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Abstract—Large Language Models (LLMs) have shown re- 
markable progress in natural language understanding and gen- 
eration. However, they suffer from hallucinations, lack of domain 
adaptation, and outdated knowledge. Retrieval-Augmented Gen- 
eration (RAG) addresses these challenges by combining semantic 
retrieval with generative models, enabling grounded, explainable, 
and domain-specific responses. This paper presents a RAG 
framework using Pinecone as a vector database, mixedbread- 
ai embeddings, and Gemini-1.5-pro for generation. We evaluate 
multiple chunking strategies, incorporate prompt-tuning tech- 
niques, and address security threats such as prompt injection 
attacks. Results indicate improved factual accuracy, reduced 
hallucinations, and enhanced user trust, making the system 
suitable for real-world enterprise and academic applications. 

Index Terms—Retrieval-Augmented Generation, Large Lan- 
guage Models, LangChain, Pinecone, Semantic Search, Prompt 
Injection, Chunking 

 

I. INTRODUCTION 
 

The emergence of Large Language Models (LLMs) such 

as GPT-3, GPT-4, and Gemini has marked a paradigm shift in 

Natural Language Processing (NLP). These models, trained on 

vast corpora of text, have demonstrated unprecedented capabil- 

ities in tasks such as question answering, dialogue generation, 

code synthesis, and summarization [1]. Their success lies in 

the Transformer architecture, which allows them to capture 

contextual dependencies over long sequences. 

Despite their remarkable achievements, LLMs face three 

critical challenges. First, they are prone to hallucinations, 

producing outputs that are fluent yet factually incorrect. Sec- 

ond, their knowledge is limited to the data available at the 

time of training, making them unable to adapt dynamically 

to new or domain-specific information. Third, their responses 

may lack transparency, leading to reduced trust in sensitive 

domains such as healthcare and law. 

Retrieval-Augmented Generation (RAG) has emerged as a 

powerful solution to address these challenges [3]. By incorpo- 

rating external retrieval mechanisms, RAG ensures that LLM 

outputs are grounded in up-to-date and contextually relevant 

knowledge. This paper develops and evaluates a RAG system 

that integrates Pinecone as a vector database, mixedbread-ai 

embeddings for semantic similarity, and Gemini-1.5-pro for 

generation. 

II. BACKGROUND AND RELATED WORK 

Before the rise of dense vector embeddings, retrieval in 

NLP relied on sparse methods such as TF-IDF and BM25. 

While computationally efficient, these approaches struggled 

with semantic similarity, often failing to capture nuanced 

relationships between terms. 

The introduction of embeddings transformed retrieval. 

Models like BERT [2] and sentence transformers provided 

dense vector representations, enabling more accurate seman- 

tic search. Johnson et al. [13] proposed FAISS, a scalable 

similarity search library optimized for billions of vectors. 

Later, ColBERTv2 [12] improved retrieval efficiency with late 

interaction mechanisms. 

Benchmarking initiatives such as KILT [10] and BEIR 

[11] provided standard evaluation frameworks for retrieval- 

augmented tasks. On the generative side, instruction-tuning 

and RLHF (Reinforcement Learning from Human Feedback) 

improved model alignment with user intent [5]. 

However, security vulnerabilities became a significant con- 

cern. Rahman et al. [8] highlighted the susceptibility of LLMs 

to prompt injection attacks, where malicious inputs manipu- 

late model behavior. Addressing both retrieval efficiency and 

system robustness remains an open challenge. 

III. LITERATURE REVIEW 

A. LLMs and Knowledge Limitations 

BERT [2] and GPT-3 [1] demonstrated the power of 

pretraining on massive corpora, but their frozen knowledge 

creates adaptability challenges. This limitation makes them 

less effective in rapidly evolving fields such as cybersecurity 

or medicine. 

B. Instruction and Prompt Tuning 

Instruction-tuned models like InstructGPT [5] significantly 

improved model usability by aligning responses with human 

intent. PTR [6] and PPT [7] further enhanced adaptability by 

enabling models to generalize with minimal annotated data. 

C. Reasoning and Chain-of-Thought 

Wei et al. [9] demonstrated that Chain-of-Thought (CoT) 

prompting improves multi-step reasoning, critical for mathe- 

matical and logical tasks. 
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D. Security Threats 

Rahman et al. [8] achieved near-perfect detection of prompt 

injection attacks. Their work is especially relevant as retrieval 

introduces new attack surfaces, such as maliciously crafted 

documents. 
 

IV. METHODOLOGY 

The proposed methodology integrates preprocessing, chunk- 

ing, embedding, retrieval, generation, and output delivery. 

Fig. 1 shows the complete workflow. 

 

 

Fig. 1. Proposed Methodology Flowchart for RAG Framework 

 

 

A. Data Collection and Preprocessing 

Input documents are preprocessed to remove metadata, 

boilerplate text, and formatting errors. This step ensures clean 

and standardized input for subsequent chunking. 

B. Chunking Strategies 

Efficient chunking is critical for retrieval. Fig. 2 illus- 

trates the five major strategies: fixed-size, semantic, recursive, 

document-structure-based, and LLM-based. 

Table I compares their efficiency, coherence, and limitations. 

 
TABLE I 

COMPARISON OF CHUNKING STRATEGIES 
 

Strategy Coherence Efficiency Limitation 
Fixed-size Low High Breaks semantics 
Semantic High Medium Expensive embeddings 
Recursive Medium High Complex splitting 
Doc-structure High Medium Requires headings 

LLM-based Very High Low High computation 
 

 

 

C. Embedding and Vector Storage 

Each chunk is embedded using 

mxbai-embed-large-v1, a high-dimensional embedding 

model optimized for semantic similarity. Pinecone serves as 

the vector store, enabling real-time retrieval with low latency. 

 
Fig. 2. Five Chunking Strategies for RAG 

 

 

D. Retrieval and Generation 

User queries are embedded and compared with stored 

vectors using cosine similarity. Top-k results are retrieved, 

merged, and passed into Gemini-1.5-pro for contextual gener- 

ation. 

 

E. Security Layer 

A fine-tuned XLM-RoBERTa model is deployed to detect 

prompt injection attacks before queries are executed. This 

ensures safe interaction. 

 

F. User Interface 

Responses are streamed to a web interface built with Vercel 

AI SDK, Shadcn-UI, and NextJS, ensuring real-time and user- 

friendly interactions. 

 

V. SYSTEM DESIGN 
 

The system follows a six-layered modular architecture: 1) 

User Interface, 2) Preprocessing, 3) Retriever, 4) Generator, 

5) Security Layer, and 6) Output Presentation. Each layer 

communicates via APIs, ensuring scalability and flexibility. 

http://www.ijsrem.com/


  International Journal of Scientific Research in Engineering and Management (IJSREM) 

                           Volume: 09 Issue: 08 | Aug - 2025                                SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM52249                                                   |        Page 3 
 

VI. EXPERIMENTAL SETUP TABLE V 
COMPARISON OF DIFFERENT MODELS 

Experiments were conducted on a cloud server equipped   

with NVIDIA A100 GPU and 32GB RAM. Datasets included 

academic PDFs, reports, and research articles. Queries were 

designed to test factual accuracy, domain adaptability, and 

adversarial resistance. 

VII. RESULTS AND DISCUSSION 

A. Performance Comparison 

Table II shows the improvements in accuracy and halluci- 

nation rates. 

 
TABLE II 

PERFORMANCE COMPARISON OF LLM VS RAG 

Model Accuracy (%) Hallucination (%) Latency (s) 

LLM-only  72.5  18.3  2.1 
RAG 87.1 7.4 2.9 

 
 

 

 

B. Security Detection 

Table III presents detection performance for prompt injec- 

tion. 

 
TABLE III 

PROMPT INJECTION DETECTION RESULTS 
 

Model Precision Recall Accuracy 
 

Baseline 72.4 70.3 71.0 

Fine-tuned 98.9 99.2 99.1 

 

 

C. Latency Analysis 

Table IV shows latency distribution across system stages. 

 
TABLE IV 

LATENCY BREAKDOWN 

 

Stage Time (ms) Share 

Embedding 120 20% 
Vector Search 200 33% 
Re-ranking 150 25% 

Generation 130 22% 

IX.  LIMITATIONS 

While effective, the system faces several limitations: 

• Increased latency compared to LLM-only pipelines. 

• Dependence on embedding quality. 

• Residual vulnerability to sophisticated adversarial attacks. 

• High computational costs for LLM-based chunking. 

• Subjective evaluation of truthfulness. 

X.  CONCLUSION AND FUTURE WORK 

This study demonstrated that RAG improves factual ground- 

ing, reduces hallucinations, and enhances security in LLM ap- 

plications. Future directions include hybrid retrieval (symbolic 

+ neural), hierarchical retrieval frameworks such as RAPTOR, 

and integrating user feedback for explainable AI. 
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VIII. DIFFERENT MODELS USED AND ACCURACY 

To evaluate the robustness of RAG, we compared multiple 

retrieval and generation models. Each model was tested on the 

same dataset of academic articles and technical documents. 

Table V summarizes the results. 

The results clearly show that combining retrieval with LLMs 

significantly improves factual accuracy and reduces hallucina- 

tions. Among the tested systems, Gemini-1.5-pro integrated 

with RAG delivered the highest accuracy, albeit with slightly 

increased latency. 

Model Accuracy (%) Hallucination (%) Latency (s) 

GPT-3.5 (baseline) 70.2 20.5 1.9 
GPT-4 (LLM-only) 78.6 15.8 2.2 
BERT + RAG 82.3 11.4 2.8 
ColBERTv2 + RAG 85.7 9.1 2.6 

Gemini-1.5-pro + RAG 89.5 6.8 3.0 
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