
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 1

Remote Service Manager using Zookeeper

N. Duraimurugan1 , Dhivya S2 , Keerthana S3

Department of Computer Science and Engineering, Rajalakshmi Engineering College, Chennai

Email:duraimurugan.n@rajalakshmi.edu.in 1, 200701067@rajalakshmi.edu.in 2,

keerthanajayanthi391@gmail.com 3

Abstract: Navigating the intricate landscape of service management and monitoring within on-premises applications, burdened by

extensive legacy codebases, presents challenges. The complexities associated with deploying applications to the cloud for enhanced

management are worsened by the complexity arising from vast on-premises applications. The mandatory process of containerization

becomes an intricate and daunting task. The lack of centralized management worsens service control fragmentation, leading to

inefficiencies. Manual interventions hinder progress due to potential errors. Scalability challenges increase with more machines and

services, compounded by a lack of real-time insights into performance. Dependencies on tools limit adaptability, adding complexity

to administering services across diverse machines, requiring extensive training. In response, the proposed "Service Manager"

emerges as a centralized tool, designed to overcome these limitations. The Service Manager orchestrates diverse operations on

services across machines, offering a user-friendly web interface for seamless triggering and monitoring. Accompanied by the Service

Manager Agent on each machine, it interacts with services, leveraging Apache Zookeeper for streamlined coordination, ensuring

efficient execution of operations. This solution empowers administrators, marking a pivotal advancement in managing and

monitoring services within complex and dynamic environments.

Keywords: Remote Monitoring, coordination, apache zookeeper

1. INTRODUCTION

The way that computing resources are utilized

has fundamentally changed with the advent of

distributed computing. It enables smooth

collaboration across several computers and

systems over a network, combining their

resources and computing capacity to take on

challenging tasks or accomplish shared goals.

Under this model, a single task is divided into

multiple smaller tasks, each of which is

competently handled by a separate system. As an

alternative, distributed computing can potentially

take the form of several software components and

services operating simultaneously on various

machines. With the help of these distributed

systems, modern computing may now be more

efficient, scalable, and fault-tolerant.

Managing a large number of services, frequently

each operating on a separate system, is a daily

struggle in many organizations. In order to handle

this complexity, a consolidation tool that is

capable of thoroughly monitoring every active

service becomes essential. With its centralized

management and control, this consolidation tool

is a shining example of a distributed computing

application. It gives administrators the ability to

carry out a number of crucial tasks, including

installing, upgrading, and terminating services all

at once. This simplifies processes and boosts

output. A system designed to make managing a

variety of services in a distributed computing

environment easier, the Service Manager is best

represented by this particular service.

However, the difficulties in a distributed context

go beyond just managing services. Without a

centralized coordination service, managing

centralized configuration data and metadata,

monitoring every network node, and enabling

group services are difficult tasks. In this case,

Apache Zookeeper stands out as the key

component, serving as a centralized coordination

service. It offers the fundamental foundation

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 2

needed to handle the complexities of distributed

systems with ease. Keeping order and coherence

in the face of complexity, Apache Zookeeper

allows organizations to fully utilize their

networked resources by ensuring that the

distributed computing ecosystem runs smoothly

and efficiently through tight integration with the

Service Manager tool.

2. LITERATURE SURVEY

This paper[1] explores the automated generation

of distributed implementations for logically

centralized service orchestrations, focusing on

ensuring correctness and managing

synchronization and consensus challenges. It

introduces a choreography-based model that

offers scalability, fault tolerance, adaptability,

and synchronization. Challenges include

potential scalability issues, increased network

traffic, synchronization delays, higher memory

consumption, and complexities in validating

choreography-based applications.

This paper[2] introduces Cognitive Application

Area Networks (AAN), a novel approach that

separates application management from

infrastructure orchestration. The main

disadvantages that are present in this system is

that it encompasses vendor lock-in, complex

management, cost escalation when relocating

virtual machines, and operational complexities in

heterogeneous infrastructures.

A study [3] emphasizes the importance of

observability in cloud environments, highlighting

three key pillars: logs, metrics, and tracing. It

delves into both whitebox and blackbox

monitoring approaches, underscoring the

significance of collecting data from both

applications and infrastructure. But the

implementation of this system includes increased

data volume impact, increase in complexity,

intricate application-infrastructure relationships,

and the lack of detailed resource allocation

information.

A new method Heterogeneous Task Allocation

Strategy (HTAS)[4] is introduced and this is

tailored for cloud workloads characterized by

varying business volumes. Nevertheless, it has its

limitations, such as only supporting

heterogeneous VM sizes and not types. Container

migrations through CRIU may introduce

downtime and network latency issues, restricting

its applicability. Future goals include addressing

instance acquisition lag and enhancing workload

prediction to further refine auto scaling

capabilities.

This paper[5] presents a decentralized framework

designed to autonomously deploy and scale

containerized applications on edge devices with

limited resources. However, this pioneering

approach also faces difficulties related to

managing the complexity of decentralized

container deployment, addressing resource

constraints on edge devices, and ensuring robust

security measures.

A study [6] investigates container technology, its

adoption, and container orchestration, analyzing

aspects such as scheduling, load balancing, fault

tolerance, and autoscaling. Even though the idea

is novel it becomes increasingly difficult to

include fine-grained application quality of

service awareness, robust container monitoring,

and ongoing security concerns within diverse

adoption requirements.

The [7]Cloud Monitor system is specifically

tailored for cloud computing environments,

featuring multi-level monitoring servers and

web-based interfaces for centralized oversight

and management. However, the study's

limitations include a narrow scope,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 3

oversimplified metrics, a small sample size,

reliance on outdated technology, and a notable

absence of cost analysis, collectively diminishing

the experiment's relevance and applicability in

real-world cloud computing scenarios.

A comprehensive overview of Chef[8] was

studied and its insights were found, focusing on

its core concepts and practical applications in

cloud-native and heterogeneous computing

environments. However, the paper notes that

mastering Chef's domain-specific language

(DSL) may present a learning curve for some

users, particularly those who are new to

infrastructure as code.

This paper[9] underscores the fundamental

concept of Chef automation and its three nodes,

offering a comprehensive, step-by-step guide to

its implementation, covering various tasks such

as virtual machine provisioning, MySQL

database configuration, virtual private cloud

management, and subnet setup. However, the

challenges emerge when migrating applications

and the necessity to automate both virtual and

physical infrastructure. While Chef Automation

can significantly streamline and automate

processes, it may require a certain level of

expertise in writing cookbooks using the Ruby

programming language.

The real-time server performance[10] was

monitored and it uses Prometheus and Grafana,

with Prometheus collecting metrics from diverse

sources and Grafana offering a visualization

platform. While the paper mentions limitations of

the previous monitoring system (CloudWatch), it

also lacks a comprehensive comparison or

evaluation of Prometheus and Grafana.

Additionally, a more in-depth exploration of

technical implementation details would be

beneficial.

This paper[11] outlines a methodology for

constructing a monitoring framework for a

distributed cloud application, utilizing

Prometheus and Chef. The method, however,

necessitates tailoring the monitoring framework

to specific use cases, and its complexity requires

a strong grasp of various tools and commands,

highlighting the importance of comprehensive

documentation and expertise in the process.

[12]PROMETHEUS presents a structured

framework comprising seven stages for the

creation of domain-specific usability heuristics,

emphasizing the development of artifacts and

quality indicators through iterative refinement.

While it enhances the precision and

standardization of heuristics for system

monitoring, it may be considered complex and

reliant on surveys, potentially limiting

practicality.

This paper[13] outlines an approach that

leverages Puppet 5 and a range of utilities to

achieve centralized configuration management,

automated testing, and deployment across diverse

systems, thereby improving efficiency and

compliance. The difficulties include scaling

Puppet compilation, extending module code

testing, safeguarding critical files, and improving

intrusion detection.

A multi-level heartbeat protocol[14] was studied

and it features multipoint and bidirectional

components, with self-adapting load balancing

and fault tolerance mechanisms aimed at

enhancing system reliability and performance.

However, this approach comes with increased

complexity, resource consumption, scalability

challenges, configuration intricacies, network

overhead, susceptibility to false alarms, and the

essential requirement for robust security

measures to mitigate potential vulnerabilities.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 4

The paper[15] introduces a dynamic keep-alive

messaging strategy for timely loss-of-contact

detection in mobile pervasive systems, offering

the flexibility to adjust message frequency

according to application requirements. However,

potential complexities arise in implementing and

managing dynamic keep-alive messaging,

necessitating careful tuning and potentially

introducing challenges in system configuration

and maintenance.

This study[16] tackles the issue of recovery

latency in fault-tolerant coordination services,

with a specific focus on ZooKeeper. However, it's

important to note that the study's primary focus is

on addressing ZooKeeper's limitations and may

not fully account for the broader spectrum of

fault-tolerant coordination services, potentially

limiting the generalizability of its findings to

other similar systems.

The paper[17] outlines a methodology focused on

assessing various versions of the ZooKeeper

atomic broadcast (Zab) protocol, considering

different fault assumptions and workloads. The

approach involves conducting experiments with

concurrent clients to gauge latency and

throughput for write requests. The proposed

enhancements to the Zab protocol demonstrate

improved performance and fault tolerance,

rendering them valuable for distributed systems.

These modifications are adaptable and easily

integrable into existing implementations, thereby

augmenting the efficiency and reliability of

distributed applications, particularly in scenarios

characterized by high workloads and rigorous

fault-tolerance demands. The study does not

include evaluations of ZooKeeper's primary use

cases which have limitations in practical real life

applications.

This paper[18] introduces Google Borg, a large-

scale cluster management system that harnesses

containerization and distributed scheduling. Borg

employs a declarative configuration language and

autonomous management modules to optimize

resource utilization, ensure high reliability, and

simplify application management. However, it's

important to note that Google Borg's complexity

and resource requirements may present

challenges for smaller organizations seeking to

implement it. Its non-open-source nature restricts

its accessibility to external users.

The paper[19] introduces the PalCom

middleware's device discovery mechanism,

which improves device detection across a variety

of networks. This approach provides efficient

discovery and undiscovery while minimizing

traffic by using discovery event notifications

instead of constantly bombarding networks with

keep-alive messages. Furthermore, it builds an

overlay communication substrate to provide a

connection between network islands, improving

cross-network heartbeat for service discovery.

Though a thorough assessment of the

mechanism's applicability and performance

impact is not stated directly, the paper

concentrates on introducing the device discovery.

In the paper[20] coordination mechanisms for

managing large distributed relational process

structures are introduced by the object-aware

process management method, which emphasizes

decentralization and distribution to boost

performance and maintainability. The process

consists of phases for decentralized coordination,

a switch from central to decentralized

coordination, and a validation of the proof-of-

concept. It is advantageous to use decentralized

process coordination for complex structure

coordination because it provides benefits

including improved performance, scalability,

flexibility, fault tolerance, and lower

communication overhead. It is possible that this

technique will add complexity to the design and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 5

management of decentralized coordinating

processes, necessitating meticulous planning and

collaboration amongst several coordinators.

The overview of the literature describes the

problems facing modern computing, including

distributed systems, cloud computing, and

containerized settings. The survey highlights the

need for solutions by focusing on issues related to

scalability, security, and networks. Complex

management problems are introduced when

deploying containers on edge devices. Although

there are benefits to containers, scalability and

security issues must be addressed. Chef,

Prometheus, Puppet, and ZooKeeper technology

discussions highlight their advantages and

disadvantages. Chef's domain-specific language

presents a challenge, but its comprehensive

configuration management capabilities stand out.

PROMETHEUS performs well in usability

heuristics but struggles with subjective

evaluations and complexity. Puppet has a

complex methodology, scalability concerns, and

security requirements, but it maintains nodes

efficiently. ZooKeeper enhances performance,

but real-world implementation may pose

challenges, requiring careful consideration.In

conclusion, the survey examines issues with

modern computing, stressing the significance of

resolving network, security, and scalability

issues.

3. Problem Statement

The management and coordination of services

across distributed environments faces

complexities due to the absence of a centralized

solution, resulting in fragmented processes,

frequent manual interventions, and added

complexity to maintenance efforts. Furthermore,

the lack of a standardized framework for service

coordination compounds this issue. To address

these issues, there is a pressing need for a solution

that can streamline management through the

provision of a centralized interface for

operations. This solution should guarantee the

consistent execution of tasks and optimize

resource utilization. The ultimate goal is to

elevate operational efficiency, ensure uniform

service operations, and simplify the often

burdensome maintenance tasks associated with

distributed environments.

4. Proposed system

In response to the issues explained in the problem

statement and the insights gained from the

literature survey, the proposed system is designed

to provide an all-encompassing solution. This

solution must not only comprehensively address

the above mentioned challenges but also ensure

reliability and efficiency. The aim is to offer a

system that effectively mitigates the identified

problems.

4.1 Service Manager Components

The Service Manager tool consists of three main

components:

● Service Manager web UI

● Service Manager Agent

● Apache Zookeeper

4.1.1 Service Manager web UI

The Service Manager web UI is a web

application which can be used to view the

cluster of members installed in a system,

perform an operation on individual members,

perform rolling operations, i.e., operations over

multiple members in a specified order, view and

modify configurations and even upload a

custom action. The web UI monitors the cluster

and updates the UI about the status and/or

changes in the cluster when an action is

performed. Also, the status information is sent

to Zookeeper as and when the action happens.

4.1.2 Service Manager Agent

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 6

The Service Manager Agent is basically another

service which is supposed to run in the same

machine as the service being monitored. It

performs two tasks: it fetches the status of the

service and sends it to Zookeeper, and it

performs the required operation (triggered in the

web UI) on the service.

4.1.3 Apache Zookeeper

Apache Zookeeper is responsible for

coordinating all the members/nodes in the

cluster. It interacts with both the SM web UI

and SM Agent, and it receives status updates

from them. It also sends the appropriate actions

to the corresponding nodes. It also stores

required persistent data (such as configurations)

in its ensemble.

4.2 Service Manager Workflow

The high-level working of Service Manager

Manager is as follows:

1. The user triggers an action through the SM

web UI. The SM web UI sends the action

information to Zookeeper.

2. Zookeeper sends this action information

to the corresponding SM Agent(s).

3. SM Agent performs the required

operation on the service, which is present in

the same system as the SM Agent.

4. SM Agent will send the update in the

service status to Zookeeper, which is in turn

sent to the SM web UI. The SM web UI

displays these changes accordingly to the

user.

5. The applications being monitored are

represented as Nodes. Their status

information is therefore obtained from

their MBean projections.

6. In the case of rolling actions, the action

is performed on multiple nodes in a specific

order. This order is configurable through

the SM web UI.

Fig. 4.1 Architecture of Service Manager

The above image represents the flow of work in

Service Manager, from the user to the

component servers and back.

5. Implementation

The implementation focused on agent

registration in the client node with the

Zookeeper server. The selected technology

stack incorporated cutting-edge tools, featuring

Spring Boot 3 and Java 17 for robust

application development, while Zookeeper

assumed a pivotal role in the centralized

management of all systems within the cluster.

The project's practical implementation involved

the establishment of a user-friendly interface.

This interface serves as a control center,

empowering users with the ability to

effortlessly monitor the health and performance

of nodes within the network. Through this

interface, users can access vital metrics and

status updates, fostering a proactive approach to

system oversight.

The tool's capabilities extend beyond static

monitoring. It enables real-time surveillance of

all nodes in the cluster, fostering a dynamic

environment where changes are promptly

detected and addressed. This real-time

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 7

functionality not only enhances the user

experience but also contributes to the efficiency

of system monitoring.

Fig 5.1 agent started in the client

Fig 5.1 depicts the initiation of the agent program

in the client. The agent program is started, and it

autonomously registers itself with the server to

announce the node's participation in the cluster.

Fig 5.2 Node connected to the Server

Fig 5.2 illustrates the agent initiated in the

previous screenshot as it establishes a connection

to the server. The connected agent is then

represented under the persistent zNode 'prod-

cluster.' This depiction highlights the crucial step

of the agent's connection to the server and its

association with the designated persistent zNode

within the cluster architecture.

6. Conclusion

Thus, a centralized tool which provides one place

to control multiple services in different remote

machines is built successfully. Service Manager

is an effective distributed computing application

with an intuitive and easy-to-use user interface. It

leverages the features of Apache Zookeeper in

order to coordinate and monitor the services

running in all the nodes in the cluster it is

supposed to manage. It is easily customizable to

suit the user’s needs. It provides the user with a

slew of default actions that can affect a single

node or the entire cluster. It also permits the user

to define their own custom node/cluster-wide

action as well. The primary objective is to

dynamically view the status of all nodes in the

cluster without human intervention, ensuring the

system promptly recognizes the addition of a new

system to the cluster. The Service Manager thus

emerges as a robust solution for remote service

management, streamlining operations and

promoting effective monitoring in distributed

computing environments.

Reference

[1] L. Mostarda, S. Marinovic and N. Dulay,

"Distributed Orchestration of Pervasive

Services," 2010 24th IEEE International

Conference on Advanced Information

Networking and Applications, Perth, WA,

Australia, 2010, pp. 166-173, doi:

10.1109/AINA.2010.100.

[2] Mikkilineni, R., Morana, G., Zito, D. and

Keshan, S., 2017. Cognitive application area

networks. International Journal of Grid and

Utility Computing, 8(2), pp.74-81.

[3] R. Picoreti, A. Pereira do Carmo, F.

Mendonça de Queiroz, A. Salles Garcia, R.

Frizera Vassallo and D. Simeonidou, "Multilevel

Observability in Cloud Orchestration," 2018

IEEE 16th Intl Conf on Dependable, Autonomic

and Secure Computing, 16th Intl Conf on

Pervasive Intelligence and Computing, 4th Intl

Conf on Big Data Intelligence and Computing

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 8

and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTec

h), Athens, Greece, 2018, pp. 776-784, doi:

10.1109/DASC/PiCom/DataCom/CyberSciTec.2

018.00134.

[4] Zhiheng Zhong and Rajkumar Buyya. 2020.

A Cost-Efficient Container Orchestration

Strategy in Kubernetes-Based Cloud Computing

Infrastructures with Heterogeneous Resources.

ACM Trans. Internet Technol. 20, 2, Article 15

(May 2020), 24 pages.

https://doi.org/10.1145/3378447

[5] U. C. Özyar and A. Yurdakul, "A

Decentralized Framework with Dynamic and

Event-Driven Container Orchestration at the

Edge," 2022 IEEE International Conferences on

Internet of Things (iThings) and IEEE Green

Computing & Communications (GreenCom) and

IEEE Cyber, Physical & Social Computing

(CPSCom) and IEEE Smart Data (SmartData)

and IEEE Congress on Cybermatics

(Cybermatics), Espoo, Finland, 2022, pp. 33-40,

doi: 10.1109/iThings-GreenCom-CPSCom-

SmartData-Cybermatics55523.2022.00017.

[6] Bairagi, Hritwik, Uday Chourasiya, Sanjay

Silakari, Priyanka Dixit and Smita Sharma. “A

Survey On Efficient Container Orchestration

Tools And Techniques In Cloud Environment.”

International Journal of Scientific & Technology

Research 9 (2020): 1425-1430.

[7] Wang Liwei, Zhang Zhi, Wang Teng, and Liu

Rukun. 2020. Research and Application of Cloud

Computing Platform Monitoring System Based

on Virtual Cluster. In Proceedings of the 2020

International Conference on Computers,

Information Processing and Advanced Education

(CIPAE 2020). Association for Computing

Machinery, New York, NY, USA, 58–63.

https://doi.org/10.1145/3419635.3419657

[8] Rajashekhar. “A LITERATURE STUDY ON

CHEF - AN OPEN SOURCE SOFTWARE

AGENT.” (2017).

[9] N. Kumaran, Ramya H, V. Apoorva. “Chef

Automation on Google Cloud” International

Journal of Scientific & Technology, Volume 10

(2022): 1491-1498

[10] Arun Kumar K, Vinutha B S, Vinayaditya B

V. “Real time monitoring of servers with

Prometheus and Grafana for high availability”.

International Research Journal of Engineering

and Technology, Volume 6, Issue 4 (2019): 5093-

5096

[11] Adamyaa D N, Dinesh Babu S, Priya D,

Soumya A. “Building a monitoring framework

for a distributed cloud application using

promethus and chef”. International Journal of

Scientific & Technology Volume 10 (2022):

3164-3168

[12] Granizo, Cristhy Jiménez, Héctor Allende-

Cid and Ismael Figueroa. “PROMETHEUS:

Procedural Methodology For Developing

Heuristics Of Usability.” IEEE Latin America

Transactions 15 (2017): 541-549.

[13] Raychel M. Benson, Edward Munsell,

Nicholas Bertrand, Michael Baynton, Evan F.

Bollig, and Jeffrey McDonald. 2019. A Multi-

Environment HPC-Scale Puppet Infrastructure

for Compliance and Systems Automation. In

Proceedings of the Practice and Experience in

Advanced Research Computing on Rise of the

Machines (learning) (PEARC '19). Association

for Computing Machinery, New York, NY, USA,

Article 29, 1–8.

https://doi.org/10.1145/3332186.3332240

[14] F. -f. Li, X. -z. Yu and G. Wu, "Design and

Implementation of High Availability Distributed

http://www.ijsrem.com/
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3419635.3419657
https://doi.org/10.1145/3332186.3332240

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 12 | December - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM27798 | Page 9

System Based on Multi-level Heartbeat

Protocol," 2009 IITA International Conference

on Control, Automation and Systems

Engineering (case 2009), Zhangjiajie, China,

2009, pp. 83-87, doi: 10.1109/CASE.2009.115.

[15] Johnsson, BA, Nordahl, M & Magnusson, B

2017, 'Evaluating a Dynamic Keep-Alive

Messaging Strategy for Mobile Pervasive

Systems', Procedia Computer Science, vol. 109,

pp. 319-326

[16] Li, Haoran, Chenyang Lu and Christopher D.

Gill. “RT-ZooKeeper: Taming the Recovery

Latency of a Coordination Service.” ACM

Transactions on Embedded Computing Systems

(TECS) 20 (2021): 1 - 22.

[17] EL-Sanosi, Ibrahim and Paul D.

Ezhilchelvan. “Improving Zookeeper Atomic

Broadcast Performance When a Server Quorum

Never Crashes.” EAI Endorsed Trans. Energy

Web 5 (2018): e11.

[18] Verma, A., Pedrosa, L., Korupolu, M.,

Oppenheimer, D., Tune, E. and Wilkes, J., 2015,

April. Large-scale cluster management at Google

with Borg. In Proceedings of the tenth European

conference on computer systems (pp. 1-17).

[19] Amr Ergawy, Boris Magnusson,Device

Discovery for the PalCom Pervasive Middleware

with Eliminated Cross-networks Periodic Heart-

beat Messages,Procedia Computer

Science,Volume 37,2014,Pages 64-71,ISSN

1877-0509,

https://doi.org/10.1016/j.procs.2014.08.013.

[20] Steinau, S., Andrews, K. & Reichert, M.

Coordinating large distributed relational process

structures. Softw Syst Model 20, 1403–1435

(2021). https://doi.org/10.1007/s10270-020-

00835-0

http://www.ijsrem.com/

