
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Retrieval-Augmented Generation for Semantic Querying of PDF Documents

Using Open-Source Language Models

Ansh Bharghava

Dept. of Computer Science and

Engineering

Sir M. Visvesvaraya Institute of

Technology

Bengaluru, Karnataka

Arunita Sahu

Dept. of Computer Science and

Engineering

Sir M. Visvesvaraya Institute of

Technology

Bengaluru, Karnataka

Brinda B V

Dept. of Computer Science and

Engineering

Sir M. Visvesvaraya Institute of

Technology

Bengaluru, Karnataka

Nandini Kumari

Dept. of Computer Science and

Engineering

Sir M. Visvesvaraya Institute of

Technology

Bengaluru, Karnataka

Mrs. Itishree Barik

Dept. of Computer Science and

Engineering

Sir M. Visvesvaraya Institute of

Technology

Bengaluru, Karnataka

Abstract — Due to their dependence on static, pre-trained knowledge, large language models (LLMs) frequently experience hallucination,

producing outputs that appear confident but are factually incorrect. This restriction is lessened by retrieval-augmented generation (RAG),

which grounds responses in outside context. A document-based RAG system that uses the open-source reasoning model DeepSeek and is

locally deployed using Ollama is presented in this paper. A Chroma vector database is used to store the PDF documents that users upload

after they have been parsed, segmented, and embedded using LangChain. When a query is received, the system uses DeepSeek to produce

grounded responses and retrieve semantically relevant content. The system may optionally call the web-based search API Tavily if no

appropriate context is found. Streamlit, which provides an easy-to-use interface for document upload, parameter tuning, and chat

interaction, is used to deploy the application. The system enhances reliability and decreases hallucinations in knowledge-intensive tasks by

integrating contextual retrieval, local inference, and optional fallback.

Keywords — LLMs, Hallucination, RAG, DeepSeek, Ollama, Local Deployment, Vector Database.

I. INTRODUCTION

Large Language Models (LLMs) have remarkable capacity for
natural language understanding and generation. But their reliance
on static pre-trained corpora leads to a terrible flaw:
hallucination. It is a phenomenon of generating coherent yet
factually incorrect or unverifiable text. In high-stakes domains
like law, medicine, and scholarship, such mistakes can
undermine trust and decrease value.

Retrieval-Augmented Generation (RAG) solves this problem by
augmenting large language models (LLMs) with dynamic access
to external knowledge at runtime. Rather than depending solely
on internal parameters, RAG models fetch relevant documents
from a knowledge base at runtime and generate their response
based on this contextual information. Hallucination is reduced,
fact accuracy is improved, and domain adaptation is enabled.

In this paper, we use a local RAG pipeline that integrates open-
source components: DeepSeek for reasoning, Ollama for
optimized model serving, LangChain for orchestration, and
Chroma as a vector store. Users can upload PDFs, which are
parsed, chunked, and added to a searchable vector database.
When a query is received, the system retrieves semantically
similar content and sends it to the LLM for the grounding of
responses. The system also has Tavily, a real-time web search
API, for use as a fallback in situations where there is no internal
context of relevance.

The system is implemented via a Streamlit interface to enable
easy interaction, parameter adjustment (i.e., number of retrievals
and threshold for similarity), and stored chat history. This renders
the tool appropriate for knowledge-intensive tasks where
contextual correctness and responsiveness take centre stage.

II. RELATED WORKS

A. Overview of existing solutions

The following research studies and advancements in Retrieval-
Augmented Generation (RAG) systems were reviewed to
understand various methods and technologies aimed at
improving large language models (LLMs) and mitigating
hallucinations. These studies highlight different strategies for
integrating external knowledge into generative models.

• Sonia Vakayil, D. Sujitha Juliet et al. (2024) in “RAG-Based
LLM Chatbot Using Llama-2” employed Retrieval-Augmented
Generation (RAG) with the Llama-2 model to build an
empathetic chatbot for sexual harassment victims, combining
document retrieval with LLM generation for accurate and
sensitive responses.

• Oscar Cederlund, Sadi Alawadi et al. (2024) in “LLMRAG:
An Optimized Digital Support Service using LLM and Retrieval-
Augmented Generation” applied RAG to automate solution
suggestions in an IT service desk, integrating LLMs with ticket-
specific retrieval to assist technicians, with 38.4% of generated
solutions being retained during a two-week trial.

• Büşra Tural et al. (2024) in “Retrieval-Augmented
Generation (RAG) and LLM Integration” explored the
integration of RAG architecture with LLMs to overcome the
limitations of traditional keyword-based Information Retrieval.
By enabling LLMs to dynamically retrieve semantically relevant
information from external sources, their approach aimed to
generate more accurate and context-aware responses for
complex, information-heavy tasks.

http://www.ijsrem.com/
mailto:1nt21cs007.abhijith@nmit.acBrinda
mailto:1nt21cs007.abhijith@nmit.acBrinda

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

• Yunfan Gao et al. (2024) in “Retrieval-Augmented
Generation for Large Language Models: A Survey” provided a
comprehensive review of RAG systems, categorizing them into
Naive, Advanced, and Modular paradigms. The study dissected
the RAG pipeline into retrieval, generation, and augmentation
components, discussing innovative techniques in each. It also
proposed evaluation benchmarks and addressed ongoing
challenges like hallucinations and domain adaptation.

• Omrani et al. (2025) in "Hybrid Retrieval-Augmented
Generation Approach for LLMs Query Response Enhancement"
introduced a novel hybrid RAG framework. This framework
combines Sentence-Window and Parent-Child methodologies
with a new re-ranking mechanism to improve the query response
capabilities of LLMs. The authors demonstrated through rigorous
evaluation against benchmark datasets that their hybrid model
outperforms existing state-of-the-art RAG techniques in terms of
accuracy, relevance, and faithfulness to the source material. 1 The
study highlights the potential of hybrid RAG models for
enhancing the interaction between LLMs and external
knowledge.

• M. T. Huang et al. (2024) in “Scalable Retrieval-Augmented
Generation Systems for Open-Domain Question Answering” [4]
proposed an open-domain Q&A system using RAG, with
embedded documents stored in vector databases and queried for
semantically relevant content. Their system is designed to scale
for large-scale datasets and improve response accuracy.

• A. T. Nguyen et al. (2024) in “Fine-Tuning Retrieval-
Augmented Models with Real-Time Document Embedding”
focused on fine-tuning models to integrate real-time document
embeddings. Their approach combined traditional retrieval
methods with deep learning models for embedding,
demonstrating how fine-tuning improves document relevance in
RAG applications.

• R. S. Patel et al. (2023) in “Improving Retrieval-Augmented
Generation Models for Long-Form Text Generation”
demonstrated a retrieval approach aimed at long-form text
generation tasks. Their system showed promising results in
extending the context of document retrieval to better generate
comprehensive and contextually grounded responses.

B. Gaps in existing solutions

• Inadequate Adaptation to Complex Knowledge

Structures and Long-Form Text Generation and obsolete

knowledge: Research often presents complex, multi-document

structures. Current RAG methods struggle to fully utilize

relationships within these structures for coherent, detailed long-

form text generation.

• Absence of Specialized Benchmarks for Niche

Applications: Existing RAG benchmarks are too general, as

highlighted by Gao et al. (2023). Specialized evaluation

frameworks are needed for niche scientific and technical tasks

like academic QA and summarization.

• Potential for Language and Contextual Bias: While the

presented papers primarily focus on English language

applications, the broader issue of language and contextual bias

in RAG systems warrants consideration. Ensuring inclusivity for

non-English and low-resource languages remains a challenge for

the widespread adoption of these technologies.

• Limited Explainability in Retrieval and Generation

Processes: Understanding why specific documents are retrieved

and how the final response is generated remains a challenge in

many RAG implementations. Enhancing the transparency of

these processes would improve user trust and facilitate system

refinement.

• Insufficient User Customization Capabilities:

Providing end-users, particularly those without deep technical

knowledge, with greater control over the retrieval scope,

document sets, and response style is an area for improvement in

current RAG-based LLM solutions.

• Embedding Quality and Retrieval Relevance: The

effectiveness of RAG systems heavily relies on the quality of

document embeddings. Poor embedding quality can lead to the

retrieval of irrelevant information, negatively impacting the

accuracy of the generated responses.

III. METHODOLOGY

 The goal of the project is to create a Retrieval-Augmented

Generation (RAG) system that enriches the functionality of large

language models (LLMs) by blending external document-based

knowledge. The system is created to be run locally to provide

context-specific and accurate replies to user questions by

retrieving pertinent information from uploaded PDFs and

passing it through an open-source LLM. The system also

includes a fallback module to retrieve live web results in case

there is no local content.

A. System Design and Architecture

The methodology begins with designing the overall architecture
of the RAG pipeline, with individual modules managing
document processing, embedding, retrieval, model inference, and
user interaction. The system is modular and designed to allow
flexibility, scalability, and transparency in both internal
processing and user interaction. Following are the core
components of the system:

• PDF Loader (PyPDFLoader): Reads and splits the uploaded
document into smaller, manageable chunks for downstream
semantic processing.

• Text Splitter (RecursiveCharacterTextSplitter): Segments the
document into overlapping text chunks, preserving semantic
coherence across splits and enhancing retrieval quality.

• Embedding Model (OllamaEmbeddings): Converts text
chunks into dense vector representations using an LLM running
locally via Ollama. This facilitates high-dimensional semantic
search.

• Vector Store (Chroma): Acts as a persistent memory layer
that stores the generated embeddings and supports fast,
similarity-based retrieval using cosine distance metrics.

• Retriever: Searches the vector store to fetch the top-k most
relevant text chunks corresponding to the user's query.

• Tavily Retriever: A fallback mechanism triggered when the
local retriever fails to meet the similarity threshold, enabling real-
time web search and reducing dependence on local data alone.

• LLM (DeepSeek via Ollama): Processes both the user query
and the retrieved context to generate a concise, context-aware
response. The model runs locally, ensuring privacy and control
over inference.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

• LangChain: Orchestrates the end-to-end pipeline by
managing prompt construction, conditional retrieval logic, and
response formatting. It ensures seamless interaction between the
modules.

• Streamlit Frontend: Offers an intuitive user interface for
uploading documents, entering queries, visualizing system
responses, and adjusting key parameters such as similarity
thresholds or number of returned documents.

B. Development Phases

Phase 1: Document Ingestion and Preprocessing

The system starts with the local ingestion of PDF documents

provided by the user. Using PyPDFLoader from LangChain, the

textual content is extracted from each document. To maintain

contextual integrity, the text is segmented into overlapping

chunks with RecursiveCharacterTextSplitter. This method

ensures that semantically connected information remains linked

across chunks, improving the quality of later retrieval.

Phase 2: Embedding Generation and Vector Storage

Each text chunk is transformed into a high-dimensional vector

representation using the OllamaEmbeddings model, which

operates locally. These vectors are stored in a persistent Chroma

vector database. This phase forms the backbone of semantic

search functionality, enabling efficient and accurate retrieval of

relevant content when a user query is issued.

Phase 3: Query-Based Retrieval

When a user submits a query, the system uses a retriever to

perform a similarity search across the stored embeddings in the

Chroma vector database. The retriever identifies the top-k most

semantically similar text chunks based on cosine similarity. If

the similarity score of all retrieved chunks falls below a

predefined threshold, the system initiates a fallback mechanism

that calls the Tavily web search API. This ensures access to up-

to-date external knowledge when local data is insufficient.

Phase 4: LLM Inference and Answer Generation

After retrieving the relevant chunks, a prompt is dynamically

formatted by inserting the retrieved context and the user query

into a predefined template. This prompt is passed to the locally

running DeepSeek language model via Ollama. The model then

generates a grounded, context-aware response. Prompt length

and token usage are managed to avoid truncation or

hallucination, and the output is structured for clarity and

relevance.

Phase 5: User Interface and Customization

The entire system is deployed via a Streamlit application that

provides a clean and interactive front end. Users can upload PDF

files, enter queries, and view generated responses in real-time.

Additionally, the interface includes controls to adjust retrieval

parameters such as top-k values and similarity thresholds, toggle

between local and external search modes, and view the source

context and system logs for transparency and debugging.

C. Performance Evaluation

The system's effectiveness was evaluated based on the

following criteria:

• Response Accuracy: Measured by human validation

against source documents for factual correctness.

• Relevance Score: Calculated using cosine similarity

between the query and retrieved context chunks.

• Latency: Measured in milliseconds from query input

to answer generation, including fallback time when Tavily is

triggered.

Metrics were collected under controlled conditions using a

curated set of standardized PDF documents containing varied

technical and academic content. Evaluation was conducted

across three configurations: with only local retrieval, with

fallback search enabled, and using DeepSeek versus alternative

models for comparative purposes.

D. System Implementation

The final system was deployed as a local web application using

Streamlit, integrating all core RAG components seamlessly.

Key features included:

• PDF upload and real-time parsing interface

• Chat-style interaction with adjustable retrieval parameters

(Top-K, similarity threshold)

• Toggle for enabling or disabling web fallback (Tavily API)

• Context display for transparency in answer generation

• Downloadable chat history for user reference

The backend was made modular for better scalability and

testability, with all crucial processes—i.e., loading, embedding,

vector storage, retrieval, and generation—kept as standalone,

callable modules. The application was cross-platform packaged

for deployment, with comprehensive documentation for

installation, upkeep, and parameter tuning.

IV. RESULTS AND DISCUSSIONS

To ensure the performance of the proposed Retrieval-

Augmented Generation (RAG) system, we thoroughly assessed

it on a wide variety of academic and technical PDFs. The system

was evaluated for its ability to generate semantically correct and

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

contextually relevant responses using locally cached document

embeddings as well as external fallback configurations.

A. Relevance and Accuracy of Response

The system always returned correct, semantically grounded

responses when there was applicable content present in the

documents that were uploaded. DeepSeek, accessed locally

through Ollama, excelled at long-context reasoning and

generation of fact responses. In situations where document

context was lacking, Tavily's web search fallback could insert

extra grounding with good relevance.

B. User Experience

Streamlit interface facilitated effortless document uploading,

parameter adjustment, and real-time chat-based conversation.

The inclusion of chat history, top-k retrieval controls, and

context visibility contributed to a user-friendly experience. The

debug visibility feature promoted system transparency further.

C. Limitations

One of the major downsides of the system is the CPU-based high

latency of execution, which can have negative impacts on

responsiveness, particularly in time-sensitive applications. In

addition, long or complex queries can sometimes be truncated

because of prompt length limits, thus affecting completeness of

responses in some instances. While the web fallback feature via

Tavily enhances coverage, it adds infrequent response time and

accuracy variability, especially in cases where API rate limits

are hit or when network connectivity is poor.

D. Future Enhancements

To further optimize system performance and user interaction,

some future extensions are suggested. Utilization of the model

on GPU-enabled infrastructure, or compatibility with other

optimized inference engines like ONNX Runtime or TensorRT,

would have a significant impact on reducing latency and

increasing throughput. Support for multi-document querying

and user sessions persistence would improve scalability and

interactivity. Fine-tuning the DeepSeek model on domain-

specific corpora can further improve response accuracy in

domain-specific use cases. Additionally, the inclusion of user

feedback loops and confidence scoring in replies can enhance

trust and transparency in practical applications.

REFERENCES

[1] S. Vakayil, D. S. Juliet, Anitha. J, and S. Vakayil, “RAG-Based LLM
Chatbot Using Llama-2,” 2024 5th International Conference on Intelligent
Computing and Communication (ICICC), pp. 1803-1807, 2024.

[2] O. Cederlund, S. Alawadi, and F. M. Awaysheh, “LLMRAG: An
Optimized Digital Support Service using LLM and Retrieval-Augmented
Generation,” 2024 IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM), pp. 1064-1068, 2024.

[3] B. Tural, Z. Örpek, and Z. Destan, “Retrieval-Augmented Generation
(RAG) and LLM Integration,” 2024 7th International Conference on Computer
Science and Engineering (UBMK), pp. 537-540, 2024.

[4] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang,
and H. Wang, “Retrieval-Augmented Generation for Large Language Models:
A Survey,” arXiv preprint arXiv:2312.10997, 2023.

[5] T. T. Procko and O. Ochoa, “Graph Retrieval-Augmented Generation for
Large Language Models: A Survey,” arXiv preprint arXiv:2310.14253, 2023.

[6] J P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H.
Küttler, M. Lewis, W. Y. Wang, and S. Riedel, "Retrieval-augmented generation
for knowledge-intensive NLP tasks," Advances in Neural Information
Processing Systems, vol. 33, pp. 9459–9474, 2020.

[7] G. Izacard and E. Grave, "Leveraging passage retrieval with generative
models for open domain question answering," arXiv preprint arXiv:2007.01282,
2020.

[8] P. Omrani, A. Hosseini, K. Hooshanfar, Z. Ebrahimian, R. Toosi, and M.
A. Akhaee, “Hybrid Retrieval-Augmented Generation Approach for LLMs
Query Response Enhancement,” 32nd Iranian Conference on Electrical
Engineering (ICEE), pp. 115-120, 2025.

http://www.ijsrem.com/

