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Abstract - In today’s dynamic cybersecurity landscape, Intrusion 

Detection Systems (IDS) must adapt to evolving threats without relying 

on frequent retraining or compromising performance. This project 

proposes a novel IDS framework that synergistically combines 

Convolutional Neural Networks (CNNs) with Reinforcement Learning 

(RL) to classify network traffic as normal or anomalous, while 

minimizing the frequency of model updates. The framework is 

deployed via an intuitive, Streamlit-based web interface that supports 

real-time predictions based on user-provided network feature inputs.A 

pre-trained scaler is employed to normalize the input features before 

classification by the CNN model. Simultaneously, a reinforcement 

learning agent dynamically adjusts detection policies through reward-

based feedback, thereby prolonging the model’s operational lifespan 

and adaptability. To promote transparency and user trust, the system 

integrates LIME (Local Interpretable Model-Agnostic Explanations), 

providing interpretable, feature-level insights for each classification 

decision. 

Experimental evaluation reveals that the proposed system achieves 

high classification accuracy, maintains a low false positive rate, and 

demonstrates strong resilience over time—without the need for 

frequent retraining. This work delivers a scalable, explainable, and 

low-maintenance solution for intrusion detection, offering a robust 

asset for contemporary cybersecurity environments. 

 

1. INTRODUCTION  

1.1 Introduction to Intrusion Detection Systems 

In the current digital era, where information technology is 

deeply integrated into the functioning of governments, 

businesses, and individuals, the security of digital assets has 

become a primary concern. With the ever-growing complexity 

of computer networks and the exponential rise in cyber threats, 

it is imperative to deploy intelligent systems that can monitor, 

detect, and prevent malicious activities. One such critical 

component in the cybersecurity ecosystem is the Intrusion 

Detection System (IDS). 

An IDS is a security mechanism that continuously monitors 

network traffic or system activities to detect suspicious behavior 

or unauthorized access. IDS tools are typically categorized into 

two main types: Host-Based IDS (HIDS) and Network-Based 

IDS (NIDS). HIDS monitors activities on individual systems 

such as servers or endpoints, whereas NIDS inspects data 

packets flowing through the network to identify potential 

threats. 

The primary function of IDS is to raise alerts upon identifying 

deviations from normal behavior or signatures of known 

attacks. These systems provide crucial support to network 

administrators in mitigating threats at early stages and 

preventing large-scale data breaches. Despite their usefulness, 

traditional IDS systems face several limitations, including high 

false positive rates, difficulty in adapting to new attack 

strategies, and limited scalability in large, dynamic 

environments. 

1.2 Role of Deep Learning in Network Security 

With the advancement in artificial intelligence (AI), particularly 

in deep learning (DL), there has been a paradigm shift in how 

network threats are detected and managed. Deep learning 

techniques mimic the human brain’s neural structure to learn 

complex data patterns and representations. These models, when 

trained on labeled network traffic data, can efficiently classify 

benign and malicious behavior without extensive manual 

feature engineering. 

Several architectures have been successfully applied to 

cybersecurity tasks. Convolutional Neural Networks (CNN) are 

adept at capturing spatial hierarchies and local correlations in 

data, making them suitable for intrusion detection where packet 

features exhibit spatial patterns. Similarly, Recurrent Neural 

Networks (RNN) and Long Short-Term Memory (LSTM) 

networks excel in learning from sequential data and are 

commonly employed in detecting temporal anomalies in 

network traffic. 

Deep learning models offer several advantages: 

➢ Automated Feature Extraction: They eliminate the need 

for manual selection of features. 

➢ Scalability: Capable of handling large-scale network 

traffic data. 

➢ Generalization: They can detect sophisticated and 

previously unseen attack patterns. 

However, deep learning models also pose certain challenges. 

They require large amounts of training data, significant 

computational resources, and suffer from the problem of model 

drift, wherein their accuracy degrades over time due to evolving 

threat landscapes. Regular retraining is often necessary, which 

is not always feasible in production environments. This 

shortcoming necessitates the exploration of adaptive models 

that can learn continuously and remain effective over time. 

1.3 Reinforcement Learning: An Overview 

Reinforcement Learning (RL) is a powerful machine learning 

paradigm inspired by behavioral psychology. It focuses on how 

an agent can learn to make decisions through interactions with 

an environment by receiving feedback in the form of rewards or 
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penalties. RL is uniquely suited for problems that involve 

sequential decision-making, long-term strategy, and continuous 

adaptation—making it highly applicable to the dynamic and 

adversarial nature of cybersecurity. 

The fundamental components of an RL system include: 

➢ Agent: The learner or decision-maker (e.g., IDS model). 

➢ Environment: The network system being monitored. 

➢ State: The current representation of the environment. 

➢ Action: The decision made by the agent (e.g., classify 

traffic as normal or anomalous). 

➢ Reward: Feedback signal guiding learning (positive for 

correct classifications, negative for false alarms). 

In the IDS context, reinforcement learning allows the model to 

dynamically adjust its behavior based on the feedback received 

from its predictions. Unlike supervised learning, RL does not 

require extensive labeled datasets; it can learn in real time by 

interacting with live data streams. This makes RL particularly 

advantageous in detecting zero-day attacks, adjusting to concept 

drift, and operating in resource-constrained environments. 

Several RL variants, such as Q-Learning, SARSA, and Deep Q-

Networks (DQN), have been explored for cybersecurity 

applications. These models not only enhance the detection 

capabilities but also support policy-based learning, enabling the 

IDS to evolve without extensive human supervision. 

1.4 Motivation for Long-Lived Models and Minimal 

Updates 

A persistent challenge in deploying IDS solutions in production 

environments is maintaining their performance over time. The 

threat landscape in cybersecurity is not static; new attack 

vectors are introduced regularly, and adversaries continuously 

evolve their methods to evade detection. As a result, models 

trained on static datasets tend to lose relevance over time, 

leading to degraded performance and increased false positives. 

Most existing systems deal with this issue by retraining models 

frequently, often requiring: 

➢ Fresh data collection 

➢ Manual relabeling 

➢ Model retraining and redeployment 

➢ Downtime during update cycles 

This is resource-intensive, time-consuming, and introduces risk 

during the update process. Furthermore, frequent updates can be 

impractical in edge computing scenarios, low-latency systems, 

or large-scale enterprise deployments. 

This project proposes an alternative approach — building long-

lived models that maintain their efficacy over time with 

minimal updates. By integrating reinforcement learning 

principles with deep learning architectures, the system can adapt 

its detection strategies over time without relying on continuous 

retraining. This goal is further reinforced through techniques 

such as: 

➢ Experience Replay: Reusing past learning to avoid 

forgetting 

➢ Fixed Target Networks: Improving stability in learning 

➢ Delayed Policy Updates: Reducing overfitting to recent 

patterns 

The motivation is to maximize model lifespan, reduce 

maintenance overhead, and enhance deployability across varied 

environments. 

1.5 Problem Statement 

The current generation of Intrusion Detection Systems often 

falls short in delivering long-term, adaptive protection without 

substantial manual intervention. Deep learning models, while 

powerful, become outdated quickly in the face of constantly 

evolving cyber threats. Frequent retraining introduces 

operational overhead, requires labeled data, and disrupts system 

availability. 

Hence, the problem addressed in this project is: 

“How can we design a reinforcement learning-enhanced 

intrusion detection system that sustains high performance 

with minimal updates, adapts to evolving threats, and 

provides explainable, real-time predictions through an 

accessible web-based interface?” 

This problem statement encapsulates the need for longevity, 

adaptability, transparency, and usability — all essential for a 

next-generation IDS. 

1.6 Objectives of the Study 

The key objectives of this research and implementation are as 

follows: 

Design a hybrid IDS framework combining deep learning with 

reinforcement learning to detect network intrusions effectively. 

Implement mechanisms to reduce the frequency of retraining 

while maintaining high prediction accuracy and generalization 

to unseen attacks. 

Develop a web-based user interface using Streamlit to enable 

real-time data entry, prediction visualization, and ease of access 

for cybersecurity analysts. 

Incorporate LIME-based explainability to enhance model 

transparency and aid decision-making by highlighting feature 

contributions to classification outcomes. 

Ensure secure user interaction through authentication and 

session control to prevent unauthorized access and maintain 

data integrity. 

Evaluate system performance on benchmark datasets using 

metrics such as accuracy, precision, recall, F1-score, and model 
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update frequency.By achieving these objectives, the proposed 

system aims to demonstrate not only technical feasibility but 

also practical relevance in real-world cybersecurity 

deployments. 

2.SYSTEM ANALYSIS 

The purpose of system analysis is to study the existing 

methodologies and evaluate the proposed solution in terms of 

requirements, use cases, and feasibility. A well-structured 

system analysis ensures that the proposed Intrusion Detection 

System (IDS) is technically sound, practically viable, and aligns 

with the defined objectives of achieving model longevity and 

reduced update frequency. This chapter comprehensively 

outlines the limitations of the existing systems and justifies the 

need for a reinforcement learning-based intelligent IDS with a 

real-time interface and explainability. 

2.1 Existing System and Limitations 

Existing Intrusion Detection Systems predominantly use either 

signature-based or anomaly-based detection mechanisms. While 

signature-based IDS such as Snort and Suricata provide fast and 

accurate detection for known threats, they fail miserably in 

detecting new or modified attack patterns. Anomaly-based 

systems offer better coverage but are prone to high false 

positive rates. 

Moreover, most traditional systems do not adapt over time, and 

thus, require manual intervention for: 

Updating the threat signature database, 

Reconfiguring thresholds or detection parameters, 

Re-training models using freshly labeled data. 

➢ Limitations of Existing IDS Approaches: 

➢ Lack of adaptability: Systems do not evolve with 

changing threat behaviors. 

➢ Performance decay: Deep learning models lose accuracy 

over time (model drift). 

➢ High maintenance cost: Requires frequent retraining and 

human oversight. 

➢ Poor interpretability: Black-box predictions without 

explainable reasoning. 

➢ No real-time feedback loop: Most systems are offline and 

not interactive. 

 

Due to these limitations, the need arises for an intelligent, 

adaptive, and low-maintenance IDS that integrates deep 

learning with reinforcement learning while also being 

interpretable and user-friendly. 

2.2 Proposed System Overview 

The proposed system is a web-based Intrusion Detection 

System powered by Reinforcement Learning (RL) and 

Convolutional Neural Networks (CNNs). It is designed to 

classify network traffic as either “Normal” or “Anomalous” 

based on manually input features. The system reduces model 

decay and update frequency using experience replay and policy 

delay mechanisms, resulting in longer model life with minimal 

intervention. 

Key Components: 

➢ Streamlit-based UI: A real-time, interactive web interface 

for analysts. 

➢ CNN Model: For initial deep feature extraction and 

classification. 

➢ RL Engine: Enhances adaptability, learns from 

environment via feedback. 

➢ LIME Explainability Module: Visualizes the reasoning 

behind predictions. 

➢ Authentication Module: Secure login for controlled 

access. 

The model aims to deliver high detection performance, maintain 

stability over time, and reduce operational overhead, while 

providing transparency to the end-user. 

3.SYSTEM DESIGN 

System design is a critical phase in the development lifecycle of 

any software application, especially for systems operating in 

mission-critical domains like cybersecurity. In this chapter, we 

present a comprehensive, multi-layered design blueprint for our 

proposed Intrusion Detection System (IDS) powered by deep 

learning and reinforcement learning (RL). The design ensures a 

modular, scalable, secure, and explainable platform that not 

only classifies network traffic but also adapts intelligently to 

evolving threats—all while minimizing the frequency of model 

updates. 

The design is structured across multiple dimensions: 

architecture-level planning, data flow modeling, component 

separation, learning workflow, optimization strategies for 

reinforcement learning, and explainability through LIME. 

3.1 System Architecture 

The system architecture integrates several logical modules into 

a cohesive framework that ensures separation of concerns and 

robust interoperability. The architectural model adopted is a 

layered, service-oriented structure that comprises: 

➢ User Interaction Layer: Web-based interface for input 

and output. 

➢ Data Preprocessing Layer: Feature scaling and 

transformation. 

http://www.ijsrem.com/
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➢ Model Inference Layer: CNN and RL integration for 

predictions. 

➢ Explainability Layer: LIME engine to explain model 

behavior. 

➢ Security & Session Management Layer: User 

authentication and secure access. 

 Key Components: 

Input Module: Accepts network feature values manually input 

via a Streamlit dashboard. The system can be later extended to 

support real-time traffic from pcap files or packet sniffers. 

Preprocessing Engine: Applies standard scaling, encoding of 

categorical variables, and reshaping for model compatibility. 

Pre-trained scalers are stored using joblib to ensure consistency. 

Deep Learning Classifier: A CNN-based binary classifier 

trained on IDS datasets (e.g., NSL-KDD, CIC-IDS2017) to 

differentiate between normal and anomalous behaviors. 

Reinforcement Learning Agent: Implements a Deep Q-

Network (DQN) that takes state features, predicts an action, and 

adjusts policies using a reward feedback loop. 

Model Persistence: All trained models and scalers are stored in 

serialized format for reuse and fast deployment. No retraining is 

done during inference. 

Explainability Interface: Incorporates LIME to provide a per-

instance explanation for each prediction made by the CNN 

model, enabling analysts to visually understand the decision-

making process. 

User Authentication & Access Control: Implements secure 

login/logout mechanisms to prevent unauthorized access and 

manage user sessions. 

 
 

 Diagram: Figure 3.1 – Overall System Architecture 

3.2 Data Flow Diagram (DFD) 

Data Flow Diagrams (DFDs) are crucial for modeling how data 

moves through the system. They outline the transformation of 

data from raw input to final output. 

 DFD Level 0: Context Diagram 

This shows the high-level interaction between external users 

(analysts or admins) and the system. 

➢ External Entity: Security Analyst (User) 

➢ System: RL-based IDS Application 

➢ Data Flows: Feature values (input) → Prediction + 

Explanation (output) 

 DFD Level 1: Functional Breakdown 

Processes: 

➢ P1 – Accept Input Features from the Analyst 

➢ P2 – Normalize and Preprocess Inputs 

➢ P3 – Perform Model Inference (CNN + RL) 

➢ P4 – Generate LIME Explanation 

➢ P5 – Display Results & Logs 

Data Stores: 

D1 – Model Weights (CNN/RL) 

D2 – Scaler and Encoders 

D3 – Audit Logs and Session Records 

 

 Diagram: Figure 3.2 – DFD Level 1 

3.3 Component-Level Design 

Each module in the system is independently developed and 

maintained. This ensures scalability and upgradability. 

http://www.ijsrem.com/
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Component 

Name 

Functionality Technology Used 

Input 

Handler 

Accepts user-entered 

traffic features 

Streamlit Forms 

Scaler 

Loader 

Applies pre-trained 

scaling model 

joblib + scikit-learn 

CNN 

Inference 

Performs base 

classification 

TensorFlow/Keras 

RL Policy 

Evaluator 

Reinforcement 

feedback 

Deep Q-Learning 

Output 

Visualizer 

Displays prediction 

and confidence 

Streamlit Charts 

Explanation 

Engine 

Displays LIME 

interpretation 

LIME Python API 

Authenticati

on Layer 

Manages login/logout Streamlit 

Authenticator 

(optional) 

All components communicate over in-memory Python objects, 

ensuring ultra-fast response times. 

4.4 Deep Learning Model Workflow 

The CNN model plays a central role in extracting hierarchical 

representations of traffic data. 

 Workflow Phases: 

➢ Input Acquisition: Feature vectors such as duration, 

src_bytes, dst_bytes, etc., are entered. 

➢ Reshaping: The vector is reshaped into a 1D array suitable 

for the CNN input layer. 

➢ Convolutional Layers: Filters extract local feature 

combinations (e.g., protocol interactions with byte size). 

➢ Dropout and Pooling: Reduces overfitting and 

complexity. 

➢ Dense Layers: Interprets extracted features and classifies 

into binary classes. 

➢ Output Layer: Sigmoid activation provides a probability 

score of anomaly. 

 

 Training Information: 

Dataset: NSL-KDD / CIC-IDS2017 

Optimizer: Adam 

Loss Function: Binary Crossentropy 

Metrics: Accuracy, Precision, Recall, AUC 

Epochs: 50 

Batch Size: 32 

 

 Diagram: Figure 3.3 – CNN Model Architecture 

3.5 Model Optimization Strategy 

One of the novel aspects of this system is the incorporation of 

RL to prolong model life and reduce update frequency. 

 Techniques Used: 

1. Experience Replay: 

Maintains a replay buffer of previous interactions. 

 

Helps the RL agent remember past states and avoid catastrophic 

forgetting. 

2. Fixed Q-Target Network: 

Maintains a stable target network for computing loss, updated 

less frequently than the primary network. 

3. Delayed Policy Updates: 

Instead of updating the policy on every interaction, updates are 

done after every N steps (e.g., 100). 
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4. Reward Function Engineering: 

Condition Reward 

True Positive (Correct Detection) +1 

False Positive (Incorrect 

Anomaly) 

-1 

True Negative +0.5 

False Negative -2 

This reward design ensures that the model prioritizes anomaly 

detection while penalizing false alarms more aggressively. 

Diagram: Figure 3.4 – Policy Update Cycle 

4.6 LIME-Based Explainability Mechanism 

Interpretability is vital in critical applications like cybersecurity. 

The system uses LIME (Local Interpretable Model-Agnostic 

Explanations) to interpret model decisions. 

 LIME Mechanism in Detail: 

➢ Perturbation: Slight changes are made to the input feature 

vector. 

➢ Prediction Sampling: The model is queried for each 

perturbed version. 

➢ Surrogate Model: A simple interpretable model (e.g., 

linear regression) is trained on the outputs. 

➢ Visualization: The weights of the surrogate model are 

shown as bars, indicating feature importance. 

 Use Case: 

➢ An input is flagged as "Anomaly." 

➢ LIME shows src_bytes and wrong_fragment as top 

contributors. 

 

The analyst sees this as a DDoS-related pattern and takes 

immediate action. 

5.RESULTS AND DISCUSSION 

The performance and impact of any machine learning system 

must be quantitatively evaluated and qualitatively interpreted to 

validate its real-world applicability. In this chapter, we present a 

thorough experimental analysis of the proposed Reinforcement 

Learning-based Intrusion Detection System (RL-IDS). Our aim 

is to demonstrate the accuracy, adaptability, efficiency, and 

transparency of the system through a series of tests, 

comparisons, and visual analytics. 

We evaluate the system not only on traditional classification 

metrics such as accuracy, precision, and recall, but also on 

reinforcement learning-specific advantages such as policy 

learning, adaptability over time, and reduction in model 

retraining frequency. Additionally, we assess how explainability 

via LIME enhances trust and interpretability in high-stakes 

security environments. 

5.1 Evaluation Metrics 

Evaluation metrics are a fundamental part of assessing the 

effectiveness and reliability of an Intrusion Detection System 

(IDS). In cybersecurity, it is essential to not only measure a 

system’s ability to classify network traffic correctly but also to 

evaluate its accuracy, robustness, and resilience under different 

types of traffic patterns, including benign, malicious, and novel 

(zero-day) attacks. 

For the proposed Reinforcement Learning-based Intrusion 

Detection System (RL-IDS), traditional performance metrics 

used in machine learning and deep learning models are 

extended to also account for the adaptive learning capabilities 

provided by reinforcement learning. These metrics help us 

assess how well the system performs with minimal updates and 

how it adapts to new, unseen attack types over time. 

Evaluation metrics are the foundation of model performance 

validation. In security-sensitive applications like IDS, it is not 

sufficient to only measure overall accuracy. Instead, we must 

also evaluate: 

➢ False positive rates (incorrectly flagging benign traffic), 

➢ False negative rates (missing real threats), 

➢ Generalization across unseen attack patterns, 

http://www.ijsrem.com/
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➢ Latency in delivering predictions. 

 

Below is a detailed breakdown of the metrics used: 

Metric Definition Relevance to IDS 

Accuracy Percentage of total 

correct predictions 

Measures overall 

correctness 

Precision TP / (TP + FP) Reflects reliability of 

anomaly alerts 

Recall 

(Sensitivi

ty) 

TP / (TP + FN) Measures effectiveness 

in capturing attacks 

F1 Score Harmonic mean of 

precision and recall 

Balanced metric for 

imbalanced data 

False 

Positive 

Rate 

FP / (FP + TN) Evaluates "alert noise" 

in secure environments 

Latency Average time per 

prediction (in ms) 

Affects real-time 

deployability 

AUC-

ROC 

Area under ROC 

curve 

Indicates ability to 

distinguish between 

classes 

To ensure accuracy, we evaluated the model over 5-fold cross-

validation, as well as continuous usage sessions mimicking 

real-world analyst workflows. 

5.2 Model Performance with Reduced Update Frequency 

One of the main innovations in this project is delaying the need 

for model retraining through the use of reinforcement 

learning. Traditional ML/DL-based IDS models degrade over 

time and require frequent updates to adapt to new attack 

patterns or concept drift. By using a Deep Q-Network (DQN), 

our system continuously refines its decision-making policy 

without retraining the base CNN model. 

 Experimental Setup: 

Model was initially trained on NSL-KDD. 

Simulated real-time input streams with a mix of known and 

unseen data. 

Reinforcement learning policy was updated at intervals of 50, 

100, and 200 steps. 

CNN weights were not retrained at any point during testing. 

 Table 6.1 – Model Performance vs Update Frequency 

RL Update 

Interval 

Accuracy Precisi

on 

Rec

all 

F1 

Score 

Latency 

(ms) 

Every 50 

steps 

94.5% 0.934 0.93

1 

0.933 580 

Every 100 

steps 

93.8% 0.926 0.92

1 

0.923 540 

Every 200 

steps 

91.2% 0.903 0.89

1 

0.897 505 

No Policy 

Update 

88.0% 0.866 0.85

5 

0.860 470 

The experiment shows that adaptive policy updating maintains 

model performance over time without the need to retrain the 

entire model architecture. This aligns with the core goal of 

achieving “model longness with fewer updates.” 

5.3 Confusion Matrix and ROC Curve 

When evaluating the performance of classification models—

especially in the domain of Intrusion Detection Systems 

(IDS)—it is essential to go beyond scalar metrics like accuracy 

or precision. A more nuanced understanding of model behavior 

is achieved through visual and tabular diagnostic tools such as 

the Confusion Matrix and the Receiver Operating Characteristic 

(ROC) Curve. 

These tools offer granular insights into how well the model 

distinguishes between benign and malicious traffic, and whether 

it is prone to common problems such as false positives (flagging 

normal activity as an attack) or false negatives (failing to detect 

actual threats). In high-stakes environments such as network 

security, both types of errors can be costly—false positives may 

overwhelm analysts with unnecessary alerts, while false 

negatives may lead to serious undetected breaches. 

To further validate the model’s effectiveness in classifying 

network traffic, we use confusion matrices and ROC curves to 

gain insight into per-class performance and threshold 

independence. 

Confusion Matrix: 

The confusion matrix is a visual representation of how well the 

model distinguishes between normal and anomalous traffic. 
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 Table 5.2 – Confusion Matrix 

 Predicted: 

Normal 

Predicted: 

Anomaly 

Actual: Normal 7560 (TN) 240 (FP) 

Actual: 

Anomaly 

125 (FN) 7085 (TP) 

Fro this: 

● Accuracy = (7560 + 7085) / Total = 94.2% 

● False Positive Rate = 240 / (240 + 7560) ≈ 3.07% 

● False Negative Rate = 125 / (125 + 7085) ≈ 1.73% 

The system shows low error rates in both directions, indicating 

its suitability for high-stakes environments where both under-

alerting and over-alerting are dangerous. 

 ROC Curve: 

The Receiver Operating Characteristic (ROC) curve 

measures the trade-off between true positive rate and false 

positive rate across different thresholds. 

AUC Score: 0.973, indicating excellent classification 

capability. 

 

 Figure 6.1 – ROC Curve 

This high AUC indicates the system can distinguish between 

classes regardless of threshold choice—vital for real-time IDS 

tuning. 

5.4 Comparison with Baseline Models 

The RL-IDS was benchmarked against a set of traditional 

machine learning classifiers and deep learning models, all 

trained on the same dataset and tested under equivalent 

conditions. 

 Table 6.3 – Performance Comparison 

Model Accu

racy 

F1 

Scor

e 

Retraining 

Required 

Latency 

(ms) 

Logistic 

Regression 

84.2

% 

0.81 Yes 300 

Random Forest 90.1

% 

0.88 Yes 450 

CNN (Base) 93.4

% 

0.91 Yes 530 

CNN + RL 

(Proposed) 

94.5

% 

0.933 No 580 

 Observations: 

While CNN provides excellent results, its need for retraining 

increases maintenance burden. 

 

Our CNN + RL model achieves higher performance while 

eliminating retraining requirements. 

 

Reinforcement learning bridges the gap between accuracy and 

adaptability. 

5.5 Sample Predictions and LIME Explanations 

The integration of LIME brings explainability into the 

otherwise “black-box” deep learning model, which is crucial for 

cybersecurity professionals needing to justify actions taken by 

AI-driven systems. 

 Sample Case Studies: 

Case A: High Confidence Anomaly Detection 

Input: duration=0, src_bytes=1024, dst_bytes=0, 

wrong_fragment=1 

 

CNN Output: Anomaly (96.7% confidence) 

LIME Explanation: 

wrong_fragment: +0.41 

src_bytes: +0.33 

hot: +0.26 

 

http://www.ijsrem.com/
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 Interpretation: Traffic resembles known Denial-of-Service 

(DoS) attacks. Model reasoning is transparent and aligns with 

domain knowledge. 

Case B: Misclassification Recovered via RL 

Input: duration=15, dst_bytes=3000, count=2 

CNN Output: Anomaly (False Positive) 

RL Override: Normal (based on similar past states) 

Final Output: Normal 

 

Analyst Notes: LIME explained low-weighted features, justified 

override. 

 

 Figure 5.2 – Sample LIME Bar Chart 

This interpretability gives the analyst the power to audit, 

correct, and trust model outputs — a critical feature for practical 

IDS deployments. 

5.6 Real-Time Usage Snapshot 

To simulate production conditions, the model was deployed on 

a web interface and used in real-time by testers. 

 Scenario Simulations: 

Users simulated live traffic entries with varying normal and 

anomalous combinations. 

Prediction, explanation, and system logs were monitored. 

 Table 6.4 – User Testing Summary 

Feature Observation 

Average Response Time 0.94 seconds 

Accuracy (live sessions) 92.8% 

Explanation Usage Rate 87% of users used LIME 

Analyst Satisfaction Score 9.2 / 10 

Login Success Rate 100% 

Reported False Positives < 3.2% 

 Figure 5.3 – Real-Time Prediction Interface Screenshot 

(Insert Streamlit UI showing input form, output section, and 

LIME chart) 

 Analyst Feedback: 

“The explanations helped me verify predictions easily.” 

“It saves me hours of manual log scanning.” 

“The model’s stability over time is impressive.” 

Output Format 

Once the user submits the input features, the system returns an 

output containing both prediction results and confidence 

scores. Here is an example of a prediction output formatted for 

display. 

 

Explanation: 

Prediction: The system returns the classification ("Normal" or 

"Anomaly"). 

Confidence: The model’s confidence level in its classification 

decision is presented as a percentage. 

LIME Explanation: Displays the contributions of individual 

features (positive or negative weights) that influenced the 

classification. 

http://www.ijsrem.com/
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Decision Explanation: Provides a text-based summary of why 

the model made that classification. 

SCREENSHOTS OF STREAMLIT INTERFACE 

The Streamlit Interface serves as the front-end application 

where cybersecurity analysts can input traffic features and 

receive predictions along with visual explanations. Below are 

screenshots showcasing the key sections of the Streamlit-based 

IDS interface. 

 Figure:Streamlit Login Page 

 

Description: This screenshot illustrates the secure login page. 

The user enters their credentials to authenticate their session. 

Access control is enforced to ensure only authorized analysts 

can interact with the system. 

 Figure :Streamlit Form for Feature Input 

 

Description: Here, users can input key network traffic features 

such as duration, protocol_type, src_bytes, dst_bytes, and other 

relevant attributes. These inputs are directly fed into the model 

for prediction. 

 

Functionality: 

➢ Feature fields are presented in a structured form to ensure 

easy data entry. 

➢ Dropdown menus and sliders are used for categorical and 

continuous variables. 

 Figure :3 Prediction Result Page 

 

 

Description: After submitting the form, this screen shows the 

model’s prediction (either Normal or Anomaly) along with the 

confidence score. 

Additional Insights: 

The interface is designed to display the prediction alongside a 

detailed LIME explanation chart, enabling users to see which 

features influenced the decision.  

Figure : LIME Explanation Chart 

 

Description: This figure shows how the LIME explanation 

chart is integrated into the user interface. It visualizes the 

contribution of individual features (such as wrong_fragment, 

src_bytes, dst_bytes) to the final classification decision. 

Features contributing to "Anomaly" are displayed on the 

positive side, while those contributing to "Normal" are shown in 

negative weights. 

http://www.ijsrem.com/
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Functionality: Provides transparency by breaking down the 

model's decision-making process on a per-instance level. 
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CONCLUSION AND FUTURE ENHANCEMENT 

This chapter serves as a concluding summary of the research 

conducted on the Reinforcement Learning-based Intrusion 

Detection System (RL-IDS). It provides an overview of the key 

contributions of this work, observations drawn from 

experiments and evaluations, a discussion on the limitations of 

the current system, and outlines potential future work to further 

enhance the system’s capabilities. 

As cybersecurity threats evolve, so must the methods and 

technologies employed to detect and mitigate them. This 

research highlights the potential of combining Deep Learning 

(CNN) with Reinforcement Learning (RL), not only for 

accurate classification but also for creating an adaptable, 

efficient, and low-maintenance IDS framework. Furthermore, 

the integration of LIME (Local Interpretable Model-Agnostic 

Explanations) enables transparency and trust in AI-driven 

security models, which is crucial for practical deployment in 

real-world environments. 
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