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Abstract - This paper deals with the effects of the oblateness 

of the Earth on the resonant motion of a geocentric satellite. 

Three resonances, 1:1, 2:1, and 3:1, occur due to the 

perturbation of the oblateness of the Earth.  
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1. Introduction 

Problems of resonance play an important role in solar 

dynamics while solving the equations of motion. Resonance may 

be manifested as the appearance of small divisors in the solution 

of the equation of motion of the satellite. Orbital resonance of 

Earth satellite concerning lunisolar gravity and direct solar 

radiation pressure, with particular reference to those resonances, 

the occurrence of which is dependent only on the satellite’s 

orbital inclination, was studied by Hughes in (1980). 

Bhatnagar et al. (1986) examined the motion of a satellite by 

taking gravitational forces of the Moon, Earth and the Sun (with 

radiation pressure). Quarles et al. (2012) have studied the 

resonances for the coplanar Circular Restricted Three-body 

Problem for the mass ratio between 0.10 and 0.15 and used the 

method of maximum Lyapunov exponent to locate the 

resonances. They showed that for a high value of resonance, 

orbital stability is ensured where single resonance is present.  

Sushil et al. (2013) worked on resonance in a geocentric 

satellite due to the Earth’s equatorial ellipticity. Kaur et al. 

(2018) studied resonance in the motion of a geocentric satellite 

due to PR-drag. Furthermore, they have discussed the resonance 

in the motion of a geocentric satellite due to the combined 

effects of PR drag and equatorial ellipticity of the Earth. 

Presently, we have proposed to study the effect of the oblateness 

of the Earth on the resonant motion of a geocentric satellite. 

2. Equations of Motion of a Geocentric Satellite 

Considering the inertial frame ( )0 0,E X Y Z  with the oblate 

Earth E  at the origin and a rotating frame ( ),E XYZ  relative to 

the inertial one, where 
0EX  passes through the vernal equinox 

 . The oblateness of the Earth is given by a eA I I= − , where 

aI  is the moment of inertia of the oblate Earth about its polar 

axis and eI  is the moment of inertia of the oblate Earth about its 

equatorial axis. 

Let 
0 0
ˆ ˆ,i j  and ˆ ˆ,i j  be the unit vectors along the axes of the 

inertial frame and the rotating frame, with a common unit vector 

k̂  along the common vertical z-axis EZ (not seen in the figure). 

Let EP r=  be the position vector of the satellite P, SE =   the 

displacement of the Sun S relative to the Earth E and SP R= . If 

,M m  and   be the masses of the Sun, Earth and the satellite, 

respectively, then their mutual gravitational forces are given by 
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      (McCuskey 1967)               (1) 

 
Fig 1: Ecliptic is the orbit of the Sun ‘S’ relative to the inertial frame 

( )0 0EX Y Z  and rotating frame ( ),E XYZ  with oblate Earth ‘E’ at 

the origin.  

Let at any time ,t   be angular velocity of the rotating frame 

relative to the inertial frame with the Earth at the origin, then 

the velocity of the satellite relative to the inertial frame is given 

by 

dr r
r

dt t



 = + 


                                                               (2) 

The acceleration of the satellite in the rotating frame can be 

written as 
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If î be the unit vector along the direction of the satellite, 

then ˆr ri=    and the equation of motion of the satellite in a 

rotating frame is reduced to 
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Let α be the angle of direction of the satellite with the 

direction of the vernal equinox, then k =  where,   is the 

angular velocity of the satellite relative to the Earth. Thus, 

Equation (4) is reduced to 
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In the triangle EPS, EP SE SP r R+ =  + =  
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If ̂  be the unit vector along SE =  and   be the angle of 

the direction of the sun with the direction of the vernal equinox 

  then 
0 0
ˆˆ cos sini j  = + . 

Thus 
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Introducing Equation (7) in Equation (6), one has 
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                   (8)                                                                        

Taking the scalar product of î  with Equations (4) and (8), 

and comparing the results, one can find the first equation of 

motion of the geocentric satellite in polar form as   
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Again, taking a scalar product of ĵ  with Equations (4) and 

(8), and comparing the results, one can find the second equation 

of motion of the geocentric satellite in polar form as  
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Equations (9) and (10) are not integrable, so we replace r 

and  by their steady state value 0r  and 0  by the 

perturbation technique, which can be introduced in Equations 

(9) and (10). 
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Since in the central orbit  
2r  = constant = h (say) and 

1/r u=  
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Now, putting the value of 
2

2

d r

dt
 in Equation (11), we get 
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This is the perturbed equation of motion due to the oblateness of 

the Earth. 

Now, we take R r= +  
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Neglecting higher-order terms 
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From Equation (12), 
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Using Equation (14), we get 
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This is a quadratic equation in r


 so here r  can be derived 

from Equation (15), but resonance can’t be found from this 

equation. 

 

 

3. Resonance in the Motion of a Geocentric 

Satellite of the Oblate Earth 

The resonances can be obtained from the perturbed Equation 

(13) only. The unperturbed equation of motion is 
2
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Let us consider 
0 ( )t nt say  − = =  where n is the 

frequency of the satellite. Since eccentricity 1e   hence,
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Collaborating Equations (13), (16) and (17), we get 
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  where, 
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Thus, the complementary function of Equation (18) is given 

by 
1 1. cos( ) where ,C F K nt K= −  are constants. 
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The solution of Equation (18) is given by u = C.F. + P.I. 
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On vanishing the denominator of any term of Equation (19), we 

get some points at which motion becomes indeterminate, and 

hence, resonances occur at these points. Thus, the resonances 

occur at the points  , 2  and 3n n n  = = = . Thus, the 

resonances 1:1, 2 :1  and 3:1   occur due to the oblateness of the 

Earth.  

4. Conclusion 

This manuscript is a collection of three sections, excluding 

references. The first section encompasses all important previous 

research works on geocentric satellites and their applications in 

various branches of space science. In the second, the equations 

of motion of a geocentric satellite have been derived in polar 

form under the gravitational field of the Sun and the oblate 

Earth. In the third section, resonant points have been 

investigated by making zero the denominator of each term of 

the solution of the equation of motion of the geocentric satellite. 

It is to be noted that three resonances 1:1,2:1,3:1, occur due to 

the oblateness of the Earth.   
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