
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM52249 | Page 1

Retrieval-Augmented Generation (RAG) with LLMs: Architecture,

Methodology, System Design, Limitations, and Outcomes

Varshini Bhaskar Shetty
Department of Electrical and Electronics Engineering

SJB Institute of Technology, Bengaluru, India

Email: shettyvarshini24@gmail.com

Abstract—Large Language Models (LLMs) have shown re-
markable progress in natural language understanding and gen-
eration. However, they suffer from hallucinations, lack of domain
adaptation, and outdated knowledge. Retrieval-Augmented Gen-
eration (RAG) addresses these challenges by combining semantic
retrieval with generative models, enabling grounded, explainable,
and domain-specific responses. This paper presents a RAG
framework using Pinecone as a vector database, mixedbread-
ai embeddings, and Gemini-1.5-pro for generation. We evaluate
multiple chunking strategies, incorporate prompt-tuning tech-
niques, and address security threats such as prompt injection
attacks. Results indicate improved factual accuracy, reduced
hallucinations, and enhanced user trust, making the system
suitable for real-world enterprise and academic applications.

Index Terms—Retrieval-Augmented Generation, Large Lan-
guage Models, LangChain, Pinecone, Semantic Search, Prompt
Injection, Chunking

I. INTRODUCTION

The emergence of Large Language Models (LLMs) such

as GPT-3, GPT-4, and Gemini has marked a paradigm shift in

Natural Language Processing (NLP). These models, trained on

vast corpora of text, have demonstrated unprecedented capabil-

ities in tasks such as question answering, dialogue generation,

code synthesis, and summarization [1]. Their success lies in

the Transformer architecture, which allows them to capture

contextual dependencies over long sequences.

Despite their remarkable achievements, LLMs face three

critical challenges. First, they are prone to hallucinations,

producing outputs that are fluent yet factually incorrect. Sec-

ond, their knowledge is limited to the data available at the

time of training, making them unable to adapt dynamically

to new or domain-specific information. Third, their responses

may lack transparency, leading to reduced trust in sensitive

domains such as healthcare and law.

Retrieval-Augmented Generation (RAG) has emerged as a

powerful solution to address these challenges [3]. By incorpo-

rating external retrieval mechanisms, RAG ensures that LLM

outputs are grounded in up-to-date and contextually relevant

knowledge. This paper develops and evaluates a RAG system

that integrates Pinecone as a vector database, mixedbread-ai

embeddings for semantic similarity, and Gemini-1.5-pro for

generation.

II. BACKGROUND AND RELATED WORK

Before the rise of dense vector embeddings, retrieval in

NLP relied on sparse methods such as TF-IDF and BM25.

While computationally efficient, these approaches struggled

with semantic similarity, often failing to capture nuanced

relationships between terms.

The introduction of embeddings transformed retrieval.

Models like BERT [2] and sentence transformers provided

dense vector representations, enabling more accurate seman-

tic search. Johnson et al. [13] proposed FAISS, a scalable

similarity search library optimized for billions of vectors.

Later, ColBERTv2 [12] improved retrieval efficiency with late

interaction mechanisms.

Benchmarking initiatives such as KILT [10] and BEIR

[11] provided standard evaluation frameworks for retrieval-

augmented tasks. On the generative side, instruction-tuning

and RLHF (Reinforcement Learning from Human Feedback)

improved model alignment with user intent [5].

However, security vulnerabilities became a significant con-

cern. Rahman et al. [8] highlighted the susceptibility of LLMs

to prompt injection attacks, where malicious inputs manipu-

late model behavior. Addressing both retrieval efficiency and

system robustness remains an open challenge.

III. LITERATURE REVIEW

A. LLMs and Knowledge Limitations

BERT [2] and GPT-3 [1] demonstrated the power of

pretraining on massive corpora, but their frozen knowledge

creates adaptability challenges. This limitation makes them

less effective in rapidly evolving fields such as cybersecurity

or medicine.

B. Instruction and Prompt Tuning

Instruction-tuned models like InstructGPT [5] significantly

improved model usability by aligning responses with human

intent. PTR [6] and PPT [7] further enhanced adaptability by

enabling models to generalize with minimal annotated data.

C. Reasoning and Chain-of-Thought

Wei et al. [9] demonstrated that Chain-of-Thought (CoT)

prompting improves multi-step reasoning, critical for mathe-

matical and logical tasks.

http://www.ijsrem.com/
mailto:shettyvarshini24@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM52249 | Page 2

D. Security Threats

Rahman et al. [8] achieved near-perfect detection of prompt

injection attacks. Their work is especially relevant as retrieval

introduces new attack surfaces, such as maliciously crafted

documents.

IV. METHODOLOGY

The proposed methodology integrates preprocessing, chunk-

ing, embedding, retrieval, generation, and output delivery.

Fig. 1 shows the complete workflow.

Fig. 1. Proposed Methodology Flowchart for RAG Framework

A. Data Collection and Preprocessing

Input documents are preprocessed to remove metadata,

boilerplate text, and formatting errors. This step ensures clean

and standardized input for subsequent chunking.

B. Chunking Strategies

Efficient chunking is critical for retrieval. Fig. 2 illus-

trates the five major strategies: fixed-size, semantic, recursive,

document-structure-based, and LLM-based.

Table I compares their efficiency, coherence, and limitations.

TABLE I

COMPARISON OF CHUNKING STRATEGIES

Strategy Coherence Efficiency Limitation
Fixed-size Low High Breaks semantics
Semantic High Medium Expensive embeddings
Recursive Medium High Complex splitting
Doc-structure High Medium Requires headings

LLM-based Very High Low High computation

C. Embedding and Vector Storage

Each chunk is embedded using

mxbai-embed-large-v1, a high-dimensional embedding

model optimized for semantic similarity. Pinecone serves as

the vector store, enabling real-time retrieval with low latency.

Fig. 2. Five Chunking Strategies for RAG

D. Retrieval and Generation

User queries are embedded and compared with stored

vectors using cosine similarity. Top-k results are retrieved,

merged, and passed into Gemini-1.5-pro for contextual gener-

ation.

E. Security Layer

A fine-tuned XLM-RoBERTa model is deployed to detect

prompt injection attacks before queries are executed. This

ensures safe interaction.

F. User Interface

Responses are streamed to a web interface built with Vercel

AI SDK, Shadcn-UI, and NextJS, ensuring real-time and user-

friendly interactions.

V. SYSTEM DESIGN

The system follows a six-layered modular architecture: 1)

User Interface, 2) Preprocessing, 3) Retriever, 4) Generator,

5) Security Layer, and 6) Output Presentation. Each layer

communicates via APIs, ensuring scalability and flexibility.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM52249 | Page 3

VI. EXPERIMENTAL SETUP TABLE V
COMPARISON OF DIFFERENT MODELS

Experiments were conducted on a cloud server equipped

with NVIDIA A100 GPU and 32GB RAM. Datasets included

academic PDFs, reports, and research articles. Queries were

designed to test factual accuracy, domain adaptability, and

adversarial resistance.

VII. RESULTS AND DISCUSSION

A. Performance Comparison

Table II shows the improvements in accuracy and halluci-

nation rates.

TABLE II

PERFORMANCE COMPARISON OF LLM VS RAG

Model Accuracy (%) Hallucination (%) Latency (s)

LLM-only 72.5 18.3 2.1
RAG 87.1 7.4 2.9

B. Security Detection

Table III presents detection performance for prompt injec-

tion.

TABLE III

PROMPT INJECTION DETECTION RESULTS

Model Precision Recall Accuracy

Baseline 72.4 70.3 71.0

Fine-tuned 98.9 99.2 99.1

C. Latency Analysis

Table IV shows latency distribution across system stages.

TABLE IV

LATENCY BREAKDOWN

Stage Time (ms) Share

Embedding 120 20%
Vector Search 200 33%
Re-ranking 150 25%

Generation 130 22%

IX. LIMITATIONS

While effective, the system faces several limitations:

• Increased latency compared to LLM-only pipelines.

• Dependence on embedding quality.

• Residual vulnerability to sophisticated adversarial attacks.

• High computational costs for LLM-based chunking.

• Subjective evaluation of truthfulness.

X. CONCLUSION AND FUTURE WORK

This study demonstrated that RAG improves factual ground-

ing, reduces hallucinations, and enhances security in LLM ap-

plications. Future directions include hybrid retrieval (symbolic

+ neural), hierarchical retrieval frameworks such as RAPTOR,

and integrating user feedback for explainable AI.

REFERENCES

[1] T. Brown et al., “Language Models are Few-Shot Learners,” NeurIPS,
2020.

[2] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Transform-
ers,” NAACL, 2019.

[3] W. Jeong, “Building Generative AI Services with RAG and LangChain,”
2023.

[4] M. Naveed et al., “Large Language Models: A Survey,” ArXiv, 2024.
[5] L. Ouyang et al., “Training language models to follow instructions,”

NeurIPS, 2022.
[6] X. Han et al., “PTR: Prompt Tuning with Rules,” AI Open, 2022.
[7] Y. Gu et al., “Pre-trained Prompt Tuning for Few-shot Learning,” ACL,

2022.
[8] A. Rahman et al., “Fine-tuned LLMs for Prompt Injection Detection,”

ArXiv, 2024.
[9] J. Wei et al., “Chain-of-Thought Prompting,” NeurIPS, 2022.

[10] F. Petroni et al., “KILT: Knowledge-Intensive Tasks,” NAACL, 2021.
[11] N. Thakur et al., “BEIR: Zero-shot IR,” NeurIPS, 2021.
[12] K. Santhanam et al., “ColBERTv2: Efficient Retrieval,” ArXiv, 2022.
[13] J. Johnson et al., “Billion-scale similarity search with GPUs,” IEEE

TBD, 2017.
[14] T. Gao et al., “Making Pre-trained LMs Better Few-shot Learners,” ACL,

2020.
[15] T. Schick and H. Schu¨tze, “Exploiting Cloze Questions for Few-Shot

Classification,” EACL, 2021.

VIII. DIFFERENT MODELS USED AND ACCURACY

To evaluate the robustness of RAG, we compared multiple

retrieval and generation models. Each model was tested on the

same dataset of academic articles and technical documents.

Table V summarizes the results.

The results clearly show that combining retrieval with LLMs

significantly improves factual accuracy and reduces hallucina-

tions. Among the tested systems, Gemini-1.5-pro integrated

with RAG delivered the highest accuracy, albeit with slightly

increased latency.

Model Accuracy (%) Hallucination (%) Latency (s)

GPT-3.5 (baseline) 70.2 20.5 1.9
GPT-4 (LLM-only) 78.6 15.8 2.2
BERT + RAG 82.3 11.4 2.8
ColBERTv2 + RAG 85.7 9.1 2.6

Gemini-1.5-pro + RAG 89.5 6.8 3.0

http://www.ijsrem.com/

