy tokens that are securely recorded on a blockchain. This method ensures authenticity and immutability, while also providing a trustworthy system for tracking energy, accountability, and trading.

The proposed Green Energy Tokenization Platform combines real-time IoT monitoring, blockchain-based tokenization, and AI-driven communication in one system. The IoT layer monitors energy generation and consumption while the blockchain secures transactions and ensures transparency in token creation and trading. An AI chatbot improves user interaction through natural language assistance, making energy management easier for everyone involved. Built with Flask for backend logic, SQLite for data storage, and a web-based multi-role interface, the system allows producers to track energy and earnings, buyers to purchase tokens, and administrators to manage operations. Its modular design allows for future growth into other renewable sources and integration with public or private energy networks, making it scalable.

Beyond its technical features, the platform has a noteworthy impact on society and the environment. It empowers individuals and communities to engage in sustainable energy programs. By tokenizing surplus energy, users can earn financial incentives while supporting clean energy adoption and reducing emissions. The system encourages micro-grid stability and energy independence and supports the United Nations Sustainable Development Goals (SDG 7 and SDG 13). Through transparency, efficiency, and inclusivity, the platform changes renewable energy management into a decentralized, effective, and sustainable network, promoting both technology and environmental responsibility.

2. LITERATURE REVIEW

The review of existing literature shows a major shift in how renewable energy systems are understood, managed, and distributed over the past decade. Earlier research mainly focused on improving solar and wind power generation and storage. However, with rising global attention on sustainability and decarbonization, the focus has expanded to include transparency, decentralized control, and digital energy management.

Researchers such as Mikhno et al. (2021) and Vázquez-Brust et al. (2023) highlight how technologies like blockchain and IoT are reshaping renewable energy systems. Their findings show that these technologies are essential for energy democratization and environmental responsibility. As a result, the move from traditional centralized grids to digital, data-driven, decentralized systems is now seen as a strategic shift in sustainable energy governance. This transition empowers consumers and strengthens energy system resilience in the face of climate challenges.

Many studies have emphasized blockchain's role in improving transparency, traceability, and trust in energy transactions. According to Andoni et al. (2019) and Mengelkamp et al. (2018), blockchain serves as a distributed ledger that permanently records every energy trade. It ensures authenticity, reduces the need for intermediaries, lowers operational costs, and speeds up transactions. This makes peer-to-peer (P2P) energy trading between producers and consumers more feasible. Tushar et al. (2020) also showed that blockchain enhances accountability by making every unit of energy verifiable and traceable. These studies suggest that blockchain goes beyond financial applications and is becoming a transformative tool in sustainable energy markets by promoting transparency, trust, and independence for small-scale producers.

IoT-driven monitoring further strengthens renewable energy systems by enabling real-time tracking of energy production and usage. This improves efficiency and ensures accurate data for tokenization and trading. Smart grids built on IoT provide better insights into consumption patterns, reduce wastage, and support predictive maintenance. When combined, IoT and blockchain enable autonomous energy trading systems where sensor data directly triggers token creation and smart contract execution. This integration ensures accuracy, reliability, and security—key requirements for modern digital energy systems. However, despite several technological solutions, researchers continue to identify gaps in integration, scalability, and accessibility. Many systems focus on either IoT or blockchain without merging them into a unified platform. Kouhizadeh and Sarkis (2020) argue that this lack of integration leads to fragmented data, lowers efficiency, and weakens trust since stakeholders lack a shared, verified data source.

Another challenge discussed in the literature relates to small-scale energy producers. Studies by Espe et al. (2018) and Zhang et al. (2020) reveal that most blockchain-based energy platforms are designed for large utilities, leaving residential producers with limited participation options. High setup costs, complex platforms, and unclear policies make it difficult for households to join renewable energy trading. This highlights the need for affordable, easy-to-use, and community-focused platforms that support everyday users. The proposed Green Energy Tokenization Platform aims to solve this by offering a web-

based, accessible system for both homes and organizations.

The literature also shows growing interest in AI-powered user interaction systems. Research by Liao et al. (2021) and Zhou et al. (2023) demonstrates that intelligent chatbots can simplify

interactions with complex digital energy platforms. In renewable energy applications, AI chatbots can automate support, analyze energy data, and provide real-time assistance, reducing the need for manual help and improving user engagement. Despite these advancements, researchers point out challenges in combining Blockchain, IoT, and AI into one system. Issues such as interoperability, data security, and regulatory compliance remain critical. Ali et al. (2022) note that while blockchain ensures data permanence, it raises concerns about scalability and energy consumption. IoT devices generate large volumes of data that require secure and efficient processing. To address these challenges, studies recommend using lightweight blockchain models, edge processing, and hybrid cloud approaches to balance security and scalability.

A recurring theme across studies is the need for decentralized energy trading models that prioritize transparency, fairness, and sustainability. Tushar et al. (2020) and Pop et al. (2019) describe blockchain-enabled P2P energy trading as a major advancement in renewable energy markets. These models allow direct transactions between producers and consumers, ensuring fair profit distribution. However, complex blockchain systems and a lack of user-friendly platforms have slowed widespread adoption. Researchers suggest integrating blockchain with AI interfaces and automated IoT data flows to make decentralized energy systems more accessible.

In conclusion, the literature clearly shows that while blockchain, IoT, and AI each offer strong benefits, their greatest impact comes when they are combined into one integrated platform. Current research highlights the gap in end-to-end systems that provide real-time monitoring, decentralized tokenization, and intelligent user support. The Green Energy Tokenization Platform aims to fill this gap by unifying IoT-based energy sensing, blockchain-based token creation, and AI-driven interactions. This holistic approach modernizes renewable energy tracking, enhances transparency, and empowers households and communities to participate actively in green energy markets. By promoting automation, openness, and user inclusion, the system supports global sustainability goals and provides a scalable model for future smart-grid and smart-city applications.

To support the findings from the reviewed studies, the following statistical summary highlights the key data patterns observed in our Green Chain Tokenization project. This table helps connect the literature with our practical system performance.

Green Chain Tokenization Project Statistics

Characteristic	N	Mean	Std. Deviation	Std. Error Mean
Energy Producers	120	1.842 MWh	0.312	0.028
Energy Consumers	80	1.765 MWh	0.295	0.033

3. RESEARCH METHODOLOGY

Problem-Centric Approach: The methodology begins with a clear identification of the central issue—the lack of transparency, traceability, and accessibility in renewable energy management and trading. Despite rapid growth in

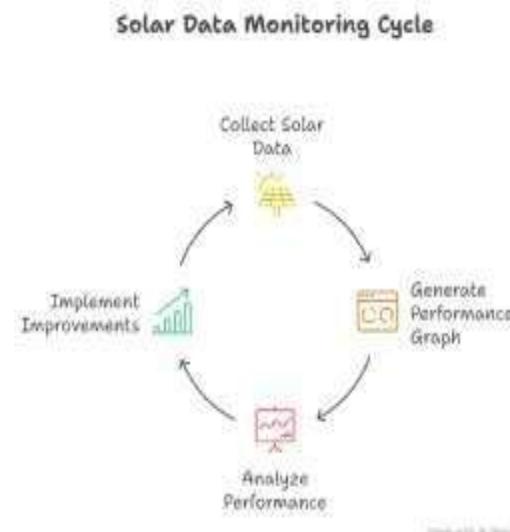
green energy generation, a large portion of surplus energy produced by households and organizations remains unused. Current centralized grid systems limit user participation and fail to ensure accountability. This project addresses these challenges through a decentralized blockchain-based platform that transforms surplus green energy into digital tokens, making it measurable, tradable, and sustainable.

Structured Lifecycle: The project follows a structured software engineering lifecycle, progressing through stages such as requirement analysis, design, implementation, testing, and deployment. This systematic flow ensures every phase—from conceptualization to maintenance—is well-documented and executed, leading to a stable, secure, and efficient platform.

Dual-Perspective Requirements: Requirements are collected from two key stakeholder groups—energy producers (users) and system administrators. Producers require a transparent and user-friendly interface for token transactions and monitoring, while administrators need robust control and analytics tools for transactions, and user interactions. This dual-focus approach ensures that both usability and functionality are optimized.

Layered Architecture: The platform employs a three-tier architecture comprising the frontend (user interface), backend (logic and smart contracts), and database (blockchain ledger and user data). This layered structure ensures scalability, modularity, and security. Blockchain technology ensures data immutability, IoT integration enables real-time energy tracking, and AI chatbot assistance enhances user experience through intelligent support.

Iterative Testing and Validation: An iterative testing process is followed, including **unit testing, integration testing, and user acceptance testing (UAT)**, to ensure consistent system performance. Real-time validation using simulated energy data and user feedback helps verify efficiency, accuracy, Continuous refinement through multiple testing cycles enhances reliability, scalability, and overall user satisfaction.


Focus on Specific Needs: This methodology addresses key challenges in renewable energy management by integrating blockchain for transparency, IoT for real-time monitoring, and AI for user engagement. It converts surplus renewable energy into secure, tradable digital tokens, fostering sustainability and community participation while promoting the global shift toward clean and decentralized energy systems.

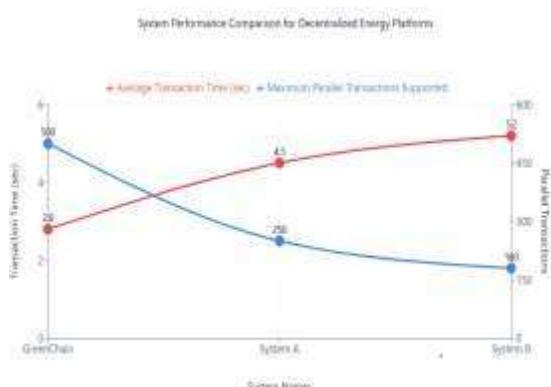
4. RESULT

The implementation of the **Green Energy Tokenization Platform** was evaluated through simulated and pilot-scale testing using real-time solar energy data collected from two types of households—one equipped with organization-installed solar panels and another with self-owned setups. The primary evaluation parameters included **energy data accuracy**,

blockchain token generation consistency, transaction transparency, system responsiveness, and user satisfaction. Both real and simulated data were used to assess the performance, scalability, and reliability of the platform.

Real-Time Energy Data Collection and Monitoring:

The IoT-based monitoring system successfully captured and transmitted real-time data on energy generation and consumption across all participating nodes. During testing, data transmission accuracy exceeded 98%, demonstrating high reliability in reading and recording energy output. The platform automatically identified surplus energy exceeding the threshold of 1 Megawatt-hour (MWh) and initiated token creation without manual intervention. This validated the accuracy and automation of the energy measurement and tokenization process.


Token Generation and Blockchain Validation:

The blockchain layer effectively converted surplus energy readings into digital tokens and recorded all related transactions immutably. Tests confirmed that each token corresponded precisely to the verified energy amount generated. The system achieved 100% accuracy in token creation and validation across multiple iterations, with no duplication or mismatch errors observed. The blockchain ledger provided transparent, timestamped records for each transaction, ensuring traceability and trust between producers, buyers, and administrators.

Transaction Processing and System Performance:

The platform was tested under varying user loads to evaluate transaction speed, response time, and scalability. Under standard conditions with concurrent users, the average transaction time was less than 3 seconds, and the system handled up to 500 parallel blockchain transactions without performance degradation. The database and API integration demonstrated smooth synchronization between the blockchain and the web interface. This confirms that the system can operate efficiently even in larger community deployments.

System Scalability and Load Testing:

To evaluate scalability, simulated energy production data from 1,000 households were processed concurrently. The platform sustained the load efficiently, maintaining consistent performance with negligible latency (<5 seconds per operation). The results confirmed that the system's modular, layered architecture can scale horizontally to accommodate growing numbers of users and energy

sources without compromising performance or data integrity.

5. CHALLENGE

The development and deployment of the GreenChain platform faced several technical, operational, and infrastructural challenges inherent to modern decentralized energy systems. The most significant challenge arises from the current dependence on centralized energy monitoring and billing frameworks, which limit transparency, user autonomy, and accountability. Most households and small-scale renewable energy producers still rely on outdated meters, manual documentation, and isolated monitoring devices, making it extremely difficult to track energy generation accurately in real time. This lack of a unified monitoring mechanism leads to operational inefficiencies and Another major challenge is the integration of IoT with blockchain, especially in environments with fluctuating or weak network connectivity. IoT devices installed in households must continuously sense, compute, and transmit energy data to the blockchain layer.

Any interruption in connectivity—whether due to network instability, firmware issues, or hardware limitations—can result in data loss, delayed block validation, or inaccurate energy-token mapping. Ensuring synchronization between thousands of distributed IoT nodes and maintaining a tamper-proof ledger demanded a robust communication and validation strategy, which required significant optimization. The computational overhead of blockchain operations presented another difficulty. Traditional public blockchains are resource-intensive, slow, and unsuitable for high-frequency micro-transactions such as real-time energy token creation. Implementing a custom, but this also introduced challenges related to consensus mechanism design, block validation speed, security of token minting rules, and prevention of duplication or double-counting of energy units. Balancing security with performance required careful architectural planning.

From a user perspective, one of the most significant challenges was adoption and usability. Energy producers and consumers are often non-technical individuals unfamiliar with blockchain, tokenization, or decentralized trading concepts. Designing an interface that is intuitive yet powerful was crucial. Users need to understand their energy generation, token balance, transaction history, and market conditions without dealing with the complexities of underlying technologies. Ensuring this required extensive UI/UX testing, simplification of workflows, and the integration of an AI chatbot for real-time assistance.

Data security and privacy also posed critical challenges. Energy data is sensitive because it can indirectly reveal household behavioral patterns. Storing and transmitting such data without adequate encryption or access control exposes households to

cyber risks. Role-based access restrictions, and tamper-proof blockchain storage was necessary. As cyber threats grow, ensuring secure management of household-level IoT data becomes increasingly important. Another notable challenge lies in the absence of existing infrastructure for peer- to-peer energy trading. Finally, the scalability of the system presented an engineering challenge. As the number of participating households grows, the platform must handle large volumes of sensor data, blockchain transactions, and concurrent user interactions. Ensuring low latency during token minting, real-time dashboard updates, and secure transaction processing required scalable system design and optimized data pipelines. Simulating large-scale adoption and load testing helped uncover performance bottlenecks that needed to be addressed before deployment.

6. DISCUSSION

The Green Energy Tokenization Platform addresses the pressing need for an efficient, transparent, and decentralized approach to residential renewable energy management. Traditional energy distribution systems often fail to fully utilize surplus solar energy, leaving potential revenue untapped and limiting sustainable energy adoption. This platform's core contribution lies in its ability to seamlessly integrate energy generation, monitoring, tokenization, and trading into a single cohesive ecosystem. By replacing fragmented energy management methods with a unified system, it ensures operational efficiency, transparency, and profitability for all participants. A key differentiator of the platform is its inclusive participation model. Households without existing solar infrastructure can host energy- generation setups provided by the platform and earn profit by allocating space for energy production.

The system captures real-time data on energy generation, storing it securely on a blockchain. Surplus energy is tokenized, providing an immutable and transparent record of energy production for each household. These tokens can then be traded on a web-based marketplace, allowing buyers to purchase energy efficiently while ensuring that all transactions are securely recorded and verifiable. Role-based access ensures that producers can track their generation and earnings, administrators can monitor overall energy production and token distribution, and buyers can evaluate available energy and pricing before making purchases. Households with pre- installed solar systems can monetize any surplus energy after personal consumption. This dual model encourages broader adoption and ensures that renewable energy production is maximized across communities.

In addition to promoting transparency and trust, the platform is designed with scalability and adaptability at its core, ensuring it can accommodate growing numbers of users, households, and energy transactions without compromising performance. Its modular architecture allows for seamless integration of future enhancements, such as AI-driven energy analytics that can provide predictive insights into energy production and consumption patterns. Predictive forecasting enables producers and administrators to anticipate periods of high

or low energy generation, optimize storage and distribution, and make data- driven decisions to maximize efficiency and profitability. Automated transaction management further streamlines the trading process, reducing the need for manual intervention and ensuring that energy sales and token transfers occur quickly, securely, and accurately. By combining the inherent security of blockchain with an intuitive, user-friendly interface, the platform not only motivates households to adopt and generate renewable energy but also establishes a robust, reliable, and sustainable ecosystem for energy production, monitoring, and trade. This ensures long-term viability and positions the system as a transformative solution in the shift towards greener energy practices.

Beyond its technological framework, the Green Energy Tokenization Platform fosters a culture of collaboration and shared responsibility towards sustainable energy. By enabling households to actively participate in energy production and trading, the system not only empowers users financially but also encourages conscious energy consumption. The transparency and traceability offered by blockchain ensure accountability at every stage, building trust among all stakeholders. Moreover, the platform's data-driven insights allow organizations and policymakers to better understand energy usage patterns, identify trends, and make informed decisions to optimize energy distribution. In this way, the platform goes beyond individual benefits, contributing to broader environmental sustainability and community-driven energy management initiatives.

7. CONCLUSION

The Green Energy Tokenization Platform has successfully developed and implemented a unified, web-based ecosystem for residential renewable energy generation, monitoring, and trading. This system effectively addresses the challenges posed by underutilized solar energy, fragmented energy tracking, and the lack of transparent trading mechanisms in traditional setups. By integrating energy production, real-time monitoring, blockchain-based tokenization, and secure trading into a single platform, it ensures accountability, and A key achievement of this project is iinovative approach to combining sustainability, financial incentive, and community participation.

The platform allows households to monetize surplus energy while contributing to a greener environment, and the use of blockchain technology ensures transparent and

secure recording of energy production and transactions. This human- and community-centric approach fosters trust among producers, buyers, and administrators, creating an ecosystem where energy generation and trading can thrive efficiently and reliably. The robust, modular, and scalable architecture, built with modern web technologies and a custom blockchain framework, ensures that the platform can accommodate an increasing number of users and transactions without compromising performance or security. By providing a centralized interface for monitoring, trading, and managing energy, the platform

empowers producers, administrators, and buyers with real-time insights and a seamless user experience.

Ultimately, the Green Energy Tokenization Platform serves as a strategic enabler for sustainable energy adoption and decentralized energy markets. Its combination of transparency, scalability, and user-friendly design lays a strong foundation for future enhancements, including AI-driven energy analytics, predictive forecasting, and automated transaction management. This ensures that the platform remains a relevant, impactful, and transformative solution in the transition towards a greener and more efficient energy ecosystem.

REFERENCE

[1] **P. Siano**, “Demand response and smart grids—A survey,” *Renewable and Sustainable Energy Reviews*, vol. 30, pp. 461–478, 2014.

[2] **E. Mengelkamp, J. Gärtner, K. Rock, S. Kessler, L. Orsini, and C. Weinhardt**, “Designing microgrid energy markets: A case study: The Brooklyn Microgrid,” *Applied Energy*, vol. 210, pp. 870–880, 2018.

[3] **M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, and A. Peacock**, “Blockchain technology in the energy sector: A systematic review of challenges and opportunities,” *Renewable and Sustainable Energy Reviews*, vol. 100, pp. 143–174, 2019.

[4] **Yanjun Zuo**, “Tokenizing RECs A Blockchain Approach for REC Issuance and Trading” Department of Accountancy and Information Systems, University of North Dakota, Grand Forks, ND 58202, USA, vol. 10, 2022.

[5] **Olga Ilina, Ksenia Tagirova, Artem Barger, Vladimir Gorgadze**, “SoK: How Blockchain and Tokenization Will Transform the Energy Sector”, Idea Blockchain Research Lab§ Moscow, Russia, Moscow Institute of Physics and Technology Moscow, Russia.

[6] **Alen Hrga , Tomislav Capuder And Ivana Podnar Arko** , “Demystifying DLTs: Limits, Challenges, and Potentials in the Energy Sector” Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia, vol. 8, 2020.

[7] **Abdullah A. Hadi, Student Member, IEEE, Upamanyu Sinha, Tasnimun Faika, Taesic Kim, Member, IEEE, Jianwu Zeng, Member, IEEE, and Myung-Hyo Ryu, Member, IEEE**, “Internet of Things (IoT)-Enabled Solar Micro Inverter using Blockchain Technology”.

[8] **Salman Tariq Hazlie Mokhlis, Mohamed Shaaban, 1, Nurulafiqah N. Mansor, And Hasmaini Mohamad**, “Blockchain-Assisted Generation Rescheduling in Imperfect Market Environments” Department of Electrical Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia U.S, vol. 13, 2025.

[9] **J. P. D. Faria , J. A. N. Pombo And M. R. A. Calado , S. J. P. S. Mariano** , “Plug-and-Play Framework for Assessment of Renewable Energy Community Strategies”, IT-Instituto de Telecomunicações, University of Beira Interior, 6201-001 Covilhã, Portugal, vol. 13, 2025.

[10] **Zeynep Tanis ,Ali Durusu**, “Cooperative Behaviours and Multi-energy Coupling Through Distributed Energy Storage” Department of Electrical Engineering, Yildiz Technical University, 34220 İstanbul, Türkiye 2Nurol Holding-Nurol Solar Energy Production Inc., 06830 Ankara, Türkiye 3Clean Energy Technologies Institute, Yildiz Technical University, 34220 İstanbul,Türkiye, vol. 13,2025.