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Abstract- This study provides a practical guide to residual 

analysis in ordinary linear regression, a basic statistical 

technique. Explains how to calculate and interpret residuals, 

which play a key role in assessing model validity. The study 

then focuses on the Jarque-Bera test, a diagnostic tool used 

to assess the normality of residuals. Through a step-by-step 

example, we show how to calculate the skewness and 

kurtosis of the residuals, and then calculate the Jarque-Bera 

test statistic. We highlight the importance of this test in 

determining whether residuals obey a normal distribution, 

helping researchers make reliable statistical inferences. This 

practical guide helps readers understand the importance of 

residual analysis in building robust regression models. 
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Introduction: 

In simple linear regression, we examine the relationship 

between two variables: the dependent variable (often called 

"Y") and the independent variable (often called "X"). The 

goal is to find a linear equation that best describes the 

relationship between these variables. 

 

Assumptions: 

1. Linearity: There is a linear relationship between the 

independent variable (X) and the dependent variable (Y). 

2. Independence: The observation values are 

independent of each other. The Y value for one data point 

does not depend on the Y value for any other data point. 

3. Homoscedasticity: The variance of the residuals 

(differences between observed and predicted values of Y) is 

constant at all levels of X. 

4. Normality of Residuals: Residuals follow normal 

distribution. 

Simple Linear Regression Equation: 

The simple linear regression equation is represented as: 

++= XY 10   

Where: 

Y = dependent variable. 

 

X = independent variable. 

 

0  = intercept coefficient 

 

1  = slope coefficient 

 

And   = the error term. 

 

The OLS method is used to estimate the coefficients 0  

and 1  in linear regression model. OLS estimates are 

obtained by minimizing the sum of the squared differences 

between the observed values of Y and the values predicted 

by the regression equation. 

The OLS estimation of 0  and 1  are as follows: 
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Where: 

 

1̂  = estimate of the slope. 

 

0̂  = estimate of the intercept. 

 

n = number of data points. 

 

Here, Xi and Yi are the data points. 

 

X and Y are the means of X and Y, respectively. 

 

Fitted Model: 

Based on OLS estimates, the fitted model represents the 

estimated relationship between the dependent and 

independent variables. This is specified by a simple linear 

regression with estimated coefficients: 

X10
ˆˆŶ  +=  

This equation allows us to forecast the values of the 

dependent variable (Y) for given values of the independent 

variable (X). 
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Residual Analysis 

 

In statistical modeling, the crucial target is to develop 

models that perfectly represent the relationships between 

variables in a given data set. Residual analysis is a 

significant part of this process, as it serves as a tool to assess 

the model's validity and identify possible flaws or areas for 

improvement. 

 

Residuals are the differences between the observed 

values and the predicted values generated by the model. 

These differences are a sign of the inability of the model to 

account for all the variation in the data. For each data point i 

the residual, often denoted ei, can be calculated as: 

iii YYe ˆ−=  

Where: 

ei  = residual for observation i. 

 

Yi  = actual observed value for observation i. 

 

iŶ  = predicted value for observation i based on the 

model. 

Purpose of Residual Analysis 

 

Residual analysis serves multiple important purposes: 

  

A. Assumption Checking: 

The residuals help assess whether the basic assumptions 

of the model are met, including: 

    - Linearity: Residual plots should show a random 

spread around the horizontal line. 

    - Independence of errors: residuals should not exhibit 

autocorrelation or time-dependent patterns. 

    - Homoscedasticity: the variance of the residuals must 

be constant over the range of estimated values. 

     - Normality of Residuals: Residuals must follow a 

normal distribution. 

 

B. Model Specification: 

Residual analysis can identify problems with model 

specification, such as omitted variables or inappropriate 

functional forms. 

 

C. Model Diagnostics: 

Residuals provide diagnostic tools for assessing model 

fit and quality, helping researchers determine whether the 

model adequately captures the underlying data structure. 

 

D. Interpretation and Model Adjustment: 

Interpret the results of residual analysis. If problems are 

identified, make adjustments to the model. This includes 

variable transformations, inclusion of omitted variables, or 

other changes necessary to improve model fit. 

 

 

 

E. Re-Test the Model: 

 After making adjustments to the model, repeat the 

residual analysis to ensure that the model now meets the 

assumptions and provides a better fit to the data. 

Residual analysis is a fundamental part of the model 

building process. This helps ensure that the models are 

reliable and that their results are valid for making inferences 

about relationships between variables. By scrutinizing the 

residuals and fixing any problems found, researchers can 

create models that accurately reflect the underlying data 

generation process, increasing the quality and reliability of 

their statistical analyses. 

Jarque-Bera Test 

 
Certainly, one of the most used tests in residual analysis 

is the Jarque-Bera test, which assesses the normality of 

residuals. This test is named after Carlos Zarque and Anil K. 

Bera, who test the goodness of fit of residuals to a normal 

distribution. This is particularly useful in linear regression 

analysis, where the assumption of normally distributed 

residuals is a basic requirement. The Jarque-Bera test 

assesses whether the residuals deviate significantly from a 

normal distribution. 

 

Purpose of the Jarque-Bera Test: 

 
The main objective of the Jarque-Bera test is to 

determine whether the distribution of residuals in a 

regression model is approximately normal. Deviation from 

normality affects the validity of statistical inferences such as 

hypothesis tests and confidence intervals based on the 

assumption of normally distributed errors. In cases where 

the test indicates that the residuals are not normally 

distributed, it may be necessary to re-evaluate the model or 

consider data transformations. 

 

How the Jarque-Bera Test Works: 

 
The Jarque-Bera test is based on two important statistics, 

skewness and kurtosis of the residuals: 

 

1. Skewness: Measures the skewness of the distribution 

of residuals. A normal distribution has a skewness of 0, 

indicating perfect symmetry. Positive skewness indicates 

that the distribution is skewed to the right, while negative 

skewness indicates that it is skewed to the left. 

2. Kurtosis: measures the "tail" of the distribution of 

residuals. A normal distribution has a kurtosis of 3, which is 

called mesokurtic. Kurtosis greater than 3 indicates heavy 

tails (leptokurtic), while kurtosis less than 3 indicates light 

tails (platykurtic). 

The Jarque-Bera test statistic is calculated as: 
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Where: 

 

JB = Jarque-Bera test statistic. 

 

n = number of observations. 
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S = sample skewness. 

 

K = sample excess kurtosis. 

 

The test statistic is then compared to the chi-square 

distribution with 2 degrees of freedom, which provides the 

critical values for the test. The null and alternative 

hypotheses for testing are as follows: 

 

Null Hypothesis: 

H0: Residuals are distributed as normally. 

 

Alternative hypothesis: 

H1: Residuals are not distributed as normally. 

 

 

 

Interpreting the Jarque-Bera Test: 

 
If the Jarque-Bera test statistic is small and not 

significantly different from the critical values of the chi-

square distribution, the null hypothesis (H0) cannot be 

rejected. This indicates that the residuals are approximately 

normally distributed and the model assumptions are met. 

 If the Jarque-Bera test statistic is large and exceeds the 

critical values of the chi-square distribution, the null 

hypothesis (H0) is rejected. This indicates that the residuals 

do not follow a normal distribution, indicating deviation 

from normality. 

In practice, when the Jarque-Bera test detects 

abnormalities in residuals, further investigation may be 

necessary. Researchers may consider transformations of the 

dependent variable, specify a model, or explore alternative 

statistical methods to account for nonnormality. 

The Jarque-Bera test is a valuable tool for assessing the 

robustness of regression models by verifying the assumption 

of normality of residuals, a key assumption in many 

statistical analyses. 

 

Example: 

Suppose we are conducting a study to examine the 

relationship between the number of hours students spend 

studying (independent variable, X) and their final exam 

grades (dependent variable, Y). He collected data from 10 

students and performed simple linear regression analysis to 

build a predictive model. 

The collected data for 10 students, recording their study 

hours (X) and final exam scores (Y). 

 

 

 

 

 

 

 

 

Student  Study Hours (X)  Exam Score (Y) 

---------------------------------------------------------------- 

1 3 85 

2 4 88 

3 2 78 

4 5 92 

5 6 95 

6 2 77 

7 3 80 

8 4 86 

9 5 90 

10 2 75 

 

Using the regression equation 

++= XY 10   

 Calculate the predicted (fitted) values for Y based on the 

values of X.  

The predicted values ( Ŷ ) are computed as follows: 

 

X10
ˆˆŶ  +=  

 

You've previously conducted regression analysis and 

found the regression coefficients: 

0̂ = 74.0 

 

1̂  = 5.7 

 

Now, calculate the predicted exam scores: 

 

Student  

 Study 

Hours 

(X)  

 Exam 

Score (Y) Predicted Score( iŶ ) 

----------------------------------------------------------------------- 

 

1 

 

3 

 

85 74.0+5.7×3=90.1 

2 4 88 
74.0+5.7×4=95.7 

3 2 78 
74.0+5.7×2=85.4 

4 5 92 
74.0+5.7×5=101.5 

5 6 95 
74.0+5.7×6=107.2 

6 2 77 
74.0+5.7×2=85.4 

7 3 80 
74.0+5.7×3=90.1 

8 4 86 
74.0+5.7×4=95.7 

9 5 90 
74.0+5.7×5=101.5 

10 2 75 
74.0+5.7×2=85.4 

 

Now, calculate the residuals for each student. The 

residual ei for each observation is the difference between the 

actual (observed) exam score and the predicted exam score: 

iii YYe ˆ−=  

For example, the residual for Student 1 is  

85 - 90.1 = -5.1. 
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Continue calculating residuals for all students. 

 

Student  
 Study 

Hours (X)  

 Exam 

Score 

(Y) 

Predicted 

Score( iŶ ) 
        

Residual(ei) 

------------------------------------------------------------------------------- 

1 3 85 90.1 -5.1 

2 4 88 95.7 -7.7 

3 2 78 85.4 -7.4 

4 5 92 101.5 -9.5 

5 6 95 107.2 -12.2 

6 2 77 85.4 -8.4 

7 3 80 90.1 -10.1 

8 4 86 95.7 -9.7 

9 5 90 101.5 -11.5 

10 2 75 85.4 -10.4 

 

These residuals represent the prediction errors for each 

student in your dataset. They indicate how far off your 

model's predictions were from the actual exam scores. 

Now, we'll apply the Jarque-Bera test to these residuals. 

 

We need to calculate the skewness and kurtosis of the 

residuals. Skewness measures the asymmetry of a 

distribution and kurtosis measures the “tailedness”. 

 

Calculate Skewness (S) for Residuals: 
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   Where  

ei = the residual for each observation  

 

 ie  = the mean of the residuals,  

 

And SD = the standard deviation of the residuals. 

 

Calculate Kurtosis (K) for Residuals: 
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From the data, n=10, ie ≈ -8.4, SD≈ 10.35, S ≈ 0.88 and 

K≈2.32 

 

 

 

 

The Jarque-Bera test statistic is calculated as: 
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JB= 1.570833 

 

To determine whether the residuals follow a normal 

distribution, we compare the Jarque-Bera (JB) test statistic 

with the critical values. Critical values depend on the chosen 

significance level (alpha). 

 

In general, for a 5% significance level (alpha = 0.05) and 

a sample size of 10, the critical value is approximately 5.99. 

 

If JB is less than the critical value, you do not have 

enough evidence to reject the null hypothesis that the 

residuals follow a normal distribution. If JB is greater than 

the critical value, you may have evidence to suggest that the 

residuals do not follow a normal distribution. 

Here, we observe that the JB is less than the critical 

value; you do not have enough evidence to reject the null 

hypothesis and we conclude that the residuals follow a 

normal distribution.  
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