
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 1

Reinforcement Learning for Intrusion Detection: More Model Longness and

Fewer Update

Jennifa J1, Rajesh R2, Rajkumar U3,Ponmoorthi M4 , Saran M5

1Assistant Professor -Department of Information Technology & Kings Engineering College-India.

2,3,4,5 Department of Information Technology & Kings Engineering College-India.

---***---

Abstract - In today’s dynamic cybersecurity landscape, Intrusion

Detection Systems (IDS) must adapt to evolving threats without relying

on frequent retraining or compromising performance. This project

proposes a novel IDS framework that synergistically combines

Convolutional Neural Networks (CNNs) with Reinforcement Learning

(RL) to classify network traffic as normal or anomalous, while

minimizing the frequency of model updates. The framework is

deployed via an intuitive, Streamlit-based web interface that supports

real-time predictions based on user-provided network feature inputs.A

pre-trained scaler is employed to normalize the input features before

classification by the CNN model. Simultaneously, a reinforcement

learning agent dynamically adjusts detection policies through reward-

based feedback, thereby prolonging the model’s operational lifespan

and adaptability. To promote transparency and user trust, the system

integrates LIME (Local Interpretable Model-Agnostic Explanations),

providing interpretable, feature-level insights for each classification

decision.

Experimental evaluation reveals that the proposed system achieves

high classification accuracy, maintains a low false positive rate, and

demonstrates strong resilience over time—without the need for

frequent retraining. This work delivers a scalable, explainable, and

low-maintenance solution for intrusion detection, offering a robust

asset for contemporary cybersecurity environments.

1. INTRODUCTION

1.1 Introduction to Intrusion Detection Systems

In the current digital era, where information technology is

deeply integrated into the functioning of governments,

businesses, and individuals, the security of digital assets has

become a primary concern. With the ever-growing complexity

of computer networks and the exponential rise in cyber threats,

it is imperative to deploy intelligent systems that can monitor,

detect, and prevent malicious activities. One such critical

component in the cybersecurity ecosystem is the Intrusion

Detection System (IDS).

An IDS is a security mechanism that continuously monitors

network traffic or system activities to detect suspicious behavior

or unauthorized access. IDS tools are typically categorized into

two main types: Host-Based IDS (HIDS) and Network-Based

IDS (NIDS). HIDS monitors activities on individual systems

such as servers or endpoints, whereas NIDS inspects data

packets flowing through the network to identify potential

threats.

The primary function of IDS is to raise alerts upon identifying

deviations from normal behavior or signatures of known

attacks. These systems provide crucial support to network

administrators in mitigating threats at early stages and

preventing large-scale data breaches. Despite their usefulness,

traditional IDS systems face several limitations, including high

false positive rates, difficulty in adapting to new attack

strategies, and limited scalability in large, dynamic

environments.

1.2 Role of Deep Learning in Network Security

With the advancement in artificial intelligence (AI), particularly

in deep learning (DL), there has been a paradigm shift in how

network threats are detected and managed. Deep learning

techniques mimic the human brain’s neural structure to learn

complex data patterns and representations. These models, when

trained on labeled network traffic data, can efficiently classify

benign and malicious behavior without extensive manual

feature engineering.

Several architectures have been successfully applied to

cybersecurity tasks. Convolutional Neural Networks (CNN) are

adept at capturing spatial hierarchies and local correlations in

data, making them suitable for intrusion detection where packet

features exhibit spatial patterns. Similarly, Recurrent Neural

Networks (RNN) and Long Short-Term Memory (LSTM)

networks excel in learning from sequential data and are

commonly employed in detecting temporal anomalies in

network traffic.

Deep learning models offer several advantages:

➢ Automated Feature Extraction: They eliminate the need

for manual selection of features.

➢ Scalability: Capable of handling large-scale network

traffic data.

➢ Generalization: They can detect sophisticated and

previously unseen attack patterns.

However, deep learning models also pose certain challenges.

They require large amounts of training data, significant

computational resources, and suffer from the problem of model

drift, wherein their accuracy degrades over time due to evolving

threat landscapes. Regular retraining is often necessary, which

is not always feasible in production environments. This

shortcoming necessitates the exploration of adaptive models

that can learn continuously and remain effective over time.

1.3 Reinforcement Learning: An Overview

Reinforcement Learning (RL) is a powerful machine learning

paradigm inspired by behavioral psychology. It focuses on how

an agent can learn to make decisions through interactions with

an environment by receiving feedback in the form of rewards or

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 2

penalties. RL is uniquely suited for problems that involve

sequential decision-making, long-term strategy, and continuous

adaptation—making it highly applicable to the dynamic and

adversarial nature of cybersecurity.

The fundamental components of an RL system include:

➢ Agent: The learner or decision-maker (e.g., IDS model).

➢ Environment: The network system being monitored.

➢ State: The current representation of the environment.

➢ Action: The decision made by the agent (e.g., classify

traffic as normal or anomalous).

➢ Reward: Feedback signal guiding learning (positive for

correct classifications, negative for false alarms).

In the IDS context, reinforcement learning allows the model to

dynamically adjust its behavior based on the feedback received

from its predictions. Unlike supervised learning, RL does not

require extensive labeled datasets; it can learn in real time by

interacting with live data streams. This makes RL particularly

advantageous in detecting zero-day attacks, adjusting to concept

drift, and operating in resource-constrained environments.

Several RL variants, such as Q-Learning, SARSA, and Deep Q-

Networks (DQN), have been explored for cybersecurity

applications. These models not only enhance the detection

capabilities but also support policy-based learning, enabling the

IDS to evolve without extensive human supervision.

1.4 Motivation for Long-Lived Models and Minimal

Updates

A persistent challenge in deploying IDS solutions in production

environments is maintaining their performance over time. The

threat landscape in cybersecurity is not static; new attack

vectors are introduced regularly, and adversaries continuously

evolve their methods to evade detection. As a result, models

trained on static datasets tend to lose relevance over time,

leading to degraded performance and increased false positives.

Most existing systems deal with this issue by retraining models

frequently, often requiring:

➢ Fresh data collection

➢ Manual relabeling

➢ Model retraining and redeployment

➢ Downtime during update cycles

This is resource-intensive, time-consuming, and introduces risk

during the update process. Furthermore, frequent updates can be

impractical in edge computing scenarios, low-latency systems,

or large-scale enterprise deployments.

This project proposes an alternative approach — building long-

lived models that maintain their efficacy over time with

minimal updates. By integrating reinforcement learning

principles with deep learning architectures, the system can adapt

its detection strategies over time without relying on continuous

retraining. This goal is further reinforced through techniques

such as:

➢ Experience Replay: Reusing past learning to avoid

forgetting

➢ Fixed Target Networks: Improving stability in learning

➢ Delayed Policy Updates: Reducing overfitting to recent

patterns

The motivation is to maximize model lifespan, reduce

maintenance overhead, and enhance deployability across varied

environments.

1.5 Problem Statement

The current generation of Intrusion Detection Systems often

falls short in delivering long-term, adaptive protection without

substantial manual intervention. Deep learning models, while

powerful, become outdated quickly in the face of constantly

evolving cyber threats. Frequent retraining introduces

operational overhead, requires labeled data, and disrupts system

availability.

Hence, the problem addressed in this project is:

“How can we design a reinforcement learning-enhanced

intrusion detection system that sustains high performance

with minimal updates, adapts to evolving threats, and

provides explainable, real-time predictions through an

accessible web-based interface?”

This problem statement encapsulates the need for longevity,

adaptability, transparency, and usability — all essential for a

next-generation IDS.

1.6 Objectives of the Study

The key objectives of this research and implementation are as

follows:

Design a hybrid IDS framework combining deep learning with

reinforcement learning to detect network intrusions effectively.

Implement mechanisms to reduce the frequency of retraining

while maintaining high prediction accuracy and generalization

to unseen attacks.

Develop a web-based user interface using Streamlit to enable

real-time data entry, prediction visualization, and ease of access

for cybersecurity analysts.

Incorporate LIME-based explainability to enhance model

transparency and aid decision-making by highlighting feature

contributions to classification outcomes.

Ensure secure user interaction through authentication and

session control to prevent unauthorized access and maintain

data integrity.

Evaluate system performance on benchmark datasets using

metrics such as accuracy, precision, recall, F1-score, and model

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 3

update frequency.By achieving these objectives, the proposed

system aims to demonstrate not only technical feasibility but

also practical relevance in real-world cybersecurity

deployments.

2.SYSTEM ANALYSIS

The purpose of system analysis is to study the existing

methodologies and evaluate the proposed solution in terms of

requirements, use cases, and feasibility. A well-structured

system analysis ensures that the proposed Intrusion Detection

System (IDS) is technically sound, practically viable, and aligns

with the defined objectives of achieving model longevity and

reduced update frequency. This chapter comprehensively

outlines the limitations of the existing systems and justifies the

need for a reinforcement learning-based intelligent IDS with a

real-time interface and explainability.

2.1 Existing System and Limitations

Existing Intrusion Detection Systems predominantly use either

signature-based or anomaly-based detection mechanisms. While

signature-based IDS such as Snort and Suricata provide fast and

accurate detection for known threats, they fail miserably in

detecting new or modified attack patterns. Anomaly-based

systems offer better coverage but are prone to high false

positive rates.

Moreover, most traditional systems do not adapt over time, and

thus, require manual intervention for:

Updating the threat signature database,

Reconfiguring thresholds or detection parameters,

Re-training models using freshly labeled data.

➢ Limitations of Existing IDS Approaches:

➢ Lack of adaptability: Systems do not evolve with

changing threat behaviors.

➢ Performance decay: Deep learning models lose accuracy

over time (model drift).

➢ High maintenance cost: Requires frequent retraining and

human oversight.

➢ Poor interpretability: Black-box predictions without

explainable reasoning.

➢ No real-time feedback loop: Most systems are offline and

not interactive.

Due to these limitations, the need arises for an intelligent,

adaptive, and low-maintenance IDS that integrates deep

learning with reinforcement learning while also being

interpretable and user-friendly.

2.2 Proposed System Overview

The proposed system is a web-based Intrusion Detection

System powered by Reinforcement Learning (RL) and

Convolutional Neural Networks (CNNs). It is designed to

classify network traffic as either “Normal” or “Anomalous”

based on manually input features. The system reduces model

decay and update frequency using experience replay and policy

delay mechanisms, resulting in longer model life with minimal

intervention.

Key Components:

➢ Streamlit-based UI: A real-time, interactive web interface

for analysts.

➢ CNN Model: For initial deep feature extraction and

classification.

➢ RL Engine: Enhances adaptability, learns from

environment via feedback.

➢ LIME Explainability Module: Visualizes the reasoning

behind predictions.

➢ Authentication Module: Secure login for controlled

access.

The model aims to deliver high detection performance, maintain

stability over time, and reduce operational overhead, while

providing transparency to the end-user.

3.SYSTEM DESIGN

System design is a critical phase in the development lifecycle of

any software application, especially for systems operating in

mission-critical domains like cybersecurity. In this chapter, we

present a comprehensive, multi-layered design blueprint for our

proposed Intrusion Detection System (IDS) powered by deep

learning and reinforcement learning (RL). The design ensures a

modular, scalable, secure, and explainable platform that not

only classifies network traffic but also adapts intelligently to

evolving threats—all while minimizing the frequency of model

updates.

The design is structured across multiple dimensions:

architecture-level planning, data flow modeling, component

separation, learning workflow, optimization strategies for

reinforcement learning, and explainability through LIME.

3.1 System Architecture

The system architecture integrates several logical modules into

a cohesive framework that ensures separation of concerns and

robust interoperability. The architectural model adopted is a

layered, service-oriented structure that comprises:

➢ User Interaction Layer: Web-based interface for input

and output.

➢ Data Preprocessing Layer: Feature scaling and

transformation.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 4

➢ Model Inference Layer: CNN and RL integration for

predictions.

➢ Explainability Layer: LIME engine to explain model

behavior.

➢ Security & Session Management Layer: User

authentication and secure access.

 Key Components:

Input Module: Accepts network feature values manually input

via a Streamlit dashboard. The system can be later extended to

support real-time traffic from pcap files or packet sniffers.

Preprocessing Engine: Applies standard scaling, encoding of

categorical variables, and reshaping for model compatibility.

Pre-trained scalers are stored using joblib to ensure consistency.

Deep Learning Classifier: A CNN-based binary classifier

trained on IDS datasets (e.g., NSL-KDD, CIC-IDS2017) to

differentiate between normal and anomalous behaviors.

Reinforcement Learning Agent: Implements a Deep Q-

Network (DQN) that takes state features, predicts an action, and

adjusts policies using a reward feedback loop.

Model Persistence: All trained models and scalers are stored in

serialized format for reuse and fast deployment. No retraining is

done during inference.

Explainability Interface: Incorporates LIME to provide a per-

instance explanation for each prediction made by the CNN

model, enabling analysts to visually understand the decision-

making process.

User Authentication & Access Control: Implements secure

login/logout mechanisms to prevent unauthorized access and

manage user sessions.

 Diagram: Figure 3.1 – Overall System Architecture

3.2 Data Flow Diagram (DFD)

Data Flow Diagrams (DFDs) are crucial for modeling how data

moves through the system. They outline the transformation of

data from raw input to final output.

 DFD Level 0: Context Diagram

This shows the high-level interaction between external users

(analysts or admins) and the system.

➢ External Entity: Security Analyst (User)

➢ System: RL-based IDS Application

➢ Data Flows: Feature values (input) → Prediction +

Explanation (output)

 DFD Level 1: Functional Breakdown

Processes:

➢ P1 – Accept Input Features from the Analyst

➢ P2 – Normalize and Preprocess Inputs

➢ P3 – Perform Model Inference (CNN + RL)

➢ P4 – Generate LIME Explanation

➢ P5 – Display Results & Logs

Data Stores:

D1 – Model Weights (CNN/RL)

D2 – Scaler and Encoders

D3 – Audit Logs and Session Records

 Diagram: Figure 3.2 – DFD Level 1

3.3 Component-Level Design

Each module in the system is independently developed and

maintained. This ensures scalability and upgradability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 5

Component

Name

Functionality Technology Used

Input

Handler

Accepts user-entered

traffic features

Streamlit Forms

Scaler

Loader

Applies pre-trained

scaling model

joblib + scikit-learn

CNN

Inference

Performs base

classification

TensorFlow/Keras

RL Policy

Evaluator

Reinforcement

feedback

Deep Q-Learning

Output

Visualizer

Displays prediction

and confidence

Streamlit Charts

Explanation

Engine

Displays LIME

interpretation

LIME Python API

Authenticati

on Layer

Manages login/logout Streamlit

Authenticator

(optional)

All components communicate over in-memory Python objects,

ensuring ultra-fast response times.

4.4 Deep Learning Model Workflow

The CNN model plays a central role in extracting hierarchical

representations of traffic data.

 Workflow Phases:

➢ Input Acquisition: Feature vectors such as duration,

src_bytes, dst_bytes, etc., are entered.

➢ Reshaping: The vector is reshaped into a 1D array suitable

for the CNN input layer.

➢ Convolutional Layers: Filters extract local feature

combinations (e.g., protocol interactions with byte size).

➢ Dropout and Pooling: Reduces overfitting and

complexity.

➢ Dense Layers: Interprets extracted features and classifies

into binary classes.

➢ Output Layer: Sigmoid activation provides a probability

score of anomaly.

 Training Information:

Dataset: NSL-KDD / CIC-IDS2017

Optimizer: Adam

Loss Function: Binary Crossentropy

Metrics: Accuracy, Precision, Recall, AUC

Epochs: 50

Batch Size: 32

 Diagram: Figure 3.3 – CNN Model Architecture

3.5 Model Optimization Strategy

One of the novel aspects of this system is the incorporation of

RL to prolong model life and reduce update frequency.

 Techniques Used:

1. Experience Replay:

Maintains a replay buffer of previous interactions.

Helps the RL agent remember past states and avoid catastrophic

forgetting.

2. Fixed Q-Target Network:

Maintains a stable target network for computing loss, updated

less frequently than the primary network.

3. Delayed Policy Updates:

Instead of updating the policy on every interaction, updates are

done after every N steps (e.g., 100).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 6

4. Reward Function Engineering:

Condition Reward

True Positive (Correct Detection) +1

False Positive (Incorrect

Anomaly)

-1

True Negative +0.5

False Negative -2

This reward design ensures that the model prioritizes anomaly

detection while penalizing false alarms more aggressively.

Diagram: Figure 3.4 – Policy Update Cycle

4.6 LIME-Based Explainability Mechanism

Interpretability is vital in critical applications like cybersecurity.

The system uses LIME (Local Interpretable Model-Agnostic

Explanations) to interpret model decisions.

 LIME Mechanism in Detail:

➢ Perturbation: Slight changes are made to the input feature

vector.

➢ Prediction Sampling: The model is queried for each

perturbed version.

➢ Surrogate Model: A simple interpretable model (e.g.,

linear regression) is trained on the outputs.

➢ Visualization: The weights of the surrogate model are

shown as bars, indicating feature importance.

 Use Case:

➢ An input is flagged as "Anomaly."

➢ LIME shows src_bytes and wrong_fragment as top

contributors.

The analyst sees this as a DDoS-related pattern and takes

immediate action.

5.RESULTS AND DISCUSSION

The performance and impact of any machine learning system

must be quantitatively evaluated and qualitatively interpreted to

validate its real-world applicability. In this chapter, we present a

thorough experimental analysis of the proposed Reinforcement

Learning-based Intrusion Detection System (RL-IDS). Our aim

is to demonstrate the accuracy, adaptability, efficiency, and

transparency of the system through a series of tests,

comparisons, and visual analytics.

We evaluate the system not only on traditional classification

metrics such as accuracy, precision, and recall, but also on

reinforcement learning-specific advantages such as policy

learning, adaptability over time, and reduction in model

retraining frequency. Additionally, we assess how explainability

via LIME enhances trust and interpretability in high-stakes

security environments.

5.1 Evaluation Metrics

Evaluation metrics are a fundamental part of assessing the

effectiveness and reliability of an Intrusion Detection System

(IDS). In cybersecurity, it is essential to not only measure a

system’s ability to classify network traffic correctly but also to

evaluate its accuracy, robustness, and resilience under different

types of traffic patterns, including benign, malicious, and novel

(zero-day) attacks.

For the proposed Reinforcement Learning-based Intrusion

Detection System (RL-IDS), traditional performance metrics

used in machine learning and deep learning models are

extended to also account for the adaptive learning capabilities

provided by reinforcement learning. These metrics help us

assess how well the system performs with minimal updates and

how it adapts to new, unseen attack types over time.

Evaluation metrics are the foundation of model performance

validation. In security-sensitive applications like IDS, it is not

sufficient to only measure overall accuracy. Instead, we must

also evaluate:

➢ False positive rates (incorrectly flagging benign traffic),

➢ False negative rates (missing real threats),

➢ Generalization across unseen attack patterns,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 7

➢ Latency in delivering predictions.

Below is a detailed breakdown of the metrics used:

Metric Definition Relevance to IDS

Accuracy Percentage of total

correct predictions

Measures overall

correctness

Precision TP / (TP + FP) Reflects reliability of

anomaly alerts

Recall

(Sensitivi

ty)

TP / (TP + FN) Measures effectiveness

in capturing attacks

F1 Score Harmonic mean of

precision and recall

Balanced metric for

imbalanced data

False

Positive

Rate

FP / (FP + TN) Evaluates "alert noise"

in secure environments

Latency Average time per

prediction (in ms)

Affects real-time

deployability

AUC-

ROC

Area under ROC

curve

Indicates ability to

distinguish between

classes

To ensure accuracy, we evaluated the model over 5-fold cross-

validation, as well as continuous usage sessions mimicking

real-world analyst workflows.

5.2 Model Performance with Reduced Update Frequency

One of the main innovations in this project is delaying the need

for model retraining through the use of reinforcement

learning. Traditional ML/DL-based IDS models degrade over

time and require frequent updates to adapt to new attack

patterns or concept drift. By using a Deep Q-Network (DQN),

our system continuously refines its decision-making policy

without retraining the base CNN model.

 Experimental Setup:

Model was initially trained on NSL-KDD.

Simulated real-time input streams with a mix of known and

unseen data.

Reinforcement learning policy was updated at intervals of 50,

100, and 200 steps.

CNN weights were not retrained at any point during testing.

 Table 6.1 – Model Performance vs Update Frequency

RL Update

Interval

Accuracy Precisi

on

Rec

all

F1

Score

Latency

(ms)

Every 50

steps

94.5% 0.934 0.93

1

0.933 580

Every 100

steps

93.8% 0.926 0.92

1

0.923 540

Every 200

steps

91.2% 0.903 0.89

1

0.897 505

No Policy

Update

88.0% 0.866 0.85

5

0.860 470

The experiment shows that adaptive policy updating maintains

model performance over time without the need to retrain the

entire model architecture. This aligns with the core goal of

achieving “model longness with fewer updates.”

5.3 Confusion Matrix and ROC Curve

When evaluating the performance of classification models—

especially in the domain of Intrusion Detection Systems

(IDS)—it is essential to go beyond scalar metrics like accuracy

or precision. A more nuanced understanding of model behavior

is achieved through visual and tabular diagnostic tools such as

the Confusion Matrix and the Receiver Operating Characteristic

(ROC) Curve.

These tools offer granular insights into how well the model

distinguishes between benign and malicious traffic, and whether

it is prone to common problems such as false positives (flagging

normal activity as an attack) or false negatives (failing to detect

actual threats). In high-stakes environments such as network

security, both types of errors can be costly—false positives may

overwhelm analysts with unnecessary alerts, while false

negatives may lead to serious undetected breaches.

To further validate the model’s effectiveness in classifying

network traffic, we use confusion matrices and ROC curves to

gain insight into per-class performance and threshold

independence.

Confusion Matrix:

The confusion matrix is a visual representation of how well the

model distinguishes between normal and anomalous traffic.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 8

 Table 5.2 – Confusion Matrix

 Predicted:

Normal

Predicted:

Anomaly

Actual: Normal 7560 (TN) 240 (FP)

Actual:

Anomaly

125 (FN) 7085 (TP)

Fro this:

● Accuracy = (7560 + 7085) / Total = 94.2%

● False Positive Rate = 240 / (240 + 7560) ≈ 3.07%

● False Negative Rate = 125 / (125 + 7085) ≈ 1.73%

The system shows low error rates in both directions, indicating

its suitability for high-stakes environments where both under-

alerting and over-alerting are dangerous.

 ROC Curve:

The Receiver Operating Characteristic (ROC) curve

measures the trade-off between true positive rate and false

positive rate across different thresholds.

AUC Score: 0.973, indicating excellent classification

capability.

 Figure 6.1 – ROC Curve

This high AUC indicates the system can distinguish between

classes regardless of threshold choice—vital for real-time IDS

tuning.

5.4 Comparison with Baseline Models

The RL-IDS was benchmarked against a set of traditional

machine learning classifiers and deep learning models, all

trained on the same dataset and tested under equivalent

conditions.

 Table 6.3 – Performance Comparison

Model Accu

racy

F1

Scor

e

Retraining

Required

Latency

(ms)

Logistic

Regression

84.2

%

0.81 Yes 300

Random Forest 90.1

%

0.88 Yes 450

CNN (Base) 93.4

%

0.91 Yes 530

CNN + RL

(Proposed)

94.5

%

0.933 No 580

 Observations:

While CNN provides excellent results, its need for retraining

increases maintenance burden.

Our CNN + RL model achieves higher performance while

eliminating retraining requirements.

Reinforcement learning bridges the gap between accuracy and

adaptability.

5.5 Sample Predictions and LIME Explanations

The integration of LIME brings explainability into the

otherwise “black-box” deep learning model, which is crucial for

cybersecurity professionals needing to justify actions taken by

AI-driven systems.

 Sample Case Studies:

Case A: High Confidence Anomaly Detection

Input: duration=0, src_bytes=1024, dst_bytes=0,

wrong_fragment=1

CNN Output: Anomaly (96.7% confidence)

LIME Explanation:

wrong_fragment: +0.41

src_bytes: +0.33

hot: +0.26

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 9

 Interpretation: Traffic resembles known Denial-of-Service

(DoS) attacks. Model reasoning is transparent and aligns with

domain knowledge.

Case B: Misclassification Recovered via RL

Input: duration=15, dst_bytes=3000, count=2

CNN Output: Anomaly (False Positive)

RL Override: Normal (based on similar past states)

Final Output: Normal

Analyst Notes: LIME explained low-weighted features, justified

override.

 Figure 5.2 – Sample LIME Bar Chart

This interpretability gives the analyst the power to audit,

correct, and trust model outputs — a critical feature for practical

IDS deployments.

5.6 Real-Time Usage Snapshot

To simulate production conditions, the model was deployed on

a web interface and used in real-time by testers.

 Scenario Simulations:

Users simulated live traffic entries with varying normal and

anomalous combinations.

Prediction, explanation, and system logs were monitored.

 Table 6.4 – User Testing Summary

Feature Observation

Average Response Time 0.94 seconds

Accuracy (live sessions) 92.8%

Explanation Usage Rate 87% of users used LIME

Analyst Satisfaction Score 9.2 / 10

Login Success Rate 100%

Reported False Positives < 3.2%

 Figure 5.3 – Real-Time Prediction Interface Screenshot

(Insert Streamlit UI showing input form, output section, and

LIME chart)

 Analyst Feedback:

“The explanations helped me verify predictions easily.”

“It saves me hours of manual log scanning.”

“The model’s stability over time is impressive.”

Output Format

Once the user submits the input features, the system returns an

output containing both prediction results and confidence

scores. Here is an example of a prediction output formatted for

display.

Explanation:

Prediction: The system returns the classification ("Normal" or

"Anomaly").

Confidence: The model’s confidence level in its classification

decision is presented as a percentage.

LIME Explanation: Displays the contributions of individual

features (positive or negative weights) that influenced the

classification.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 10

Decision Explanation: Provides a text-based summary of why

the model made that classification.

SCREENSHOTS OF STREAMLIT INTERFACE

The Streamlit Interface serves as the front-end application

where cybersecurity analysts can input traffic features and

receive predictions along with visual explanations. Below are

screenshots showcasing the key sections of the Streamlit-based

IDS interface.

 Figure:Streamlit Login Page

Description: This screenshot illustrates the secure login page.

The user enters their credentials to authenticate their session.

Access control is enforced to ensure only authorized analysts

can interact with the system.

 Figure :Streamlit Form for Feature Input

Description: Here, users can input key network traffic features

such as duration, protocol_type, src_bytes, dst_bytes, and other

relevant attributes. These inputs are directly fed into the model

for prediction.

Functionality:

➢ Feature fields are presented in a structured form to ensure

easy data entry.

➢ Dropdown menus and sliders are used for categorical and

continuous variables.

 Figure :3 Prediction Result Page

Description: After submitting the form, this screen shows the

model’s prediction (either Normal or Anomaly) along with the

confidence score.

Additional Insights:

The interface is designed to display the prediction alongside a

detailed LIME explanation chart, enabling users to see which

features influenced the decision.

Figure : LIME Explanation Chart

Description: This figure shows how the LIME explanation

chart is integrated into the user interface. It visualizes the

contribution of individual features (such as wrong_fragment,

src_bytes, dst_bytes) to the final classification decision.

Features contributing to "Anomaly" are displayed on the

positive side, while those contributing to "Normal" are shown in

negative weights.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49002 | Page 11

Functionality: Provides transparency by breaking down the

model's decision-making process on a per-instance level.

ACKNOWLEDGEMENT

We thank God for his blessings and also for giving as

good knowledge and strength in enabling us to finish our

project. Our deep gratitude goes to our founder late Dr. D.

Selvaraj, M.A., M.Phil., for his patronage in the completion

of our project. We like to take this opportunity to thank our

honourable chairperson Dr.S. Nalini Selvaraj, M.COM.,

MPhil., Ph.D. and our noble-hearted director, Mr.S.

Amirtharaj, M.Tech., M.B.A and his wife, Mrs. Merilyn

Jemmimah Amirtharaj, B.E., M.B.A., for their support

given to us to finish our project successfully. We wish to

express our sincere thanks to our beloved principal. Dr. C.

Ramesh Babu Durai M.E., Ph.D for his kind

encouragement and his interest towards us.

We are extremely grateful and thanks to our professor Dr. D.

C. Jullie Josephine , head of Information Technology,

Kings Engineering College, for her valuable suggestion,

guidance and encouragement. We wish to express our

sense of gratitude to our project supervisor Mrs.J.Jennifa

M.E., Assistant Professor of Information Technology

Department, Kings Engineering College whose idea and

direction made our project a grand success. We express our

sincere thanks to our parents, friends and staff members

who have helped and encouraged us during the entire course

of completing this project work successfully.

CONCLUSION AND FUTURE ENHANCEMENT

This chapter serves as a concluding summary of the research

conducted on the Reinforcement Learning-based Intrusion

Detection System (RL-IDS). It provides an overview of the key

contributions of this work, observations drawn from

experiments and evaluations, a discussion on the limitations of

the current system, and outlines potential future work to further

enhance the system’s capabilities.

As cybersecurity threats evolve, so must the methods and

technologies employed to detect and mitigate them. This

research highlights the potential of combining Deep Learning

(CNN) with Reinforcement Learning (RL), not only for

accurate classification but also for creating an adaptable,

efficient, and low-maintenance IDS framework. Furthermore,

the integration of LIME (Local Interpretable Model-Agnostic

Explanations) enables transparency and trust in AI-driven

security models, which is crucial for practical deployment in

real-world environments.

REFERENCE PAPERS

1. Zhang, L., Wang, J., & Li, X. (2023). Reinforcement

learning-based intrusion detection system for Internet of

Things networks. IEEE Internet of Things Journal, 10(5),

3024-3035.

2. Kim, S., Park, Y., & Lee, H. (2023). Adaptive intrusion

detection with deep reinforcement learning in software-

defined networking. IEEE Access, 11, 6745-6758.

3. Li, Y., Zhao, F., & Yang, M. (2023). A multi-agent

reinforcement learning approach to cyber-attack detection

in smart grid networks. IEEE Transactions on Smart Grid,

14(3), 1120-1132.

4. Kumar, P., Gupta, R., & Sharma, A. (2023). Securing

cloud networks using reinforcement learning-based

intrusion detection systems. IEEE Transactions on Cloud

Computing, 11(2), 789-798.

5. Roy, T., & Dasgupta, S. (2023). Enhancing network

security using deep reinforcement learning for anomaly-

based intrusion detection. IEEE Transactions on Network

and Service Management, 20(1), 109-120.

http://www.ijsrem.com/

