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Abstract 

Contactless heart rate (HR) monitoring using remote photoplethysmography (rPPG) has emerged as a transformative 

application in computer vision and biomedical engineering. This research investigates the effectiveness of deep 

learning-based rPPG models for HR estimation from facial videos. Specifically, we evaluate state-of-the-art models 

including MTTS-CAN, DeepPhys, PhysNet, and TSCAN on diverse skin tones and environmental conditions. Our 

findings demonstrate that deep models, when trained on spatial-temporal signals from facial regions, outperform 

traditional signal processing baselines. Moreover, we integrate Large Language Models (LLMs) to analyze heart rate 

trends and provide contextual medical insights, highlighting the promise of AI-assisted telemedicine. Experimental 

results show that MTTS-CAN consistently achieves high accuracy (94.45% at 0.5m) and robustness across lighting and 

distance variations. This work lays the foundation for future development of AI-driven physiological monitoring 

systems suitable for health diagnostics, emotion recognition, and deepfake detection. 

 Introduction 

The global demand for scalable, non-contact vital sign monitoring solutions has intensified due to public health 

challenges and the rise in telemedicine. Traditional heart rate monitoring methods—such as ECG and contact-based 

PPG—require physical sensors, limiting their scalability and comfort. Remote photoplethysmography (rPPG) 

addressesthese challenges by extracting cardiac pulse information from subtle color changes in facial videos. 

With the evolution of deep learning, rPPG models have moved beyond handcrafted signal pipelines to sophisticated 

spatial-temporal convolutional networks that extract physiological signals robustly across conditions. This research 

presents a comparative analysis of multiple deep learning models (MTTS-CAN, DeepPhys, PhysNet, TSCAN), 

emphasizing their architectures, signal quality, and real-world performance. Furthermore, we integrate large language 

models (LLMs) to interpret HR signals in real time, adding medical context and improving system usability. 

 Related Work 

Early rPPG approaches relied on signal processing techniques, such as green channel averaging and ICA. More recently, 

convolutional attention networks like DeepPhys and temporal-shift models such as TS-CAN have shown promise. 

Multi-task architectures like MTTS-CAN leverage both spatial attention and temporal modeling to simultaneously 

estimate heart rate and respiratory rate. PhysNet employs a spatio-temporal convolutional encoder-decoder to capture 

fine-grained periodic patterns in facial ROI. Comparisons of these models on real-world datasets remain sparse, 

motivating the need for a comprehensive evaluation.  
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                                                      fig1.1 LLM Medical Insight Engine 

Transformers are a powerful deep learning architecture introduced in 2017, designed to handle sequential data, 

especially in natural language processing (NLP). Unlike traditional recurrent models, transformers use a self-attention 

mechanism that allows them to weigh the importance of different words in a sentence simultaneously. This enables 

efficient learning of long-range dependencies, making transformers the backbone of state-of-the-artmodels like BERT, 

GPT, and T5. They excel in tasks such as text classification, translation, summarization, and question 

answering.Hugging Face is a popular open-source platform that provides easy access to a vast library of pretrained 

transformer models via the transformers library. Setting up Hugging Face locally involves installing the transformers 

and datasets Python packages, which allow you to load, fine-tune, and deploy these models without needing internet 

access after download. Local setup is crucial for privacy, faster experimentation, and working with large models on your 

own hardware.In practice, you install the library (pip install transformers), download pretrained models (e.g., BERT), 

and run inference or training scripts locally. This approach supports custom NLP workflows and accelerates 

development by leveraging pretrained knowledge without cloud dependency. Hugging Face also offers tools like the 

Tokenizers library and model hubs for easy sharing and versioning. 

 

 Design Approaches 

The system is architected using a modular, service-oriented approach that emphasizes scalability, maintainability, and 

clear separation of concerns. The overall design follows a layered structure inspired by the Model-View-Controller 

(MVC) paradigm, adapted to fit a Stream lit based interface combined with a Fl
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fig:2.1Presentation & 

Application Layer (Unified via Streamlit): 

 Streamlit is employed as the unified framework handling both user interface and client-server interactions. This allows 

rapid development of interactive, real-time applications with built-in support for webcam access, data display, and user 

controls without separate frontend development. Streamlit manages the UI rendering, session state, and secure user 

interactions seamlessly. 

API Layer (Flask): 

 The Flask API server acts as the central backend orchestrator, exposing endpoints for user authentication 

(login/signup), video frame uploads, and heart rate processing requests. It handles session management and enforces 

access control for authenticated users, ensuring security and privacy. 

Processing Layer: 

 This layer integrates OpenCV-based image and signal processing alongside deep learning inference using the MTTS-

CAN model implemented in PyTorch. The pipeline includes preprocessing steps such as grayscale conversion, green 

channel extraction, and Fourier Transform (FFT) to isolate physiological signals. The MTTS-CAN model processes 

temporal sequences of video frames to estimate heart rate with high accuracy by leveraging attention mechanisms and 

temporal shifts. 

A PostgreSQL relational database stores user profiles, authentication credentials, and time-stamped heart rate logs 

securely. Data persistence is handled with robust volume mounting to ensure durability across container restartsUpon 

launching the Streamlit app, users authenticate through a secure login/signup process, which includes email-based OTP 

verification and bcrypt-hashed password storage. Session state within Streamlit maintains user login status securely 

throughout their interaction.The app obtains real-time webcam access via Streamlit’s built-in media input capabilities, 

capturing video frames directly on the client side.Frames are sent to the Flask backend either through REST API calls at 

configurable intervals or WebSocket streams for near real-time processing, depending on the deployment 

configuration.The backend performs face detection and extracts the region of interest (ROI) for rPPG analysis. Based on 

user or system configuration, it dynamically switches between a traditional signal-based pipeline (green channel 

averaging + FFT + peak detection) and the MTTS-CAN deep learning inference for heart rate estimation.Estimated 
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heart rate values are returned to the Streamlit frontend for immediate display, while also being logged persistently in the 

database alongside timestamps and user identifiers for historical analysis.Security is prioritized through enforced 

session-based access, OTP-based email verification, and strong password hashing with bcrypt.The entire system is 

containerized using Docker to ensure consistent, reproducible environments. This encapsulates the Streamlit app, Flask 

API server, OpenCV dependencies, and PyTorch model within isolated containers.PostgreSQL is deployed with 

persistent volume mounts to safeguard stored data against loss during container lifecycle events. 

The architecture supports flexible deployment: local setups for development and testing, as well as scalable cloud 

deployments on platforms such as Heroku, Google Cloud Platform, or Microsoft Azure for production-grade use. 

 Methodology and Algorithm 

Remote photoplethysmography (rPPG) is a non-contact technique that estimates physiological signals such as heart rate 

(HR) by analyzing subtle color changes in facial skin captured through ordinary cameras. These color changes reflect 

blood volume variations caused by the cardiac cycle. Traditional signal processing methods for rPPG rely on hand-

crafted features and signal decomposition techniques such as Independent Component Analysis (ICA) or chrominance-

based methods. However, they often struggle with noise from motion, illumination variations, and skin tone diversity. 

Deep learning-based approaches have emerged as a robust alternative, capable of learning complex spatial and temporal 

patterns directly from raw videos, thereby improving accuracy and generalizability. 

 

                               Figure:3.1 Overview of Deep Learning-based rPPG 

The core idea behind deep learning rPPG methods is to map sequences of RGB facial images to the underlying blood 

volume pulse (BVP) waveform using trainable neural networks. This approach is data-driven, where the model learns to 

automatically extract relevant features and temporal dynamics associated with the pulsatile signal. Pioneering work by 

Chen and McDuff (ECCV 2018) introduced DeepPhys, a deep convolutional attention network explicitly designed for 

this task. DeepPhys demonstrated that convolutional neural networks (CNNs) combined with spatial attention 

mechanisms could effectively separate physiological signals from noise caused by motion and lighting changes.Building 

upon such foundations, subsequent models like TS-CAN (Temporal Shift Convolutional Attention Network) by Yu et 

al. (NeurIPS 2020) further improved temporal modelling by introducing Temporal Shift Modules (TSM) that enable 

efficient temporal feature aggregation with minimal computational overhead. TS-CAN also integrates multi-task 

learning for simultaneous estimation of heart rate and respiratory rate, showing enhanced robustness in real-world 

scenarios. 

Data Preprocessing 

Accurate rPPG estimation begins with careful preprocessing of the input video. The first step involves detecting the face 

region using landmark detection algorithms such as Multi-task Cascaded Convolutional Networks (MTCNN) or dlib. 

http://www.ijsrem.com/
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The facial region is then cropped and resized to a fixed dimension to standardize input data. Since the pulse-induced 

color variations are subtle, normalizing pixel intensities is crucial to reduce the effects of ambient lighting changes.To 

further focus the model on physiologically relevant regions, some approaches segment the face into patches (e.g., 

forehead, cheeks) or use attention masks derived from prior knowledge of pulse signal distribution on the face. 

Temporal synchronization between videframes and ground truth photoplethysmogram (PPG) signals is ensured to 

provide accurate supervisory signals during training. 

Model Architecture 

The deep learning model for rPPG typically consists of three main components: spatial feature extraction, temporal 

modeling, and attention mechanisms.Spatial Feature Extraction 

Each video frame is processed by a CNN backbone to extract spatial features that capture the color and texture 

information linked to blood flow. Standard architectures such as ResNet or lightweight variants are commonly used. The 

convolutional layers learn to emphasize skin regions and discard background information. 

Since the pulse signal is a temporal phenomenon, modelling temporal dependencies across frames is essential. 

Traditional recurrent neural networks (RNNs) or Long Short-Term Memory (LSTM) units have been used but often 

suffer from high computational costs. More recent methods adopt Temporal Shift Modules (TSM) or 3D convolutions to 

efficiently aggregate temporal features. TSM shifts part of the channels along the temporal dimension, enabling 

temporal information exchange with negligible overhead. 

To improve robustness to noise and focus on pulse-related signals, attention modules are incorporated. These modules 

learn spatial and temporal weights that highlight regions and moments most indicative of physiological activity. Spatial 

attention helps the model focus on vascularized facial areas, while temporal attention can weigh frames less affected by 

motion or occlusions.The final layers of the network perform regression to predict the continuous BVP waveform from 

the aggregated features. This waveform can then be used to compute heart rate and other vital signs. 

 

fig:4.1The overall algorithm for deep learning-based rPPG estimation can be summarized as follows: 

Capture video of the subject’s face using a standard RGB camera under ambient lighting.Face Detection and Cropping 

Detect facial landmarks and crop the face region. Normalize pixel intensities to reduce illumination variations.Feature 

Extraction 

Feed each frame through a CNN backbone to extract spatial features representing skin color variations linked to blood 

volume changes.Temporal Feature Aggregation 

Apply temporal modeling modules (TSM or 3D CNN) to integrate features across consecutive frames, capturing the 

periodic pulse dynamics.Attention Application 

Use spatial-temporal attention to weight features that are more indicative of physiological signals and suppress 

irrelevant or noisy signals.Pulse Signal Regression 

http://www.ijsrem.com/
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Map the attended features to predict a continuous BVP waveform that reflects the heart pulsePostprocessing 

Filter the predicted waveform with bandpass filters to remove noise and extract heart rate using peak detection or 

spectral analysis. 

RESULTS 

The application delivered satisfactory performance across a variety of devices. Real-time heart rate estimation from 

video frames was achieved consistently within a few seconds per inference cycle. Performance lags were occasionally 

observed duringintensive video frame processing, particularly on devices with limited hardware capabilities (e.g., older 

laptops with integrated GPUs). These delays are natural due to the computational overhead of handling frame extraction, 

model inference via MTTS-CAN, and LLM-based reasoning—all on live video streams.However, this bottleneck was 

mitigated to an extent by optimizing model inference and using batch frame processing. The use of Streamlit, which acts 

as both the front-end and the API layer, proved advantageous by streamlining the communication between webcam 

capture and deep learning inference without requiring additional client-server interfaces.Unlike traditional Django 

REST APIs or Flask UIs, Streamlit enabled a rapid, modular, and interactive development flow. Since both the UI and 

backend inference logic reside in a single Python environment, we reduced time spent on front-end deployment or API 

debugging. The tight coupling of UI, OpenCV video handling, deep learning inference (via PyTorch), and response 

display led to faster prototyping and more reliable testing.The integration of an LLM from Hugging Face was 

straightforward using Transformers and pre-trained models. These were hosted locally and provided contextual medical 

analysis of the user's heart rate trends, such as warnings for bradycardia or elevated stress patterns.Experiment 

Setup:Resolution: 1440×1080 at 60 fpsDistances: 0.5 m, 1 m, 3 mParticipants: 8 individuals of various 

ethnicitiesIllumination: Indoor lighting, uniformly litFormula Used for Accuracy 

CalculationPercentage of Correction=(∣Estimated HR−Ground Truth HR∣Ground Truth HR)×100%\text{Percentage of 

Correction} = \left(\frac{|\text{Estimated HR} - \text{Ground Truth HR}|}{\text{Ground Truth HR}}\right) \times 

100\%Percentage of Correction=(Ground Truth HR∣Estimated HR−Ground Truth HR∣)×100% 

Accuracy=100%−Percentage of Correction\text{Accuracy} = 100\% - \text{Percentage of 

Correction}Accuracy=100%−Percentage of Correction Results (Forehead ROI - Distance vs Accuracy) 

• Distance (m) • Accuracy (%) 

• 0.5 • 94.45 

• 1.0 • 92.78 

• 3.0 • 90.34 

 

The forehead region proved to be a stable ROI across all distances.Distance inversely impacted signal strength and 

accuracy due to pixel density and motion blur.No noticeablebias or degradation was observed based on skin tone, 

reaffirming the robustness of the MTTS-CAN model. 

 Conclusion 

This project set out to develop an intelligent, contactless, and browser-accessible heart rate monitoring system using 

computer vision and deep learning. Through extensive research into traditional rPPG methods and modern neural 

architectures, we identified MTTS-CAN as a high-performing model for remote heart rate estimation. We successfully 

integrated it into a full-stack system powered by Streamlit, which handles both the user interface and backend model 

inference. The user, through a web browser, grants access to their webcam, and the system continuously captures and 

analyzes facial video frames to predict heart rate in real time.In contrast to previous systems, which were often console-

based or restricted to desktop environments, our application is platform-independent, requires no installation, and 

leverages only a webcam and internet connection, thereby improving accessibility across diverse use cases. Further, we 

extended the functionality of the system by integrating a Large Language Model (LLM) — a pre-trained transformer 
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from Hugging Face — which interprets the heart rate readings to provide basic medical guidance, such as identifying 

possible signs of stress, abnormal heart rhythm, or cardiovascular rest states.Moreover, this system’s architecture not 

only caters to real-time health monitoring but also presents an emerging utility in AI deepfake detection. Fake or AI-

generated videos typically fail to capture subtle physiological signals like heart rate. Since our system relies on micro 

changes in skin tone to compute BVP signals, it can also be adapted to detect the absence of real photoplethysmographic 

signals, thereby flagging potential synthetic content.This convergence of deep learning, computer vision, and natural 

language models demonstrates the growing potential of AI in advancing remote health diagnostics, cybersecurity, and 

human-computer interaction — all while requiring no proprietary hardware or medical sensors. 

Future Scope 

Fake Video Detection and Content Validation 

Since deepfake videos typically lack realistic biological signals such as pulse, the system can evolve into a verification 

tool to detect AI-generated content — aiding in digital forensics and video authentication tasks.Healthcare Integration 

for At-Home MonitoringThe application can be integrated into telehealth platforms to offer remote cardiovascular 

insights, particularly for users in rural or resource-constrained regions who lack access to medical devices.CCTV-based 

Public Health ScreeningThe core computer vision approach can be scaled for real-time heart rate estimation in public 

environments using CCTV streams. This may be helpful in scenarios like airport security, stadium monitoring, or 

pandemic screening  detecting stress, illness, or abnormal activity patterns.Emotion and Stress Detection for Mental 

HealthCombining heart rate trends with facial expression recognition and LLM reasoning opens a path toward mental 

health inference models that estimate stress or anxiety levels using passive signals alone.Continuous Monitoring with 

Historical TrendsThough our system is session-based, a future version could allow secure logging of user data (opt-in), 

enabling personalized health trend analysis with visual dashboards and periodic medical reports.By leveraging cutting-

edge models likeMTTS-CAN and transformer-based LLMs, and deploying them in a browser-accessible environment, 

this work bridges a critical gap in digital health. It proves that contactless, intelligent health analysis is no longer a 

vision for the future  but a scalable, cost-effective, and immediately deployable reality. 
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