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---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - The power grid, telecommunications, water 

supply, and transportation are all examples of networks that 

provide vital societal functions but are vulnerable to 

disruption. Based on this, we take a look at a sequential choice 

problem where an initial network is improved over time (for 

example, by adding or enhancing edge dependability) and 

incentives are added depending on the network's all-terminal 

reliability. Time, money, and labour are all limited resources 

that determine what can be done within each time frame. To 

fix this, we used a Deep Reinforcement Learning (DRL) 

approach in OpenAI-Gym with Stable Baselines. Based on the 

current state of the network and the budget, a Proximal Policy 

Optimisation (PPO) method was used to identify the edge that 

needed improvement or to incorporate a new edge. The 

network's all-terminal dependability was calculated using a 

reliability polynomial. We evaluated numerous network 

configurations with different starting link reliability, 

additional link reliability, node amounts, and budget 

frameworks to understand the model's behaviour in different 

conditions. Last but not least, we go over the key points from 

our set of controlled tests. 
 

Key Words:  Deep reinforcement learning, proximal policy 

optimisation,reliability, PPO. 

 

 

1.INTRODUCTION 

 
In every aspect of our life, we make use of many networks. It 

is essential to ensure that networks function properly in order 

to ensure that everyone is able to go about their daily lives. As 

an illustration, people make use of a network of roads in order 

to drive, a network of telephones in order to communicate with 

one another, and a network of electrical outlets in order to 

power elements within their homes. All of these are only some 

of the major networks that are relied on by everyone 

worldwide. In the event that they cannot be trusted, a great 

number of people will suffer harm. 

 

A great number of people have had difficulties as a result of 

the numerous infrastructure failures that have occurred in the 

past. The blackout that occurred in the Northeast in 2003 is an 

example that is well-known. There were fifty million people in 

the United States and Canada who were affected by this 

blackout, which was caused by a malfunction with the 

software, as stated by History.com [13]. During Hurricane 

Katrina, the levees in Louisiana failed, which is another 

example of infrastructure networks failing. The accident that 

occurred at Three Mile Island in Pennsylvania is another 

example of infrastructure networks failing. The disaster that 

occurred at Three Mile Island was caused by a fault that 

occurred in a particular component of the plant. This issue 

caused the entire system to become inoperable. According to 

the United States Nuclear Regulatory Commission [44], this 

malfunctioning component was the cause of a partial nuclear 

meltdown that impacted at least tens of thousands of people 

living in the vicinity of the plant. According to Pruitt [34], the 

levees in Louisiana were not prepared to handle the 

overwhelming volume of water that Hurricane Katrina 

brought. As a consequence of the pressure, they broke, which 

resulted in a significant amount of New Orleans being flooded. 

Simply put, these are only a handful of the many reasons why 

the infrastructure of the United States of America frequently 

fails. People who are affected by infrastructure breakdowns are 

in a great deal of suffering because these failures can 

occasionally result in serious injuries or even death. It is made 

abundantly evident by these examples how essential it is to 

maintain the security of crucial networks. 

 

At its most fundamental level, a network is nothing more than 

a collection of nodes that are connected to one another via 

edges. Numerous objects that we use on a daily basis are 

connected to one another in the form of a network. Table 1 

offers a visual representation of the many categories of 

networks that Newman [32] discusses. 

 

Due to the massive size of the networks, determining their 

reliability is very difficult. The difficulty of conducting 

efficient analysis grows in direct proportion to the size of the 

network. Assessing network reliability efficiently is beyond 

the capabilities of current approaches. There have been 

previous investigations into the difficulties of building 

trustworthy networks as well. Because it necessitates ongoing 

evaluation of network dependability, this issue is more 

complex. 

 

2. Dependability of Networks 

 

Networks can be classified in various ways, aiding in the 

identification of those warranting further examination. Ball 

[4] addresses the many levels of complexity in network 

dependability models. The level of complexity is significantly 

contingent upon the quality of the network's connectivity. A 

network dependability issue may be classified as 2-terminal, 

k-terminal, or all-terminal. An exception to the k-terminal 

problem is present in the two-terminal and all-terminal cases. 

In the k-terminal reliability problem, there exists a single root 

node (s) and k terminal nodes. The probability that each node 

in the k-terminal system is connected to the root node 

generally represents the system's reliability. Reliability in a 

two-terminal reliability model is defined as the probability 

that the two nodes in the system are connected. This model 

consists of only two nodes. A fully connected network has 

each node linked to every other node. Reliability is the 

probability of a fully interconnected system. The 

computational complexity of determining the system's 

dependability escalates with the rise in the number of nodes 
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and links in the network, with all-terminal reliability issues 

being the most challenging. 

 

The computational complexity of determining the 

dependability of an all-terminal network escalates 

exponentially with the number of interconnected nodes and 

links, as identified by Provan & Ball [33] as a #P-complete 

problem. A multitude of methods for assessing network 

reliability have been utilised to facilitate the analysis of this 

problem. These strategies can provide an exact figure or a 

general assessment of reliability. Artificial neural networks 

exemplify an approach using boundary computation, 

optimisation, exponential and polynomial time methods, state 

enumeration, and Monte Carlo simulation. This section 

explores the mechanisms of these approaches and analyses 

their previous studies to delineate their strengths and 

drawbacks. 

 

Ball et al. [5] delineates precise methodologies for computing 

network reliability, encompassing algorithms that operate in 

polynomial time for certain network classes and those that 

function in exponential time for broad networks. They 

additionally address alternative techniques, including 

constraints on network reliability and Monte Carlo simulation. 

Gaur et al. [15] not only delineated the constraints of several 

network dependability methodologies but also offered 

comprehensive descriptions of several techniques, including 

neural networks, state enumeration, and minimal cut 

enumeration. 

A minimal cut set is a collection of system components whose 

failure results in the failure of the system (Su et al., [42]). To 

prevent system failure, minimum cut sets exclude any 

supplementary subsets of cuts. To assess the network's 

reliability, minimal cut enumeration procedures initially 

calculate the reliability of each minimum cut set and 

subsequently utilise these sums to ascertain the network's 

dependability. A definitive method to assess a network's 

reliability is by cut enumeration. Although it functions 

effectively for smaller networks, its limitations become 

evident rapidly. According to Gaur et al. [15], cut 

enumeration is the preferred way for addressing reliability 

issues between two terminals. The number of cut sets 

increases exponentially as the network expands. 

Consequently, calculating all possible combinations for two-, 

k-, and all-terminal dependability is laborious. To assess the 

network's reliability, defined as the proportion of states in 

which the network functions correctly, Monte Carlo 

simulation (MCS) methods randomly selected states for 

analysis.  

Karger [25] employed MCS to simulate edge failures and 

ascertain whether the network failed due to the randomly 

selected edge. In his view, a significant issue with the MCS 

approach is its sluggishness when the probability of failure is 

low. Cardoso et al. [8] employed neural networks alongside 

Monte Carlo simulation in their investigation of structural 

dependability. The computation of dependability via MCS can 

be time-consuming, as it allows for the analysis of just one 

network structure at a time. To resolve this, they combined 

neural networks with MCS, resulting in decreased 

computation time and enhanced accuracy in dependability 

evaluations. 

Artificial neural networks (ANNs) replicate the structures of 

neural networks utilised by the human brain. To acquire 

knowledge from experiences, the components of artificial 

neural networks communicate both sequentially and 

concurrently, much to the brain. A training set comprising 

inputs and corresponding known outputs is employed to 

facilitate this learning. The principal applications of artificial 

neural networks (ANNs) include control, pattern recognition, 

optimisation, associative memory, and prediction (Jain & 

Mao, 2021). To evaluate the reliability of the network, 

Srivaree-ratana et al. [41] utilised an artificial neural network. 

Their research encompassed training the artificial neural 

network utilising diverse topologies and link dependabilities. 

The optimal network topology was subsequently identified by 

employing the ANN to forecast the network's dependability 

about the topology and link reliabilities. Ultimately, they 

ascertained the exact reliability of each topology through its 

use. By comparing their estimation against a precise method 

and an upper bound established by a polynomial time 

approach, they demonstrate that their estimation performs 

effectively in practice, albeit with significant computational 

expense. 

Establishing constraints on the network's reliability offers an 

alternative approach to both precise and approximate 

reliability assessments. The limit-finding method is less 

computationally expensive than alternative approaches; yet, it 

lacks precision as it only provides bounds rather than a 

definitive reliability. Sebastio et al. [37] devised an approach 

to ascertain the limitations on the reliability of a two-terminal 

network. The algorithm enables the user to select the duration 

for execution. Their approach considers minimum cuts and 

minimum pathways. A minimum route is a collection of 

interconnected nodes in a network that would stay connected 

even if one connection were severed.  

To reduce the dependency between the upper and lower 

boundaries, their method identifies the most critical minimal 

paths and cuts inside the network. Bounds have an additional 

use, as discussed by Satitsatian and Kapur [36]. To ascertain 

the exact reliability and its bounds, they identified a bottom 

limit for the network's dependability. To achieve reduced 

dependability with minimal computational effort, they devised 

a method to identify a subset of lower boundary points. 

Ramirez-Marquez and Rocco [35] proposed an innovative 

method for addressing all-terminal network reliability 

allocation problems (RAP). Their aim in addressing this 

difficulty was to determine the ideal network cost while 

considering reliability.  

Their developed process comprises three stages as follows: 

Initially, generating network configurations; subsequently, 

assessing each network's reliability through MCS; thirdly, 

imposing penalties on networks that do not meet the reliability 

criteria; and finally, ranking the networks from highest to 

lowest performance. Their algorithm revealed solutions that 

were, at most, 21% less costly and, at minimum, 7% more 

economical than those previously identified in the literature. 

Yeh et al. [46] proposed a method for utilising Monte Carlo 

Simulation in resource allocation. Their proposed approach 

was Movable Cluster Swarm Optimisation (MCS-PSO). Their 

objective was to meet reliability thresholds while minimising 

component expenses. Their methodology surpassed MCS 

independently in terms of efficiency and reliability estimation. 

Others have proposed alternative methods for establishing 

reliable networks.  

Mettas [30] examined the component-level reliability 

allocation issue for generic systems. From his research, we 
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may deduce the essential system dependability criteria for the 

reliability of various components. Both Jan et al. [22] and 

AboElFotoh & Al-Sumait [1] utilised methods to analyse 

network topology. Their objective was to identify the optimal 

topological configuration of links that minimised costs while 

satisfying the essential requirements for network stability. Jan 

et al. [22] employed a branch-and-bound decomposition 

method. Their methodology decomposes the network into 

smaller problems that their branch and bound algorithm can 

manage, based on the quantity of linkages. AboElFotoh and 

Al-Sumait [1] successfully addressed the same issue using an 

artificial neural network (ANN).. 

 

2.1 Training with Positive Reinforcement 

 

The many different approaches to machine learning are 

partitioned into distinct categories based on the learning 

process of the algorithm. One of these procedures is known as 

reinforcement learning. According to Zhang [47], 

reinforcement learning is dependent on a training data set that 

includes both positive and negative reinforcement in order to 

educate a computer to respond effectively to new situations. 

This is necessary in order to train the computer to respond 

appropriately. Because of this input, the machine is now able 

to perform the task more effectively the next time it is used. 

The algorithm for reinforcement learning, which selects an 

action at random, is the one that decides the value of an 

action. Both the value of achieving a new state and the value 

of receiving an immediate reward are factors that contribute to 

the value of the acts. Learning the value of optimal 

state/action combinations through repeated application of this 

technique is the objective of reinforcement learning, which 

aims to maximise the overall reward by learning the value of 

these combinations. 

 

Reinforcement learning (RL) is a technique that can be useful 

in a wide range of different industries. The gaming industry 

was one of the first to adopt real-time gaming. In a video 

game, the player frequently assumes control of a character and 

makes decisions over what actions to do. RL considers the 

behaviours to be the product of the choices that they make. 

Through the utilisation of reinforcement learning (RL) to test 

out a wide range of situations, the researchers were able to 

teach the system to select the most appropriate action in each 

and every circumstance. According to Lin et al. [27], the two 

video games that were investigated were Flappy Bird and 

Breakout. In order to train both games, a neural network and 

reinforcement Q-learning were utilised in conjunction with 

one another. as well as one that does not use a neural network. 

In comparison to the situation in which a neural network was 

not utilised, the amount of time required to train the model 

was dramatically reduced. 

 

The application of reinforcement learning is effective in a 

variety of contexts, not just the use of networks. The deep 

reinforcement learning model that Yang et al. [45] developed 

was created with the purpose of investigating different 

strategies for the distribution of computer network resources. 

Their key purpose was to guarantee the dependability of the 

system from the beginning to the end without fail. In order to 

ensure that the channels of the system did not fall short of the 

quality standards that they had established, they utilised a Q-

learning algorithm to provide assistance to the system in the 

process of resource allocation. It was concluded that the Q-

learning strategy was successful in their research after around 

one hundred of the training attempts were completed. 

Gottesman et al. [17] carried out research on the application of 

RL and other types of artificial intelligence in healthcare 

systems. The decisions that are made about the timing of 

particular tasks within a healthcare facility have a direct 

impact on the health of the patients. RL can provide assistance 

to healthcare personnel in deciding the most appropriate 

course of treatment for a patient based on their baseline state 

by analysing the results of past decisions. This is possible 

when the training has been completed. The implementation of 

RL in the medical field has made it possible to optimise the 

treatment sequences for patients. 

 

2.2. Advancements Made in Reliability 

 

Improving a system's dependability from the beginning of its 

lifecycle—during design, development, and operation—is 

what reliability growth is all about. Running a system through 

its paces to identify its weak points and then modifying its 

design to make those areas less likely to repeat is the basic 

notion, with the end goal of making the system more 

dependable. By using reliability growth models, one can make 

design improvements that improve a system's dependability. 

One of the pioneers in studying reliability's evolution was 

Duane [12]. He found that the rate of reliability improvement 

during development was roughly the same for mechanical and 

electromechanical systems when he compared them. How 

long does it take for systems to learn to reliably predict future 

events? That was the main focus of his research. According to 

his research, there was a virtually linear relationship between 

the logarithm of the cumulative failure rate and the cumulative 

operational hours. Crow explored reliability in relation to the 

age of the system in additional detail [10].  

The Army Material Systems Analysis Activity (AMSSAA) 

paradigm was one of his recommendations. In his book "The 

AMSAA Reliability Growth Guide," he proposed a 

nonhomogeneous Poisson process model with a Weibull 

intensity function to study age-dependent reliability. The book 

"summarised the benefits of reliability growth management in 

finding unforeseen deficiencies, designing improvements, 

reducing risk, and increasing the probability of meeting 

objectives" (Kurtz et al., [26]). 

According to Cahoon et al. [7], reliability growth models for 

generic systems have three potential uses. As part of this, we 

will make enhancements to the system's reliability, track our 

progress towards those targets, and keep the project moving 

forward. Reliability growth models also finds practical 

application in system testing conducted by the Department of 

Defence (DoD). Defence Department personnel are trained to 

use one of two reliability growth models. Using 

nonhomogeneous Poisson processes (NHPPs), one type is 

system-level. Competitive risk, on the other hand, takes a 

sequential look at several failure types. It is possible to track 

the frequency and duration of failures using NHPP models. 

All of the competing risk models consider the system as a 

whole, rather than focussing on its individual components. 

Consequently, the system can't work unless all of its 

components are fully functional. 
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3. Basic Model Construction 

 
Our challenge involves an initial network including n nodes 

and a specified set of n(n-1) edges. We examine a sequential 

decision problem including 𝑚 time periods, where in each 

period 𝑡=1,2,…,𝑚, we can execute restricted investments to 

include possible edges from the collection 

𝐸={{𝑖,𝑗}:𝑖=1,2,…,𝑛−1;𝑗=𝑖+1,2,…,𝑛} into the network and/or 

enhance the dependability of current edges. An edge {𝑖, 𝑗} ∈𝐸 

that has been included into the network and enhanced 𝑧ij 

times is presumed to possess dependability 𝑘i+𝑧ij𝑙𝑖j, where kij 

and 𝑙ij are parameters. 

 

Our objective is to optimise the total discounted reward 

accrued throughout the time intervals 𝑡=0, 1…, 𝑚−1, where 

the reward at time interval 𝑡 is contingent upon the network's 

all-terminal dependability immediately after that interval. A 

predetermined budget 𝐵𝐵𝑡𝑡 is allocated at the commencement 

of each time period 𝑡=0, 1…, 𝑚−1 and may be utilised for 

immediate activities or deferred for future usage. Parameters 

𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑖𝑖 delineate the expense associated with adding 

an edge {𝑖, 𝑗}∈𝐸 and enhancing an existing edge {𝑖,𝑗}∈𝐸, 

respectively. 

 

The network state s before to any time period is characterised 

by the tuple  

 

𝑠=(𝑡,𝑅,𝛽), 

 

where 𝑡∈ {0, 1,𝑚−1} denotes the number of completed time 

periods, 𝑅 is a |𝐸|-vector indicating the reliability of each edge 

in the network, and 𝛽 represents the remaining budget. Denote 

the components of 𝑅 as 𝑟ij, {𝑖, 𝑗} ∈𝐸, where 𝑟ij=0 if the edge 

{𝑖, 𝑗} has not been included into the network. 

 

In state 𝑠= (𝑡, 𝑅, 𝛽), an action is described as 𝑎= (𝑋, 𝑌) where 

𝑋 and 𝑌 are |𝐸|-dimensional vectors. The vector 𝑋 comprises 

of elements 𝑥𝑖𝑗, where {𝑖, 𝑗} ∈ 𝐸, with 𝑥𝑖𝑗 = 1 if the edge {𝑖, 
𝑗} is included into the network; 0 otherwise. The vector 𝑌𝑌 

comprises elements 𝑦ij, {𝑖,𝑗}∈𝐸, where 𝑦ij=1 indicates that 

the edge {𝑖,𝑗} has been enhanced; 0 otherwise. The operation 

with 𝑥ij=𝑦ij=0 for every {𝑖, 𝑗} ∈𝐸 signifies the decision to 

progress to the subsequent time period without augmenting or 

enhancing any supplementary edges. The viable actions in 

state 𝑠= (𝑡, 𝑅, 𝛽) are delineated by the equations: 

 

 
 

Equation (1) says that we can only do one or zero actions 

during a given time period. Equation (2) says that the actions 

we do must be less than or equal to the amount we have left 

for the period. Keep in mind that any spending that wasn't 

used in time period 𝑏𝑏 can be carried over and used in later 

time periods. For this reason, it might be best to move on to 

the next period even if there are enough resources to do one of 

the other tasks. For action 𝑥ij=1 to be possible, equation (3) 

says that 𝑟ij=0. This means that an edge {𝑖, j} ∈𝐸 can't be 

added if it's already in the network. For action 𝑦ij=1 to be 

possible, equation (4) says that 𝑟ij > 0. This means that an 

edge {𝑖, 𝑗} in the network can only be made better if it was 

already there.  

One of the three actions that are possible is to improve an 

edge (i.e., 𝑦ij=1 for some 19 {𝑖, 𝑗} ∈𝐸), add an edge (i.e., 

𝑥ij=1 for some {𝑖, 𝑗} ∈𝐸), or choose to move on to the next 

time (i.e., 𝑥ij=0 ∀ {𝑖i, 𝑗𝑓). If you do something with 𝑥ij=1 or 

𝑦ij=1 for some {𝑖, j} ∈𝐸, it doesn't mean we'll be in a new 

time period; it just means that the state variables 𝑅 and 𝛽 have 

changed. The fifth equation makes sure that an edge can't be 

given a reliability number higher than 1. 

 

The state transition function is now defined as (𝑡′, R′, 𝛽′) =g 

(𝑠, 𝑎) for an action 𝑎= (𝑋, Y) done in state 𝑠=(𝑡,R,𝛽). The new 

state is set by if 𝑥ij=𝑦ij=0 ∀ {𝑖, j} ∈𝐸 
 

 
 
 
Equation (6) indicates that the time period, 𝑡′, following a 

state transition is one period subsequent to the preceding time 

period, 𝑡. Equation (7) asserts that the network's dependability 

remains constant throughout a state shift. Equation (8) 

indicates that the budget in the new state post-transition is 

determined by the residual budget from the prior state in 

conjunction with the fixed budget allocated for the new 

period. 

 

4. The Initial Experiments and Analysis of the 

Model 
 

The RL problem from [6] was used to train our model. It was 

written in Python using the OpenAI stable baselines and 

followed a standard approach. There are a number of reliable 

versions of reinforcement learning methods in the OpenAI 

package. There is a pre-trained RL agent in each application. 

This agent learns from what it sees, does, and is rewarded. 

We used Python version 3.8.15 for our study. We used stable 

OpenMPI baselines to make sure that all methods could work. 

For stable baselines, we had to say how many training 

episodes our models should have. We used 5000 episodes for 

all of them. 

 

A Maskable Proximal Policy Optimisation (M-PPO) method 

[18] was used for our tests. Based on the problem constraints, 

this method narrows down the action space to only actions 

that are possible. This means that for our problem, the only 

things that can be done are to add edges that aren't already in 

the network, make edges that are already in the network 

better, and make sure that all of these actions don't go over 

budget. A mask, which is a vector that keeps track of 

acceptable acts, is also used by the algorithm. This will 

restrict the activities that can be done with the 𝑋𝑋 and 𝑌𝑌 

vectors. 
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We used an iterative method to build and study our network. 

To start, we made a simple model that only let one choice be 

made at a time. At first, this model only let you do one thing, 

which was to improve the reliability of current network edges 

by sending resources to them. This first model was made to 

make sure that the model and RL code were working right. 

Then, we made the model more complicated so that we could 

make more than one choice in each time and take more than 

one type of action (like adding new lines or improving 

existing ones). 

 

The first model was mostly about making one of the network's 

edges better. This model looks at the benefits that are 

randomly given to each edge at the start and figures out the 

next best change to make. These benefits are shown as higher 

dependability that comes from upgrading to the chosen edge. 

With this update, the benefits for this edge will be worth less 

in the future. 

 

5. Results and discussion: 

 
To further investigate if the model's choices were influenced 

by the various reward ratios, we additionally examined them. 

Our research showed that the model improved more linkages 

when the ratio was favourable for short-term rewards and 

added more links when the ratio was favourable for long-term 

rewards. With respect to the rewards ratio, Figure 6 displays 

the trend. On multiple occasions, the model also discovered 

that networks with lower budgets or shorter time frames may 

obtain superior results. It is possible that these outcomes were 

caused by the training process of the model. More training 

sessions may have helped the model perform better on the 

larger networks. A five-period problem instance with a 

rewards ratio of 1:2 and a budget of $3,000 per period 

achieved a final all-terminal reliability of 1.0 in the five-node 

network with initial and new link reliabilities of 0.9/0.9. In 

contrast, the final all-terminal reliability for the seven-period 

problem instance with a rewards ratio of 1:2 and a budget of 

3,000 per period was 0.9995. The all-terminal dependability 

of the ideal 7-node network is 0.9999. This dependability was 

achieved in an instance of the issue with seven periods, a 

rewards ratio of 1:2, a per-period budget of 7,000, and initial 

and new link reliability of 0.9/0.9. Nine links were added and 

six were improved by the model. 

 

6. Conclusion 
 

Our investigation focused on the construction of networks 

with five, seven, and ten nodes, all of which were constructed 

using the identical pricing for connection upgrade and 

addition. It is recommended that a number of different 

combinations of addition and improvement costs be studied in 

order to further investigate the findings that the model has 

drawn regarding the addition or enhancement of links. Due to 

the fact that our research was only focused on three different 

network sizes, which got increasingly computationally costly 

as the networks extended, additional research is required in 

order to develop a model that is capable of making decisions 

more quickly. It is possible that other sources of complexity 

were responsible for the prolonged run-times; nonetheless, 

one potential improvement would be to replace the current 

dependability-polynomial method for evaluating network 

reliability with an option that is more scalable for larger 

instances. 

In addition, we established a great deal of assumptions 

concerning the reliability of the original link, the 

dependability of the new link, the amount that needs to be 

improved, the cost to add and enhance, the benefits, and some 

other things. In light of the fact that these assumptions 

imposed limitations on the outcomes of our experiments, it is 

recommended that in the future, more models with less 

stringent assumptions be developed. 
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