
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43072 | Page 1

Restructuring Software Architecture: Moving From Monoliths to

Microservices

Darshana Dadaji Ahire

1darshuahire@gmail.com, Student of D. Y. Patil College of Engineering Akurdi, Pune – 411044, india

Internal Guide Dr. Dipalee D. Rane

---***---

Abstract - The shift from monolithic software

architectures to microservices has become a key approach

in contemporary software development, offering

improvements in scalability, flexibility, and

maintainability. This transformation addresses the

limitations of tightly integrated systems, such as reduced

agility and challenges in scaling individual components.

In contrast, microservices advocate for a decentralized

model, where independent services communicate via

lightweight protocols, such as REST or message queues.

This paper explores the key reasons for adopting

microservices, including the ability to support rapid

deployment cycles, enhance fault isolation, and optimize

resource utilization. It delves into the core principles of

microservices architecture, such as domain-driven

design, bounded contexts, and continuous delivery. The

paper also addresses the technical and organizational

hurdles of migrating to microservices, including issues

like data consistency, greater operational complexity, and

the need for comprehensive monitoring and logging. It

presents practical approaches for transitioning from a

monolithic to a microservices-based system, such as

incremental decomposition, implementing API gateways,

and utilizing containerization technologies. The

conclusion emphasizes the importance of aligning

organizational structures with the new architectural

approach, as highlighted by Conway’s Law, to fully

realize the advantages of this transformation.

1. INTRODUCTION

In the fast-evolving software development landscape,

organizations are increasingly seeking to update their

software architectures to stay ahead in the market. A

major trend in software architecture is the transition from

monolithic to microservices-based systems. This project

investigates the process of migrating from monolithic

architecture to microservices, using a practical example

that includes User Service, Customer Service, and

Product Service.

Monolithic Architecture

In a monolithic architecture, all the components of an

application are closely integrated and packaged together

as a single unit. As a result, the entire system must be

redeployed whenever changes are made to any part of the

application. Let's take an example of a monolithic e-

commerce platform where functionalities related to users,

customers, and products are tightly interconnected.

Example:

• User Service: Manages user authentication, registration,

and profile management.

• Customer Service: Oversees customer-related data, such

as addresses, payment methods, and order history.

• Product Service: Handles the product catalog, including

tasks like adding new products, updating product details,

and managing inventory.

In this monolithic setup, all three services are tightly

coupled, which makes it challenging to scale individual

components independently.

Microservices Architecture

In a microservices architecture, the application is divided

into smaller, self-contained services that can be

developed, deployed, and scaled independently. Each

service focuses on a specific business function and

communicates with others through APIs, usually over

HTTP [3].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43072 | Page 2

For the e-commerce example, we can split the User

Service, Customer Service, and Product Service into

separate microservices, each having its own database.

Example Breakdown:

• User Service: Handles user authentication, registration,

and profile management, interacting with its dedicated

user database.

• Customer Service: Manages customer data, including

addresses and payment methods, and operates

independently from the User Service. It communicates

with the User Service via an API when necessary.

• Product Service: Manages product information,

including adding new products, updating product details,

and controlling inventory, with its own dedicated

database.

With this architecture, each service can be scaled

independently to accommodate increased demand in its

specific area, without impacting other services.

2. LITERATURE SURVEY

1. A Survey on Microservices Decomposition, Smith et

al. 2020

Microservices architecture has become a popular

approach for modernizing legacy applications, with many

organizations adopting it. However, while there is

significant research on the migration process, there

remains a gap in the understanding of the principles that

should guide the implementation of a microservices

architecture. This study offers a comprehensive survey

that gathers existing literature exploring the core

principles behind object-oriented approaches and their

connection to both monolithic and microservices

architectures.

Our research includes an examination of both monolithic

and microservices architectures, with a focus on the

design patterns and principles used within microservices.

We contribute by presenting a list of patterns commonly

applied in microservices architecture and comparing the

principles advocated by experts in microservices

decomposition, such as Martin Fowler and Sam Neuman,

with the foundational ideas of David Parnas, who

introduced the Principle of Information Hiding and

discussed modularization as a way to enhance flexibility

and understanding of a system [2].

Furthermore, we summarize the advantages and

disadvantages of both monolithic and microservices

architectures based on our literature review, providing a

useful reference for researchers in academia and industry.

Lastly, we highlight the current trends in microservices

architectures.

2. From Monolith to Microservices: A Systematic

Approach, Johnson et al.,2019

Although the Microservices architectural style has gained

significant attention in academic literature, there is

limited guidance on how to refactor legacy applications.

This is an important area of study due to the high costs

and efforts involved in the refactoring process, which also

affects broader aspects such as organizational processes

(e.g., DevOps) and team structures. Software architects

facing this challenge must carefully select an appropriate

strategy and refactoring technique. One crucial aspect of

this decision is determining the appropriate level of

service granularity to fully leverage the benefits of a

Microservices architecture [7].

This study begins by exploring the concept of

architectural refactoring and then compares 10 different

refactoring approaches proposed in recent academic

literature. These approaches are categorized based on

their underlying decomposition techniques and are

presented in a visual decision guide for quick reference.

The review identifies a variety of strategies for

decomposing a monolithic application into independent

services. However, with one exception, most of these

approaches are only suitable under specific

circumstances. Further challenges include the substantial

amount of input data required by some methods and the

limited or experimental tool support available [6].

3. Benchmarks and performance metrics for assessing

the migration to microservice-based architectures,

Nichlas Bjørnda

The migration from monolithic systems to microservice-

based architectures has gained significant popularity over

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43072 | Page 3

the past decade. However, the benefits of such a

migration have not been thoroughly explored in the

literature, to the best of the authors' knowledge. This

paper aims to introduce a methodology and performance

indicators that can help assess whether migrating from a

monolithic to a microservice-based architecture is

advantageous.

A systematic review was conducted to identify the most

relevant performance metrics in existing literature, which

was then validated through a survey with industry

professionals. Subsequently, a set of metrics, including

latency, throughput, scalability, CPU usage, memory

usage, and network utilization, was used in two

experiments to compare monolithic and microservice

versions of the same system. The findings presented in

this paper contribute to the body of knowledge on

benchmarking various software architectures.

Additionally, this study demonstrates how the identified

metrics can be used to more accurately evaluate both

monolithic and microservice-based systems [8].

3. SYSTEM ARCHITECTURE

Fig Architecture

A microservices architecture is composed of a collection

of small, independent services that operate

autonomously. Each service is designed to be self-

contained, focusing on delivering a specific business

function within a clearly defined bounded context. A

bounded context defines a logical boundary within an

organization, indicating where a specific domain model

is relevant.

Microservices are built to be small, independent, and

loosely coupled. A small development team can

efficiently create and manage each service, with each

service having its own distinct codebase. This design

enables services to be deployed independently, allowing

updates to a service without requiring a complete rebuild

or redeployment of the entire application. Each service

manages its own data or external state, unlike traditional

architectures that rely on a centralized data layer for

persistence. Communication between services happens

through well-defined APIs, ensuring that the internal

workings of each service remain hidden from others. This

architecture also supports polyglot programming,

allowing services to use different technologies, libraries,

or frameworks [4][,5].

The management and orchestration of these services are

handled by a component responsible for placing services

on appropriate nodes, detecting failures, and rebalancing

services when needed. This management is often

facilitated by established technologies, such as

Kubernetes, rather than being custom-built.

The API Gateway serves as the primary entry point for

clients. Rather than directly interacting with individual

services, clients communicate with the API Gateway,

which routes the requests to the appropriate backend

services [9].

4. ALGORITHMS

Algorithms for three microservices.

1. Customer Service: Manages customer details

(registration, login, profile management, etc.)

2. Product Service: Manages product catalog

(listing, searching, updating, etc.)

3. User Service: Manages user-related

functionalities (user authentication, roles, permissions,

etc.)

Each of these services will have its own set of algorithms,

usually exposed via REST APIs, and these microservices

can interact with each other in a decoupled manner. The

focus of each algorithm is to define the high-level logic

for handling typical business processes in each service.

4.1. Customer Service Algorithm

Description: This service handles customer data,

including customer registration, profile management, and

fetching customer information.

Algorithm for Customer Registration

1.Input: Customer information (e.g., name, email,

password, address).

2.Check if Email Already Exists:

Query the database to check if the customer email already

exists. If an email exists, return an error response (400

Bad Request) with a message saying, "Email already in

use".

3.Validate Customer Data:

Validate email format. Ensure the password is strong

enough (minimum length, contains uppercase, special

characters, etc.). Ensure required fields are not empty.

4.Hash the Password:

Use a hashing algorithm (e.g., bcrypt) to securely hash the

password.

5.Store Customer Data:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43072 | Page 4

Insert the customer details (name, email, hashed

password, address) into the database. Generate a unique

customer ID and store it.

6.Send Welcome Email (Optional):

Send a confirmation/welcome email to the customer.

7.Output: Return a success response with status 201

Created and a message "Customer registered

successfully".

4.2 Product Service Algorithm

Description: This service handles product listings,

adding, updating, and deleting products from the catalog.

Algorithm for Adding a Product

1.Input: Product details (name, description, price, stock,

etc.).

2 Validate Product Data:

Ensure that the product name and price are valid. Ensure

that the required fields (name, price, description) are not

empty.

3.Add Product to Database:

Insert the product details into the product catalog

database.

4.Output: Return a success response (201 Created) with

the message "Product added successfully".

Algorithm for Fetching Products

1.Input: Optional search criteria (e.g., product name,

category).

2.Search Products:

If search criteria are provided, query the product database

for products matching the criteria (e.g., by name or

category). If no search criteria are provided, return all

products.

3.Output: Return to a list of products.

4.3. User Service Algorithm

Description: This service handles user authentication,

authorization, and management of user roles.

Algorithm for User Login

1.Input: Username/email and password.

2.Check User Credentials:

Query the database to find a user with the provided

username/email. If the user is found, compare the

provided password with the stored hashed password. If

credentials are incorrect, return an error response (401

Unauthorized).

3.Generate Authentication Token:

If login is successful, generate an authentication token

(JWT, session token) for the user.

4.Output: Return the token in the response (200 OK).

These are the basic algorithms that could be implemented

within the respective microservices. In a production

environment, these services would be designed to handle

security, scalability, and fault tolerance, and could be

enhanced with features such as rate limiting, logging, and

more sophisticated error handling.

 5. CONCLUSION

Defining the feature scope in microservices is crucial for

the success of microservices architecture. It ensures that

each service remains focused, manageable, and aligned

with business goals. By following the principles outlined

above, teams can effectively design and implement

microservices that provide robust and scalable

functionalities. Microservice components collectively

support the principles of microservices architecture,

promoting independence, scalability, resilience, and

agility in application development and deployment

7. REFERENCES

[1] N. Dragoni et al., “Microservices: Yesterday, today,

and tomorrow,” in Present and Ulterior Software

Engineering, M. Mazzara and B. Meyer, Eds., Cham,

Switzerland: Springer, 2017, pp. 195–216. [Online].

Available: https://doi.org/10.1007/978--3-319-67425-

4_12

[2] M. Kalske, N. Mäkitalo, and T. Mikkonen,

“Challenges when moving from monolith to microservice

architecture,” in Proc. Int. Conf. Web Eng., I. Garrigós

and M. Wimmer, Eds., Cham, Switzerland: Springer,

2018, pp. 32–47. [Online]. Available:

https://doi.org/10.1007/978--3-319-74433-9_3

[3] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan,

“The monolith strikes back: Why Istio migrated from

microservices to a monolithic architecture,” IEEE Softw.,

vol. 38, no. 5, pp. 17–22, Sep./Oct. 2021.

[Online]. Available:

https://doi.org/10.1109/MS.2021.3080335

[4] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A.

Tamburri, and T. Lynn, “Microservices migration

patterns,” Softw.: Pract. Experience, vol. 48, no. 11, pp.

2019–2042, 2018. [Online]. Available: https://doi.org/10.

1002/spe.2608

[5] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes,

motivations, and issues for migrating to microservices

http://www.ijsrem.com/
https://doi.org/10.1007/978--3-

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM43072 | Page 5

architectures: An empirical investigation,” IEEE Cloud

Comput., vol. 4, no. 5, pp. 22–32, Sep./Oct. 2017.

[Online]. Available:

https://doi.org/10.1109/MCC.2017.4250931

[6] M. Ahmadvand and A. Ibrahim, “Requirements

reconciliation for scalable and secure microservice

(de)composition,” in Proc. IEEE 24th Int. Requirements

Eng. Conf. Workshops, Los Alamitos, CA, USA, 2016,

pp. 68–73. [Online]. Available:

https://doi.ieeecomputersociety.org/10.

1109/REW.2016.026

[7] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi,

“From monolithic systems to microservices: An

assessment framework,” Inf. Softw. Technol., vol. 137,

2021, Art. no. 106600. [Online]. Available:

https://doi.org/10. 1016/j.infsof.2021.106600

[8] P.Clarke,R.V.O’Connor, and B. Leavy, “A

complexity theory viewpoint on the software

development process and situational context,” in Proc.

Int. Conf. Softw. Syst. Process, New York, NY, USA,

2016, pp. 86–90.

[Online]. Available:

https://doi.org/10.1145/2904354.2904369

[9] O. Zimmermann, “Microservices tenets,” Comput.

Sci. Res. Develop., vol. 32, no. 3, pp. 301–310, Jul. 2017.

[Online]. Available: https://doi. org/10.1007/s00450--

016-0337-0

[10] S. Newman, Building Microservices, 1st ed.

Sebastopol, CA, USA: O’Reilly Media, Inc., 2015.

http://www.ijsrem.com/
https://doi.ieeecomputersociety.org/10
https://doi.org/10
https://doi.org/10.1145/2904354.2904369
https://doi/

