
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35552 | Page 1

Relevance and Resilience: Exploring the Continued Importance of Spring

Boot in Modern Application Development

Dr. B.M Sagar
Department of ISE

R. V. College of Engineering®

Bengaluru, India

Dileep Sharma
Department of ISE

R. V. College of Engineering®

Bengaluru, India

Abstract—Spring Boot has emerged as a vital technology in
modern software development, offering a robust framework for
building resilient and scalable applications. This paper inves-
tigates the ongoing relevance of Spring Boot in the field of
software development. Starting by looking at its beginnings,
evolution of Spring Boot from Spring, its features, ecosystem, and
adoption trends, we highlight the enduring significance of Spring
Boot in enabling developers to streamline development pro-
cesses, enhance productivity, and achieve architectural resilience.
By simplifying dependency management through starter POMs
and reducing boilerplate configuration with auto-configuration,
Spring Boot has significantly enhanced the usability of the
Spring framework. By delving into some analytics, the paper
explains how Spring Boot continues to empower developers to
meet the challenges posed by modern application development,
including microservices architectures, cloud-native deployments,
and DevOps practices.

Index Terms—Spring Boot, Spring , Microservice,Spring MVC

,Spring Security , Java

I. INTRODUCTION

Spring Boot, initiated by Rod Johnson then working in

Pivotal Software (now part of VMware) in 2012, has evolved

from a revolutionary idea to a foundational technology in mod-

ern application development. Its inception marked a paradigm

shift in the Entreprise Application Development, introducing

a convention-over-configuration approach that streamlined ap-

plication setup and eliminated boilerplate code. The very first

version of Spring Boot laid the groundwork for subsequent

releases, setting the stage for its widespread adoption and

continued evolution.

With each iteration, Spring Boot has matured and adapted to

the evolving needs of developers and the changing landscape

of software development. Version 2.0, released in 2018, intro-

duced significant enhancements, including support for reactive

programming with Spring WebFlux and improved support for

Kotlin, further expanding its appeal to a broader audience of

developers.

As Spring Boot continued to gain traction in the industry,

version 3.x, released in 2021, focused on enhancing developer

productivity and simplifying cloud-native development. With

features such as auto-configuration updates and improved

support for cloud-native deployment platforms like Kuber-

netes, Spring Boot 3.x solidified its position as a cornerstone

technology for building resilient and scalable applications in

modern cloud environments.

II. LITERATURE REVIEW

In recent times, Spring Boot has gained considerable promi-

nence as a potent platform for developing Java-based systems,

especially in the fields of web development and microservices.

Walls [1] claim that Spring Boot makes application manage-

ment and deployment simpler for developers by streamlining

the configuration and testing procedures [2]. As noted by Walls

[3] and Gutierrez in their respective works [9], the framework’s

Actuator module is especially noteworthy for its capacity

to offer insights into application health and metrics, further

assisting in the auditing process. Applications developed with

Spring Boot are more reliable and maintainable because to

this thorough monitoring and auditing strategy. Heckler [4]

also emphasises how effective Spring Boot is at expediting the

development process, which helps explain why it has become

so popular.

Recent studies have explored the integration of Spring

Boot with other technologies to enhance its capabilities. For

instance, Jovanovic et al. [12] discuss the integration of

Spring Boot REST web services with the Weka framework

for artificial intelligence applications, demonstrating how the

framework can support advanced machine learning tasks.

Similarly, Guntupally et al. [13] illustrate how Spring Boot

can be leveraged to improve quality of data report generated

in big data contexts, highlighting its scalability and efficiency

in handling large datasets. Additionally, the development of

domain-specific languages (DSLs) for generating Spring Boot

REST APIs, as presented by Gomez et al. [10], showcases

the framework’s potential for facilitating rapid development

and deployment of web services. The evolution of Spring

Boot is further evidenced by its adaptation for reactive web

development, as reviewed by Rakshith and Swamy [11],

and its comprehensive documentation and continuous updates

provided by Webb et al. [5]. The practical applications of

Spring Boot in real-world scenarios, such as the development

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35552 | Page 2

III. SPRING BOOT

Spring Boot has become an essential framework in the world

of modern application development. This section describes

various aspects of Spring Boot, including its core principles,

how it differs from the traditional Spring Framework, its

architecture, and its standout features.

A. Dependency Injection

Dependency Injection (DI) and Inversion of Control (IoC)

are core principles of the Spring Framework, and they play a

crucial role in Spring Boot. DI allows objects to be injected

into other objects, rather than being created directly by those

objects. This leads to loosely coupled code, which is easier to

maintain and test.

In Spring Boot, DI is achieved using annotations such

as @Autowired, @Component. The Spring IoC container

manages the lifecycle and dependencies of these components,

injecting the required dependencies at runtime. This automated

injection process reduces boilerplate code and simplifies the

wiring of application components, leading to more modu-

lar and testable codebases.This makes spring boot highly

maintanable and developer friendly by delegating object state

management completely to spring boot.

B. Evolution from Spring Framework to Spring Boot

Dependency inversion was made available to developers

with the release of the Spring Framework in 2003. Because

it made dependency management easier, developers were

initially rather happy with this. But with time, the lengthy

process of creating and managing beans, along with the need

to write a lot of boilerplate code, got tedious. In response to

these problems, Spring Boot surfaced, providing a thorough

method that prioritised convention above configuration. Some

of the most important distinctions between Spring Boot and

the Spring Framework are shown in Table I.

C. Architecture

Spring Boot’s architecture is crafted to streamline the cre-

ation of Java applications by automating numerous configura-

tions and setups, thereby reducing developer workload. This

architecture consists of several layers, each performing distinct

responsibilities, ensuring a clean separation of concerns and

promoting a more maintainable and scalable codebase. The

primary layers include the client layer, service layer, and

model layer, often integrated with JPA (Java Persistence API)

for database interactions.

TABLE I

DIFFERENCES BETWEEN SPRING IN COMPARISON TO SPRING BOOT

Fig. 1. Spring Boot Architecture

1) Client Layer: The client layer is the entry point of

the application, responsible to handle all the incoming HTTP

requests from clients. It typically consists of controllers that

map requests to appropriate service methods. These controllers

are annotated with @RestController or @Controller

and use @RequestMapping or similar annotations to define

request handling methods.

2) Service Layer: The service layer contains the business

logic of the application. It acts as an intermediate bridge

between the client layer and the model layer. The layer’s major

responsibility lies in processing client requests, applying core

business rules, and orchestrating interactions with the model

layer. Services are annotated with @Service, and they can

leverage dependency injection to interact with repositories and

other services.

3) Model Layer: The model layer manages the data and

database interactions. It includes entities that represent the data

structure and repositories that provide CRUD operations on the

database. Entities are typically annotated with @Entity and

mapped to database tables, while repositories extend interfaces

like JpaRepository to facilitate data access using JPA.

The use of JPA in the model layer allows for object-

Spring Framework Spring Boot

Requires extensive manual con-
figuration, often through XML
or Java annotations.

Provides auto-configuration to
simplify setup, reducing the
need for manual configuration.

More time-consuming due to the
need to configure dependencies,
application context, etc.

Faster setup with starter depen-
dencies and embedded servers,
enabling quick project initializa-
tion.

Developers must manually man-
age dependencies and include
necessary libraries.

Offers starter POMs that bun-
dle commonly used libraries,
simplifying dependency man-
agement.

Requires an external application
server for deployment.

Includes embedded servers such
as Tomcat, Undertow and Jetty
allowing applications to run as
standalone executables.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35552 | Page 3

relational mapping, making it easier to work with relational

databases by using Java objects. This integration ensures that

the application can perform complex database operations

with minimal boilerplate code.

Together, these layers form a cohesive architecture that

promotes modularity, testability, and scalability.A typical

flow

of a request would be from client to service (through dto)

,then the db interactions from service via JPA (typically

Hibernate an ORM is used to create entities) and finally

the response is mapped by another dto which is wrappend

in ResponseEntity from controller.Throughout the process the

auto-configuration and exhaustive rich libraries of Spring Boot

further simplify the process , allowing developers to focus

more on implementing the problem statement and less on

infrastructure concerns.

IV. FEATURES MAKING SPRING BOOT INDUSTRY

RELEVANT

The below are few of the features that really make spring-

boot have an edge over other frameworks

A. Auto-Configuration

Referred many a times in the paper, Spring Boot’s auto-

configuration feature automatically configures Spring applica-

tions based on various dependencies present on the classpath.

This eliminates the need for manual configuration setup in

many cases, significantly reducing boilerplate code and setup

time. Developers can focus on building business logic instead

of dealing with complex configurations. Spring Boot achieves

this through a set of annotations, some of the key annotations

include:

• @SpringBootApplication: This is a composite

annotation that combines @Configuration,

@EnableAutoConfiguration,

@ComponentScan. It configures the Spring application

context, activates auto-configuration, and performs
component scanning within the package.

• @RestController: This annotation is a specialized

version of @Controller used in Spring MVC. It

indicates that the class is a web controller and that the

return value of methods should be written directly to the

HTTP response body.

• @SpringBootTest: This annotation is used for inte-

gration testing in Spring Boot. It also be used alongside

mockito to perform unit testing , further each layers do

have annotations for testing .

• @EnableScheduling: This annotation enables

Spring’s scheduled task execution capability, allowing

methods annotated with @Scheduled to be run at

specified intervals.

B. Starter Dependencies

Spring Boot provides a set of starter POMs (Project Ob- ject

Models) that aggregate commonly used libraries and

frameworks. These starter dependencies simplify dependency

management by bundling the necessary libraries for specific

functionalities, such as web development, JPA, and security.

For example, the spring-boot-starter-web starter

includes dependencies for building web applications, such

as Spring MVC and an embedded Tomcat server. Similarly, the

spring-boot-starter-data-jpa starter bundles

Hibernate, Spring Data JPA, and an embedded H2 database for

working with JPA.

Other notable starters include:

• spring-boot-starter-security: Includes

Spring Security for authentication and authorization.

• spring-boot-starter-test: Provides libraries

for testing, including JUnit, Hamcrest, and Mockito.

• spring-boot-starter-thymeleaf: Bundles the

Thymeleaf template engine for server-side rendering of

web pages.

• spring-boot-starter-actuator: Includes fea-

tures for monitoring and managing applications, such as

health checks and metrics.

• spring-boot-starter-mail: Configures

JavaMailSender with commonly used email settings.

These starter dependencies not only simplify the initial setup

of a Spring Boot application but also ensure that the included

libraries are compatible with each other, reducing the risk of

version conflicts and other dependency-related issues.

C. Spring Boot Actuator

Spring Boot Actuator provides a range of production-ready

features that help monitor and manage applications. It includes

endpoints for health checks, metrics, application informa-

tion,auditing of the calls and more. These endpoints are useful

for gaining insights into the application’s performance and

behavior, making it easier to maintain and troubleshoot in

production environments.

D. Spring Boot DevTools

Spring Boot DevTools enhances the development experience

by offering automatic restarts, live reload,remote cli moni-

tor and customisations for a smoother workflow. DevTools

can reduce the time needed for testing and debugging by

automatically restarting the programme or reloading specific

components when developers make changes to their code.

E. Security Features

Applications can benefit from a complete security architec-

ture thanks to the smooth integration between Spring Security

and Spring Boot. It has functions for authorization, authenti-

cation, and defence against typical security risks. Developers

can make their applications secure by default by implementing

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35552 | Page 4

strong security mechanisms with little configuration.

F. Microservices Support

In particular, Spring Boot works incredibly well for

creating microservices architectures. It offers functions like

distributed tracing, circuit breakers, configuration

management, service discovery, and Spring Cloud

integration. These solutions make it easier for businesses to

create scalable, CI-CD apps and resilient systems by

streamlining the development and man- agement of

microservices.

G. Exhaustive Libraries

Be it a small use case as utilities or a bigger feature such

as scheduling, asynchronous tasks, or transactional queries,

Spring Boot has libraries for all. The extensive range of

libraries and built-in functionalities provided by Spring Boot

significantly simplifies the development process, making it a

go-to choice for developers. Here are some examples of the

libraries and features available in Spring Boot:

1) Utility Libraries: Spring Boot offers numerous utility

libraries that cater to common development needs. Libraries

such as Apache Commons IO and Spring Utils provide ready-

to-use functions for file handling, string manipulation, and

other common tasks, reducing the need for custom implemen-

tations.

2) Scheduling: For scheduling tasks, Spring Boot integrates

with the Spring Scheduling framework. This integration al-

lows developers to schedule tasks using simple annotations

a classical annotation used is @Scheduled with necessary

props , enabling the execution of periodic tasks such as

batch jobs, automated reports, database cleanups, consistency

management and maintenance routines without the need for

complex configuration.

3) Asynchronous Processing: By integrating with the

@Async annotation and the TaskExecutor interface,

Spring Boot facilitates asynchronous processing. Through the

use of this functionality, developers can run tasks in the back-

ground and enhance application performance by transferring

laborious actions to different threads.

4) Transactional Management: Spring Boot provides ro-

bust transactional management with Spring Data JPA. By using

the @Transactional annotation, developers can ensure

data integrity and manage transactions declaratively. This

feature is particularly useful for complex database operations

that require consistency and rollback capabilities.

5) Security: Spring Boot’s integration with Spring Security

allows developers to implement authentication, authorization,

and other security features with ease. The framework provides

ready-to-use security components and configurations that help

protect applications against common security threats.

H. Cloud-Native Deployment

Spring Boot’s compatibility with cloud platforms makes

it an ideal choice for cloud-native applications. It supports

containerization with Docker, orchestration with Kubernetes,

and integration with cloud services from providers like AWS,

Azure, and Google Cloud.For instance sdks provided by AWS

are sufficient for integrating advanced features such as SQS,

STS etc. This flexibility ensures that Spring Boot applications

can easily be deployed and managed in various cloud envi-

ronments along with helping in ease of utilization of various

cloud features.

I. Comprehensive Documentation and Community Support

Spring Boot’s extensive documentation and vibrant commu-

nity support are among its advantages. The official documen-

tation offers thorough instructions, resources, and case studies

to aid developers in becoming up to speed as soon as possible.

Furthermore, through forums, blogs, and open-source projects,

the active community surrounding Spring Boot offers helpful

tools and contributes to its ongoing development.

Together, these characteristics make Spring Boot a strong

and useful framework for the industry, empowering developers

to create excellent applications quickly and effectively.

V. CURRENT INDUSTRY AND SPRING BOOT

Particularly for building microservices, Spring Boot has

grown to be a significant framework in the programming

world. It is made to create production-ready, stand-alone apps

and was developed by Pivotal Team. Comparing Spring Boot

to other well-known programming frameworks, this section

looks at its market share, usage trends, and regional distribu-

tion.

A. Geographical Distribution

Spring Boot is most widely used in the United States,

with 3,275 companies utilizing the framework. Other countries

with significant usage include India (1,429 companies) and

Germany (609 companies), reflecting a strong global presence.

B. Comparison with Other Frameworks

Figure 2 provides a graph of top 5 popular frameworks used

to develop backend . This figure highlights the number of

companies using each framework.As clearly seen Spring is the

third popular framework is utilized by a significant number of

companies, indicating its robust capabilities and reliability. The

consistent adoption of Spring and thus Spring Boot in various

industries reflects its versatility and effectiveness in building

scalable applications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35552 | Page 5

71,903
67,941 67,941

64,405
59,132

·104

6

4

2

0

Laravel Django Spring Flask

 ExpressJS Programming

Frameworks

Fig. 2. Comparison of Number of Companies Using Various Programming
Frameworks

C. Adoption Trends

Figure 3 illustrates the distribution of Spring Boot The

distribution of Spring Boot clients by firm size as gathered

via a survey in 2022 is shown in Figure 3, indicating the

widespread use of Spring Boot in the sector.

2,000

1,500

1,000

500

0

20-49 100-249 1000-4999 50-99 10-19

Company Size (Employees)

Fig. 3. Spring Boot Customers by Company Size

D. Big Tech Giants Using Spring Boot

Several prominent companies across various industries have

adopted Spring Boot for their applications. Some of the

notable users include:

• JPMorgan: Located in New York City, New York, United

States, JPMorgan is one of the leading global financial

services firms.

• National Auto Auction Association: Based in Frederick,

Maryland, United States, this association represents the

interests of auto auction businesses.

• Axel Springer Verlag AG: A major digital publishing

house headquartered in Berlin, Germany.

• Capgemini SA: Headquartered in Paris, Ile-de-France,

France, Capgemini is a global leader in consulting, tech-

nology services, and digital transformation.

• Palo Alto Networks, Inc.: Based in Santa Clara, Cal-

ifornia, United States, Palo Alto Networks is a global

cybersecurity leader.

• American Express Company: A multinational financial

services corporation headquartered in New York City,

New York, United States.

VI. CONCLUSION

Spring Boot has demonstrated its effectiveness in simplify-

ing the development of backend application which are Java-

based through its auto-configuration and starter dependencies.

By reducing configuration complexity and bundling essential

libraries, Spring Boot enhances developer productivity and ac-

celerates application development.The extensive use of Spring

Boot by prominent companies such as JPMorgan, American

Express, Palo Alto Networks, Springer highlights its reliability

and versatility in various industry sectors. As a robust and

scalable framework, Spring Boot is go-to framework for

modern software development needs. Overall, Spring Boot’s

innovative features and industry acceptance affirm its pivotal

role in the development of efficient and scalable applications.

REFERENCES

[1] C. Walls, ”Customizing Configuration,” In book: Spring Boot in Action,
2016. Manning Publications Co., ISBN: 1617292540.

[2] C. Walls, ”Testing with Spring Boot,” In book: Spring Boot in Action,
2016. Manning Publications Co., ISBN: 1617292540.

[3] C. Walls, ”Taking a Peek Inside with the Actuator,” In book: Spring
Boot in Action, 2016. Manning Publications Co., ISBN: 1617292540.

[4] M. Heckler, ”Spring Boot: Up and Running,” O’Reilly Media, 2021.
[5] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M.

Overdijk, C. Dupuis, S. Deleuze, M. Simons, and others, ”Spring Boot
reference documentation,” Retrieved June, vol. 22, pp. 36, 2020.

[6] H. Suryotrisongko, D. P. Jayanto, and A. Tjahyanto, ”Design and
Development of Backend Application for Public Complaint Systems
Using Microservice Spring Boot,” Procedia Computer Science, vol. 124,
pp. 736–743, 2017. DOI: 10.1016/j.procs.2017.12.136.

[7] M. Zhang et al., ”Intelligent business cloud service platform based
on SpringBoot framework,” in 2020 Asia-Pacific Conference on Image
Processing, Electronics and Computers (IPEC), pp. 201–207, 2020.
DOI: 10.1109/IPEC49694.2020.9115131.

[8] F. Gutierrez, ”Deploying Spring Boot,” In book: Pro Spring Boot, 2016.
DOI: 10.1007/978-1-4842-1431-2 12.

[9] F. Gutierrez, ”Spring Boot Actuator,” In book: Pro Spring Boot, 2016.
DOI: 10.1007/978-1-4842-1431-2 11.

[10] O. S. Gomez, R. R. Miranda, and K. C. Karen, K. C, ”CRUDyLeaf:
A DSL for Generating Spring Boot REST APIs from Entity CRUD
Operations,” Cybernetics and Information Technologies, vol. 20, pp. 3-
14, 2020. DOI: 10.2478/cait-2020-0024.

[11] R. R. Rakshith and S. R. Swamy, ”Review on Spring Boot and
Spring Webflux for Reactive Web Development,” International Research
Journal of Engineering and Technology (IRJET), vol. 7, no. 4, pp. 3834-
3837, 2020.

N
u

m
b

er
 o

f
C

o
m

p
an

ie
s

1,820

1,642

1,117

965

765

N
u

m
b

er
 o

f
C

o
m

p
an

ie
s

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35552 | Page 6

[12] Z. Jovanovic, D. Jagodic, D. Vujicic, and S. Randic, ”Java Spring Boot
Rest Web Service Integration with Java Artificial Intelligence Weka
Framework,” in UNITECH 2017 International Scientific Conference,
Gabrovo, 2017.

[13] K. Guntupally, R. Devarakonda, and K. Kehoe, ”Spring Boot based
REST API to Improve Data Quality Report Generation for Big
Scientific Data: ARM Data Center Example,” in 2018 IEEE
International Confer- ence on Big Data (Big Data), pp. 5328-5329,
2018. DOI: 10.1109/Big- Data.2018.8621924.

[14] M. M. Garc´ıa, ”Learn Microservices with Spring Boot,” Jan. 2020.
DOI: 10.1007/978-1-4842-6131-6.

http://www.ijsrem.com/

