
          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                         Volume: 09 Issue: 10 | Oct - 2025                                SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM52852                                              |        Page 1 
 

Reliability Analysis of Repairable MX/G/1 Queue with Multiphase Optional 

Services and General Setup Time  
 

Deepa Chauhan 

Allenhouse Institute of Technology, Kanpur 
 

Abstract 

Many queueing systems are characterized by the feature that all arrivals demand the first essential service, whereas only some of 

them demand second optional service which is provided by the same server. In this work, we study a single non reliable server 

Mx/G/1 queue with multiphase optional services. The customers arrive in batches according to a Poisson process. Two types of 

services are provided to the customers, the first “essential” service and second multiphase “optional” service. After the completion 

of the essential service, the customer either leaves the system with probability (1-r1) or join the first optional service with probability 

r1; again after completing the first phase optional service, either he leaves or joins second phase of optional service with probability 

r2 and similarly in continuation at the end of (k-1)th  phase optional service, he may opt kth phase of optional service with probability 

rk or may leave the system with probability (1-rk). Both essential and optional services are provided by same single server. While the 

server is working, he is subject to breakdown according to Poisson process. When the server breaks down, he requires repair at 

repair facility where a repairman renders repair of failed server according to general distribution. By introducing supplementary 

variable technique and generating function method, some queueing and reliability characteristics of the system are derived. We 

facilitate numerical results to illustrate the effect of different parameters on several performance indices.     

Key-words: Batch arrivals, Unreliable server, Setup time, Multiphase optional service, Supplementary variable, Generating 

function, Queue size, Reliability.   

  Introduction 

During the last few decades considerable attention has been paid to studying the batch arrival queue, which has been well 

documented because of its interdisciplinary character in queueing systems. Takagi and Takahashi (1991) have derived the Laplace 

Stieltjes transform and the first two moments of the waiting time distribution for Mx/G/1 queues. Lee et al. (1995) have obtained the 

system size distribution and illustrated that the system size distribution decomposes into two random variables, one of which was the 

system size of ordinary Mx/G/1 queue. A multiple vacation model for Mx/G/1 queueing system with balking has been presented by 

Thomo (1997).  Economou and Fakinos (1999) investigate, under what circumstances the stationary distribution of the number of 

groups of various sizes in the M/G/k group arrival group departure, loss system under a quite general acceptance policy can be 

obtained a closed product form. Choudhry (2002) has considered an Mx/G/1 queueing system with a vacation time under single 

vacation policy, where the server takes exactly one vacation between two successive busy periods. Madan and Rawwash (2005) 

have obtained steady state results in explicit and closed form in term of the probability generating functions for the number of 

customers in the queue. Choudhury (2007) carried out an extensive stationary analysis of the system including existence of the 

stationary regime, embedded markov chain, steady state distribution of the server state and number of customers in the retrial group. 

Choudhury (2008) dealt with the queue size distribution of the Mx/G/1 queue with Bernoulli vacation schedule under a restricted 

admissibility policy. Amar (2009) derived and explicit formula for the generating function of the number of customers in orbit for 

Mx/G/1 queue and exhibited explicit forms of stochastic decomposition property.  A deterministic sample path general relationship 

that relates workload and batch delays for a batch arrival single-server queueing model is given by El-Taha (2014). An 

approximation of general multi-server queues with bulk arrivals and batch service is evaluated by Zisgen (2022). 

Optional phase service systems have been discussed in the literature for their application in various areas such as computer, 

communication, manufacturing and other many systems. These queueing systems are characterized by the feature that all arrivals 

demand the first essential service, whereas only some of them demand second optional service which is provided by the same 
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server. A single server queue with Poisson arrivals and no waiting room is considered by Madan (1994) in which two services were 

offered, an arrival essentially requires the first but had the option whether to have a second service or not. Medhi (2002) proposed an 

M/G/1 queueing system with second optional channel and developed the explicit expressions for the mean queue length and mean 

waiting time. Supplementary variable technique is used to develop the time dependent probability generating function in terms of 

their Laplace transform and the corresponding steady state results such as mean queue length and main waiting time for queueing 

system with second optional service was explained by Al- Jararha and Madan (2003). Mx/G/1 queueing system with two phases of 

heterogeneous service under N-policy was examined by Choudhury and Paul (2004). A discrete time Geo/G/1 retrial queue has been 

considered by Wang and Zhao (2007) with starting failures in which all arriving customers require a first essential service while 

only some of them ask for a second optional service. Mx/G/1 queue with two types of services is studied by Jain and Chauhan 

(2016). 

Classical studies on queueing systems use perfect (reliable) servers. However in many real time systems, the server may meet 

unpredictable breakdowns. Therefore, queueing models with server breakdowns are realistic representation of the system. A 

queueing model subject to random breakdowns of a terminal system has been analyzed by Sztrik and Gal (1990). The steady state 

queue length distribution and mean queue length of Markov queueing system subject to random breakdown were computed by 

Hsieh and Andersland (1995). The total expected cost function per unit time was developed by Wang (1995) to obtain the optimal 

operating policy of a single removable and non reliable server. A single removable and non reliable server in both an infinite and a 

finite queueing system with Poisson arrivals has been considered by Wang et al. (1999). Ke (2003) studied the system 

characteristics of M/G/1 queueing system with server breakdown. The management policy of an M/G/1 queue with a single 

removable and no reliable server was considered by Pearn et al. (2004). Using supplementary variable method Wang (2004) 

obtained the transient and the steady state solutions for M/G/1 queue with second optional service. The vacation policy of an M/G/1 

queueing system with an unreliable server was studied by Ke (2005). Ke (2006) analyzed the vacation policies of an unreliable 

server M/G/1 queue in which the length of the vacation period is controlled either by the arrivals or by timer. The operating 

characteristics of an Mx/G/1 queueing system have been studied by Ke (2007) under the assumption that the server may breakdown 

according to Poisson process and the repair time follows a general distribution. Wang et al. (2007) analyzed various system 

performance measures and investigated some performance indices and expected cost function of M/G/1 queueing system with server 

breakdowns. Optimal stationary policy under a suitable linear cost structure has been derived by Chaudhury et al. (2009) for an 

unreliable server with two phases of service.  

In many realistic situations, the server takes some times (i.e. set up time) before starting the service of first customer; such systems 

have also been analyzed by researchers working in the area of queueing theory. Li and Yang (1995) studied M/G/1 retrial queue 

with setup times. An efficient iterative algorithm has been developed by Li et al. (1995) for computing the stationary queue length 

distribution in M/G/1/N queue with setup times and arbitrary state dependent arrival rates. The optimal N policy was determined by 

minimizing the total operation cost of the system by Hur and Paik (1998) for an M/G/1 queue with general setup time. Krishna et al. 

(1998) have derived the system size distribution and expected length of idle and busy period of a Mx/G(a,b)/1 queueing system with 

N policy and setup time. Choudhury (1998) derived analytically explicit expressions for the system state probabilities for bulk 

arrival Poisson queue with random set up time and vacation.  Hur and Paik (1999) investigated the system operation cost and the 

optimal N policy by a numerical study of M/G/1 with server setup. Finite capacity single server vacation queue with setup times and 

batch Morkovian arrival process (BMAP) was considered by Niu et al. (2003). Lee et al. (2003) applied the factorization principle to 

derive the generating function of the queue length and vector Laplace Stieltjes transform of the waiting time of a BMAP/G/1 queue. 

Mx/G(a,b)/1 queueing system with multiple vacations setup time with N policy and closedown times was considered by 

Arumuganathan and Jeyakumar (2005). Ke (2008) obtained steady state results for system size distribution at a random epoch and at 

a departure epoch for an Mx/G/1 queueing system with startup and j additional options for services. The steady state behavior was 

examined of a bulk arrival queueing system with additional second phase of optional service and unreliable server by Chaudhury 
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and Deka (2009). A single server queue with a variable service speed, batch arrivals and general setup times is studied by Yojima 

and Phung-Duc (2020). 

The purpose of this work is to obtain explicit expressions for various queueing and reliability indices for unreliable server queue 

with bulk arrival. The organization of the paper is as follows. We describe the model and introduce some notations in section 2. 

Section 3 is devoted for the analysis part of the problem, where we obtain probability distribution of the system state. These results 

are obtained by the method of supplementary variable. Since the breakdowns and repair process are independent of the servicing 

process, then the reliability and availability are defined in the usual way in section 4. Numerical illustration in order to validate the 

analytic results is given in section 5. Some concluding remarks are outlined in last section 6.  

 

2.  Model Description  

Mx/G/1 queueing system with unreliable server, setup and k-phase optional service is considered by making the following 

assumptions: 

➢ The customers arrive at the system according to a compound Poisson process with random batch size denoted by 

random variable ‘X’ with distribution ai=Pr[X=i]. 

➢ There is a single unreliable server who provides two kinds of general heterogeneous services to the customers on a 

first come first served (FCFS) basis.  

➢ The first essential service is needed to all arriving customers; the duration of essential services are general 

distributed. Its distribution function, density function and hazard rate function are B0(x), b0(x) and μ0(x), respectively. 

➢ As soon as the first essential service of the customer is completed, then with probability r1 he may demand for first 

phase second optional service or may leave the system with probability (1-r1). After the completion of first phase optional 

service he may go for second phase optional service with probability r2 or may leave the system with probability (1-r2). In 

general, the customer may opt any of kth ( mk1  ) phase optional service with probability rk or may leave the system 

with probability (1-rk).  

➢  The k type second optional service time follows an arbitrary distribution and its distribution function, density 

function and hazard rate function are Bk(x), bk(x) and μk(x), respectively ( mk1  ). 

➢  We assume that the life time of a server is exponentially distributed with rate α1 and α2 in first essential service 

and second optional service, respectively.  

➢ If the server breaks down during the service, the customer just being served before server breakdown waits for the 

server to complete its remaining service.  

➢ The repair time distributions for both essential and kth optional service phases are arbitrarily distributed with 

probability distribution functions R0(y) and Rk(y), respectively. Also let r0(y), rk(y) and β0(y), βk(y) are the corresponding 

probability density functions and hazard rates.  

➢ The server will be recovered after completion of the repair and starts service of the customers immediately. 

 

Notations 

   Mean arrival rate of the customers 

X   Random variable denoting the batch size 

X(z)   Generating function for batch size X 

α0, αk   Mean failure rate of server in both phases, k=1,2,…,m 

0, θ0, 0                        Service rate, setup rate and repair rate in first essential service 

k, θk, k                        Service rate, setup rate and repair rate in kth phase second optional service 

0(x), θ0(y), 0(y)              Hazard rates of service, setup and repair for essential service 
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k(x), θk(y), k(y)              Hazard rates of service, setup and repair for optional service 

b0(x), s0(y), r0(y) Probability density functions for service time, setup time and repair time in 

essential service 

bk(x), sk(y), rk(y) Probability density functions for service time, setup time and repair time in kth 

phase optional service, k=1,2,…,m 

B0(x), S0(y), R0(y) Distribution functions of service time, setup time and repair time for 

essential service 

Bk(x), Sk(y), Rk(y) Distribution functions of service time, setup time and repair time for 

kth phase optional service, k=1,2,…,m 

),()( xtPn
0

 Joint probability that there are n customers in the queue at time t when the server is 

busy with first essential service and elapsed service time lies in (x, x+dx) 

),,()( yxtSn
0

 Joint probability that there are n customers in the queue at time t when the server is in 

setup state while broken down during first essential service and the elapsed service time for the customer 

under service is equal to x, elapsed setup  time lies in (y, y+dy) 

),,()( yxtRn
0

 Joint probability that there are n customers in the queue at time t when the server is 

under repair state while broken down during first essential service and the elapsed service time for the 

customer under service is equal to x, elapsed repair time lies in (y, y+dy) 

)()( tP k
n  Joint probability that there are n customers in the queue at time t when the server is busy with kth 

phase optional service, k=1,2,..,m  

),()( ytS k
n  Joint probability that there are n customers in the queue at time t when the server is in 

setup state while broken down during kth phase optional service and elapsed setup  time lies in (y, y+dy), 

k=1,2,…,m 

),()( ytR k
n  Joint probability that there are n customers in the queue at time t when the server is in 

setup state while broken down during kth phase optional service and elapsed repair time lies in (y, y+dy), 
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3.  The Analysis 

We construct the partial differential equations governing the model for the system and assume the elapsed service time, elapsed 

setup time and the elapsed repair time as supplementary variables: 

 


−+=







+

0
0

0
00 1 )(),()()()(
)()(

xxtPrtPtQ
dt

d
k

k
k                                                                                         (1) 

1
0 0

00

1

0
00 +=







+++




+







−
=

ndyyyxtRxPaxtPx
xt

nin

n

i
in ,)(),,()(),()( )()()(                                      (2)                                                              

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                         Volume: 09 Issue: 10 | Oct - 2025                                SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM52852                                              |        Page 5 
 

1
0

1

0
0 =








++




+




−

=

 nyxtSayxtSy
wt in

n

i
in ),,,(),,()(

)()(                                                                        (3) 

1
0

1

0
0 =








++




+




−

=

 nyxtRayxtRy
yt in

n

i
in ),,,(),,()(

)()(                                                                       (4) 

mkndxxxtPrdyyytRtPatP
dt

d
nk

k
n

k
in

n

i
i

k
nkk ++=








+++ 



−
=

11
0 0

0

0
1

,,)(),()(),()()( )()()()(                                         

                                                                                                                                                                     (5) 

mknytSaytSy
wt

k
in

n

i
i

k
nk =








++




+




−

=

 11
1

,),,(),()(
)()(                                                           (6) 

mknyRaytRy
yt

k
in

n

i
i

k
nk =








++




+




−

=

 11,),(),()(
)()(                                                              (7) 

The following boundary conditions are taken into consideration: 
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Theorem 1: The Laplace Stieltjes transforms and moment generating functions when the server is in busy state, under setup state 

and repair state respectively, are given by   
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Theorem 2: The marginal generating functions are obtained as 
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Theorem 3: Probability that server is in idle, busy with both phases of service, setup and under repair, respectively are given by 
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4.  Reliability Analysis 

In order to analyze reliability indices, we consider set up and breakdown states as absorbing states. Then using notations and 

assumptions as defined in sections 2 and 3, we get the following set of equations: 
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Boundary conditions: 
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Theorem 5:  The Laplace Stieltjes transforms and moment generating functions of the state probabilities are given by: 
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Proof: Taking Laplace Transform of equations (51)-(56), we get:  
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Multiplying (61) with suitable power of z and some over n and using defined generating functions, we have 
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From (63) and (64) we get 
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Eq. (60) gives 
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Eqs (67) and (68) give 
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From eq. (62), we have 
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By solving eqs (65) and (66) and using (70), we get 
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setup and breakdown states are assumed to be absorbing states. Therefore, 
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We can find )(* sQ by solving above equation for z=1 with the help of Rouche’s theorem.  Thus we get  
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where zw is the root of equation 
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(i) The Laplace Stieltjes transform of system availability (A(t)) at time t is given by 
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(ii) The steady state availability of the server is given by 
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(iii) The Laplace Stieltjes transforms of the expected number of failures of the server in the first essential service and the second 

optional service up to time t (M0(t), Mk(t)) are given by: 
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(iv) The steady state failure frequency of the server is given by 
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 (v) The Laplace transform of the reliability function R(t) of the server is given by 
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       zw is the root of equation 
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(vi)The mean time to the first failure (MTTFF) of the server is given by 
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5.  Sensitivity Analysis 

In this section we validate our analytical results by taking numerical examples. Reliability indices are summarized in tables 1-4 with 

respect to different descriptors. For numerical results illustrated in tables 1-4, we set default parameters as 

Table 1: λ=0.5, k=1, μ0=6, µ1=5, θ0=0.8, θ1=0.6, β0=2.5, β1=3.5, r=0.4 

Table 2: λ=0.5, k=1, α0=0.2, α1=0.5, θ0=0.8, θ1=0.6, β0=2.5, β1=3.5, r=0.4 

Table 3: λ=0.5, k=1, α0=0.2, α1=0.5, θ0=0.8, θ1=0.6, μ0=6, µ1=5, r=0.4 

Table 4: λ=0.5, k=1, α0=0.2, α1=0.5, β0=2.5, β1=3.5, μ0=6, µ1=5, r=0.4 

In tables 1-4 we display the availability and failure frequency of the server by varying failure rates, service rates, repair rates and 

setup rates. It is noted from table 1 that the availability decreases but failure frequency increases as we increase failure rates α0, α1; 

therefore higher failure rates deteriorates system reliability. The system reliability can be maintained by keeping lower failure rate of 

the server. 

 A remarkable increment in availability A can be seen in table 2 on increasing the service rates µ0 and µ1, which is quite obvious. 

The failure frequency f shows a decreasing pattern on increasing µ0 and µ1. The effect of server’s repair rates is illustrated in table 3. 

As we increase the repair rates, the availability increases but at the same time the failure frequency follows a decreasing trend. Table 

4 depicts that server’s availability (A) decreases and failure frequency f increases for higher values of setup rates. 
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6.  Concluding Remarks 

We have discussed an unreliable Mx/G/1 queueing system with second multiphase optional service with setup. All customers 

demand the first “essential” service, whereas only some of them demand the k-phase “optional” service. By using the supplementary 

variable method, we have modeled the system as a Markov chain to obtain the stationary queue indices and reliability measures of 

interest. For our model, we have been able to derive the state probabilities that we can use to calculate the commonly used relevant 

performance measures. Many existing queueing systems dealing with customer service problems are special cases of our model. 

Efforts have also been made to illustrate the system indices numerically to validate the analytical results.  

The considered queueing model represents many practical problems in many manufacturing, production, and computer and 

communication systems etc. wherein the server is not continuously available for providing service for the customers, such as service 

interruptions due to server breakdowns. Our model dealt stochastically those with situations arising in daily life when a batch of 

customers appear in the system to get service and the service time consists of preliminary service phase followed by a second 

optional service phase. The model investigated in this paper is more realistic than those existing ones, since it takes the behavior of 

arriving customers as well as optional service rendered by the server.  
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α0 α1 A F 

0.1 0.4 0.2541 0.5179 

0.2 0.4 0.2315 0.5379 

0.3 0.4 0.2092 0.5582 

0.4 0.4 0.1873 0.5786 

0.5 0.4 0.1659 0.5995 

0.6 0.1 0.1443 0.6418 

0.6 0.2 0.1233 0.6635 

0.6 0.3 0.1024 0.6854 

0.6 0.4 0.0820 0.7077 

0.6 0.5 0.0617 0.7303 

 

Table 1: Availability and failure frequency of the server by varying α0 and α1 
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µ0 µ1 A f 

2 4 0.2543 0.0979 

4 4 0.3311 0.0879 

6 4 0.4090 0.0582 

8 4 0.5876 0.0486 

10 4 0.6659 0.0395 

6 2 0.3449 0.0818 

6 4 0.4237 0.0635 

6 6 0.4090 0.0582 

6 8 0.5828 0.0177 

6 10 0.6619 0.0003 

 

Table 2: Availability and failure frequency of the server by varying µ0 and µ1 

β0 β 1 A f 

0.5 2.5 0.1942 0.0979 

1.0 2.5 0.2910 0.0879 

1.5 2.5 0.3799 0.0582 

2.0 2.5 0.4896 0.0486 

2.5 2.5 0.5699 0.0395 

4.5 0.5 0.2449 0.0418 

4.5 1 0.2237 0.0335 

4.5 1.5 0.4020 0.0254 

4.5 2 0.4826 0.0211 

4.5 2.5 0.5605 0.0101 

 

Table 3: Availability and failure frequency of the server by varying  β0 and β 1 

θ0 θ1 A f 

0.1 0.3 0.1581 0.3178 

0.3 0.3 0.1365 0.4309 

0.5 0.3 0.1092 0.5082 

0.7 0.3 0.0893 0.5981 

0.9 0.3 0.0699 0.6005 

0.5 0.1 0.0943 0.4418 

0.5 0.3 0.0793 0.5455 

0.5 0.5 0.0087 0.6844 

0.5 0.7 0.0054 0.7197 

0.5 0.9 0.0099 0.7913 

    

Table 4: Availability and failure frequency of the server by varying θ0 and θ1 
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