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Abstract — Due to their dependence on static, pre-trained knowledge, large language models (LLMs) frequently experience hallucination, 

producing outputs that appear confident but are factually incorrect. This restriction is lessened by retrieval-augmented generation (RAG), 

which grounds responses in outside context. A document-based RAG system that uses the open-source reasoning model DeepSeek and is 

locally deployed using Ollama is presented in this paper. A Chroma vector database is used to store the PDF documents that users upload 

after they have been parsed, segmented, and embedded using LangChain. When a query is received, the system uses DeepSeek to produce 

grounded responses and retrieve semantically relevant content. The system may optionally call the web-based search API Tavily if no 

appropriate context is found. Streamlit, which provides an easy-to-use interface for document upload, parameter tuning, and chat 

interaction, is used to deploy the application. The system enhances reliability and decreases hallucinations in knowledge-intensive tasks by 

integrating contextual retrieval, local inference, and optional fallback. 
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I. INTRODUCTION  

Large Language Models (LLMs) have remarkable capacity for 
natural language understanding and generation. But their reliance 
on static pre-trained corpora leads to a terrible flaw: 
hallucination. It is a phenomenon of generating coherent yet 
factually incorrect or unverifiable text. In high-stakes domains 
like law, medicine, and scholarship, such mistakes can 
undermine trust and decrease value. 

Retrieval-Augmented Generation (RAG) solves this problem by 
augmenting large language models (LLMs) with dynamic access 
to external knowledge at runtime. Rather than depending solely 
on internal parameters, RAG models fetch relevant documents 
from a knowledge base at runtime and generate their response 
based on this contextual information. Hallucination is reduced, 
fact accuracy is improved, and domain adaptation is enabled. 

In this paper, we use a local RAG pipeline that integrates open-
source components: DeepSeek for reasoning, Ollama for 
optimized model serving, LangChain for orchestration, and 
Chroma as a vector store. Users can upload PDFs, which are 
parsed, chunked, and added to a searchable vector database. 
When a query is received, the system retrieves semantically 
similar content and sends it to the LLM for the grounding of 
responses. The system also has Tavily, a real-time web search 
API, for use as a fallback in situations where there is no internal 
context of relevance. 

The system is implemented via a Streamlit interface to enable 
easy interaction, parameter adjustment (i.e., number of retrievals 
and threshold for similarity), and stored chat history. This renders 
the tool appropriate for knowledge-intensive tasks where 
contextual correctness and responsiveness take centre stage. 

II. RELATED WORKS 

A. Overview of existing solutions 

The following research studies and advancements in Retrieval-
Augmented Generation (RAG) systems were reviewed to 
understand various methods and technologies aimed at 
improving large language models (LLMs) and mitigating 
hallucinations. These studies highlight different strategies for 
integrating external knowledge into generative models. 

• Sonia Vakayil, D. Sujitha Juliet et al. (2024) in “RAG-Based 
LLM Chatbot Using Llama-2” employed Retrieval-Augmented 
Generation (RAG) with the Llama-2 model to build an 
empathetic chatbot for sexual harassment victims, combining 
document retrieval with LLM generation for accurate and 
sensitive responses. 

• Oscar Cederlund, Sadi Alawadi et al. (2024) in “LLMRAG: 
An Optimized Digital Support Service using LLM and Retrieval-
Augmented Generation” applied RAG to automate solution 
suggestions in an IT service desk, integrating LLMs with ticket-
specific retrieval to assist technicians, with 38.4% of generated 
solutions being retained during a two-week trial. 

• Büşra Tural et al. (2024) in “Retrieval-Augmented 
Generation (RAG) and LLM Integration” explored the 
integration of RAG architecture with LLMs to overcome the 
limitations of traditional keyword-based Information Retrieval. 
By enabling LLMs to dynamically retrieve semantically relevant 
information from external sources, their approach aimed to 
generate more accurate and context-aware responses for 
complex, information-heavy tasks. 
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• Yunfan Gao et al. (2024) in “Retrieval-Augmented 
Generation for Large Language Models: A Survey” provided a 
comprehensive review of RAG systems, categorizing them into 
Naive, Advanced, and Modular paradigms. The study dissected 
the RAG pipeline into retrieval, generation, and augmentation 
components, discussing innovative techniques in each. It also 
proposed evaluation benchmarks and addressed ongoing 
challenges like hallucinations and domain adaptation. 

• Omrani et al. (2025) in "Hybrid Retrieval-Augmented 
Generation Approach for LLMs Query Response Enhancement" 
introduced a novel hybrid RAG framework. This framework 
combines Sentence-Window and Parent-Child methodologies 
with a new re-ranking mechanism to improve the query response 
capabilities of LLMs. The authors demonstrated through rigorous 
evaluation against benchmark datasets that their hybrid model 
outperforms existing state-of-the-art RAG techniques in terms of 
accuracy, relevance, and faithfulness to the source material. 1 The 
study highlights the potential of hybrid RAG models for 
enhancing the interaction between LLMs and external 
knowledge. 

• M. T. Huang et al. (2024) in “Scalable Retrieval-Augmented 
Generation Systems for Open-Domain Question Answering” [4] 
proposed an open-domain Q&A system using RAG, with 
embedded documents stored in vector databases and queried for 
semantically relevant content. Their system is designed to scale 
for large-scale datasets and improve response accuracy. 

• A. T. Nguyen et al. (2024) in “Fine-Tuning Retrieval-
Augmented Models with Real-Time Document Embedding” 
focused on fine-tuning models to integrate real-time document 
embeddings. Their approach combined traditional retrieval 
methods with deep learning models for embedding, 
demonstrating how fine-tuning improves document relevance in 
RAG applications. 

• R. S. Patel et al. (2023) in “Improving Retrieval-Augmented 
Generation Models for Long-Form Text Generation”  
demonstrated a retrieval approach aimed at long-form text 
generation tasks. Their system showed promising results in 
extending the context of document retrieval to better generate 
comprehensive and contextually grounded responses. 

B. Gaps in existing solutions 

• Inadequate Adaptation to Complex Knowledge 

Structures and Long-Form Text Generation and obsolete 

knowledge: Research often presents complex, multi-document 

structures. Current RAG methods struggle to fully utilize 

relationships within these structures for coherent, detailed long-

form text generation. 

• Absence of Specialized Benchmarks for Niche 

Applications: Existing RAG benchmarks are too general, as 

highlighted by Gao et al. (2023). Specialized evaluation 

frameworks are needed for niche scientific and technical tasks 

like academic QA and summarization. 

• Potential for Language and Contextual Bias: While the 

presented papers primarily focus on English language 

applications, the broader issue of language and contextual bias 

in RAG systems warrants consideration. Ensuring inclusivity for 

non-English and low-resource languages remains a challenge for 

the widespread adoption of these technologies. 

• Limited Explainability in Retrieval and Generation 

Processes: Understanding why specific documents are retrieved 

and how the final response is generated remains a challenge in 

many RAG implementations. Enhancing the transparency of 

these processes would improve user trust and facilitate system 

refinement. 

• Insufficient User Customization Capabilities: 

Providing end-users, particularly those without deep technical 

knowledge, with greater control over the retrieval scope, 

document sets, and response style is an area for improvement in 

current RAG-based LLM solutions. 

• Embedding Quality and Retrieval Relevance: The 

effectiveness of RAG systems heavily relies on the quality of 

document embeddings. Poor embedding quality can lead to the 

retrieval of irrelevant information, negatively impacting the 

accuracy of the generated responses. 

III. METHODOLOGY 

    The goal of the project is to create a Retrieval-Augmented 

Generation (RAG) system that enriches the functionality of large 

language models (LLMs) by blending external document-based 

knowledge. The system is created to be run locally to provide 

context-specific and accurate replies to user questions by 

retrieving pertinent information from uploaded PDFs and 

passing it through an open-source LLM. The system also 

includes a fallback module to retrieve live web results in case 

there is no local content. 

A. System Design and Architecture 

The methodology begins with designing the overall architecture 
of the RAG pipeline, with individual modules managing 
document processing, embedding, retrieval, model inference, and 
user interaction. The system is modular and designed to allow 
flexibility, scalability, and transparency in both internal 
processing and user interaction. Following are the core 
components of the system: 

• PDF Loader (PyPDFLoader): Reads and splits the uploaded 
document into smaller, manageable chunks for downstream 
semantic processing. 

• Text Splitter (RecursiveCharacterTextSplitter): Segments the 
document into overlapping text chunks, preserving semantic 
coherence across splits and enhancing retrieval quality. 

• Embedding Model (OllamaEmbeddings): Converts text 
chunks into dense vector representations using an LLM running 
locally via Ollama. This facilitates high-dimensional semantic 
search. 

• Vector Store (Chroma): Acts as a persistent memory layer 
that stores the generated embeddings and supports fast, 
similarity-based retrieval using cosine distance metrics. 

• Retriever: Searches the vector store to fetch the top-k most 
relevant text chunks corresponding to the user's query. 

• Tavily Retriever: A fallback mechanism triggered when the 
local retriever fails to meet the similarity threshold, enabling real-
time web search and reducing dependence on local data alone. 

• LLM (DeepSeek via Ollama): Processes both the user query 
and the retrieved context to generate a concise, context-aware 
response. The model runs locally, ensuring privacy and control 
over inference. 
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• LangChain: Orchestrates the end-to-end pipeline by 
managing prompt construction, conditional retrieval logic, and 
response formatting. It ensures seamless interaction between the 
modules. 

• Streamlit Frontend: Offers an intuitive user interface for 
uploading documents, entering queries, visualizing system 
responses, and adjusting key parameters such as similarity 
thresholds or number of returned documents. 

 

B. Development Phases 

Phase 1: Document Ingestion and Preprocessing 

The system starts with the local ingestion of PDF documents 

provided by the user. Using PyPDFLoader from LangChain, the 

textual content is extracted from each document. To maintain 

contextual integrity, the text is segmented into overlapping 

chunks with RecursiveCharacterTextSplitter. This method 

ensures that semantically connected information remains linked 

across chunks, improving the quality of later retrieval. 

 

Phase 2: Embedding Generation and Vector Storage 

Each text chunk is transformed into a high-dimensional vector 

representation using the OllamaEmbeddings model, which 

operates locally. These vectors are stored in a persistent Chroma 

vector database. This phase forms the backbone of semantic 

search functionality, enabling efficient and accurate retrieval of 

relevant content when a user query is issued. 

 

Phase 3: Query-Based Retrieval 

When a user submits a query, the system uses a retriever to 

perform a similarity search across the stored embeddings in the 

Chroma vector database. The retriever identifies the top-k most 

semantically similar text chunks based on cosine similarity. If 

the similarity score of all retrieved chunks falls below a 

predefined threshold, the system initiates a fallback mechanism 

that calls the Tavily web search API. This ensures access to up-

to-date external knowledge when local data is insufficient. 

 

Phase 4: LLM Inference and Answer Generation 

After retrieving the relevant chunks, a prompt is dynamically 

formatted by inserting the retrieved context and the user query 

into a predefined template. This prompt is passed to the locally 

running DeepSeek language model via Ollama. The model then 

generates a grounded, context-aware response. Prompt length 

and token usage are managed to avoid truncation or 

hallucination, and the output is structured for clarity and 

relevance. 

 

Phase 5: User Interface and Customization 

The entire system is deployed via a Streamlit application that 

provides a clean and interactive front end. Users can upload PDF 

files, enter queries, and view generated responses in real-time. 

Additionally, the interface includes controls to adjust retrieval 

parameters such as top-k values and similarity thresholds, toggle 

between local and external search modes, and view the source 

context and system logs for transparency and debugging. 

C. Performance Evaluation 

The system's effectiveness was evaluated based on the 

following criteria: 

• Response Accuracy: Measured by human validation 

against source documents for factual correctness. 

• Relevance Score: Calculated using cosine similarity 

between the query and retrieved context chunks. 

• Latency: Measured in milliseconds from query input 

to answer generation, including fallback time when Tavily is 

triggered. 

 

Metrics were collected under controlled conditions using a 

curated set of standardized PDF documents containing varied 

technical and academic content. Evaluation was conducted 

across three configurations: with only local retrieval, with 

fallback search enabled, and using DeepSeek versus alternative 

models for comparative purposes. 

D. System Implementation 

The final system was deployed as a local web application using 

Streamlit, integrating all core RAG components seamlessly. 

Key features included: 

• PDF upload and real-time parsing interface 

• Chat-style interaction with adjustable retrieval parameters 

(Top-K, similarity threshold) 

• Toggle for enabling or disabling web fallback (Tavily API) 

• Context display for transparency in answer generation 

• Downloadable chat history for user reference 

 

The backend was made modular for better scalability and 

testability, with all crucial processes—i.e., loading, embedding, 

vector storage, retrieval, and generation—kept as standalone, 

callable modules. The application was cross-platform packaged 

for deployment, with comprehensive documentation for 

installation, upkeep, and parameter tuning. 

IV. RESULTS AND DISCUSSIONS 

To ensure the performance of the proposed Retrieval-

Augmented Generation (RAG) system, we thoroughly assessed 

it on a wide variety of academic and technical PDFs. The system 

was evaluated for its ability to generate semantically correct and 
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contextually relevant responses using locally cached document 

embeddings as well as external fallback configurations. 

 

A. Relevance and Accuracy of Response 

The system always returned correct, semantically grounded 

responses when there was applicable content present in the 

documents that were uploaded. DeepSeek, accessed locally 

through Ollama, excelled at long-context reasoning and 

generation of fact responses. In situations where document 

context was lacking, Tavily's web search fallback could insert 

extra grounding with good relevance. 

 

B. User Experience 

Streamlit interface facilitated effortless document uploading, 

parameter adjustment, and real-time chat-based conversation. 

The inclusion of chat history, top-k retrieval controls, and 

context visibility contributed to a user-friendly experience. The 

debug visibility feature promoted system transparency further. 

 

C. Limitations 

One of the major downsides of the system is the CPU-based high 

latency of execution, which can have negative impacts on 

responsiveness, particularly in time-sensitive applications. In 

addition, long or complex queries can sometimes be truncated 

because of prompt length limits, thus affecting completeness of 

responses in some instances. While the web fallback feature via 

Tavily enhances coverage, it adds infrequent response time and 

accuracy variability, especially in cases where API rate limits 

are hit or when network connectivity is poor. 

 

D. Future Enhancements 

To further optimize system performance and user interaction, 

some future extensions are suggested. Utilization of the model 

on GPU-enabled infrastructure, or compatibility with other 

optimized inference engines like ONNX Runtime or TensorRT, 

would have a significant impact on reducing latency and 

increasing throughput. Support for multi-document querying 

and user sessions persistence would improve scalability and 

interactivity. Fine-tuning the DeepSeek model on domain-

specific corpora can further improve response accuracy in 

domain-specific use cases. Additionally, the inclusion of user 

feedback loops and confidence scoring in replies can enhance 

trust and transparency in practical applications. 
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