

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Review of Industry 4.0 – Smart Manufacturing System using IOT and Sensor Integration

Bhujbal Bhumika B.¹, Dangat Sakshi H.², Tamboli Sahil K.³, Prof.Bankhele Nita B.⁴

¹²³BE Student, Department Of Electronics and Telecommunication Engineering, SharadChandra Pawar College of Engineering, Otur, India.

⁴Project Guide, Professor, Sharadchandra Pawar College of Engineering, Otur, India.

Abstract - The fast growth of the Internet of Things (IoT) and Industry 4.0 technologies has greatly changed the manufacturing industry, making smart manufacturing possible. Industry 4.0 refers to the use of advanced tools such as IoT, artificial intelligence (AI), cloud platforms, and big data analytics to build a highly connected and automated production environment. This paper explores the current progress of IoT-based smart manufacturing, outlining its challenges, opportunities, and expected future developments. It reviews the main components that support Industry 4.0, including IoT sensors and devices, cloud computing, data analytics, and cyber security systems. The study also discusses the major benefits of Industry 4.0, such as improved efficiency, better product quality, cost reduction, and lower levels of waste. This shift from traditional manufacturing to modern automated systems is driven by the integration of technologies like AI, cyber-physical systems, and real-time data processing. However, the transition also introduces several challenges, including issues with integrating different technologies, concerns about data privacy and security, and the need for workforce training and skill development. Overall, the paper highlights how Industry 4.0 can support real-time monitoring, predictive capabilities, and smarter decision-making in manufacturing environments.

1. INTRODUCTION

Industry 4.0, often referred to as the fourth industrial revolution, has brought major changes to the manufacturing sector in recent years. This transformation is driven by the combination of advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), big data analytics, and cyber-physical systems. Together, these technologies create a highly connected, automated, and intelligent manufacturing environment. Industry 4.0 is widely considered a major breakthrough because it can increase efficiency, reduce operational costs, and enhance product quality. Despite its advantages, the shift toward Industry 4.0 also introduces several challenges. Manufacturers must integrate a wide range of technologies, protect sensitive data, maintain system reliability, and prepare the workforce for new roles and skills. The use of IoT sensors in production systems allows real-time monitoring, predictive maintenance, improved quality control, and better production planning. Similarly, AI and machine learning enable advanced data analysis and faster decision-making, helping companies respond quickly to changing market needs and customer expectations. Industry 4.0 also supports the creation of smart products that can be designed, manufactured, and maintained more efficiently. However, achieving these benefits requires major investments in digital infrastructure and human resource development. Concerns about cyber security, data privacy, and the potential impact on employment continue to be widely discussed. This review paper aims to provide an in-depth

overview of IoT-enabled smart manufacturing under the Industry 4.0 framework. It highlights key challenges, emerging opportunities, and potential future trends. Additionally, the paper examines the strengths and limitations of Industry 4.0 across different manufacturing sectors, including discrete manufacturing, process industries, and service-based operations.

2. STATEMENT OF PROBLEM

Today's manufacturing industry faces intense pressure due to global competition, fast-changing technologies, and customers who expect highly customized products delivered quickly. Traditional manufacturing methods—characterized by manual operations, batch processing, and minimal use of data are no longer sufficient to handle these modern demands. As a result, the need for a more flexible, efficient, and responsive production system has led to the rise of Industry 4.0, the fourth industrial revolution. Industry 4.0 is driven by advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), big data analytics, and cyber-physical systems, all of which have the power to reshape manufacturing operations. However, adopting these technologies comes with significant challenges. Many manufacturers struggle with technology integration due to the lack of standardized systems, insufficient technical knowledge, and weak or outdated infrastructure.

3. NEED AND SIGNIFICANCE OF THE STUDY

To overcome these challenges and fully unlock the potential of Industry 4.0, it is essential to understand the current landscape of IoT-enabled smart manufacturing, identify existing gaps, and outline strategies for future growth. This review provides an in-depth analysis of the major challenges, emerging opportunities, and future directions of IoT-driven smart manufacturing, with a focus on practical issues and possible solutions. Industry 4.0 still faces several critical obstacles. Scalability remains a major concern, as many Industry 4.0 solutions are custom-built for specific tasks, making it difficult expand them to larger production environments. Interoperability is another issue, as the lack of common standards often prevents seamless integration of systems and technologies from different vendors. Data analytics also plays a central role; the enormous amount of data generated by IoT devices requires advanced analytical tools to convert raw information into actionable insights. Additionally, the increased connectivity of Industry 4.0 systems raises significant cyber security risks, exposing manufacturing operations to potential threats and vulnerabilities. Workforce development is another challenge, as employees must be retrained and upskilled to effectively operate and manage new technologies. Finally, the high initial investment costs associated with upgrading infrastructure and

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53499 | Page 1

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586

adopting advanced technologies make it difficult for many manufacturers to implement Industry 4.0 solutions.

4. THEORETICAL GROUNDINGS

Smart Manufacturing, commonly known as Industry 4.0, is built on the integration of advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and big data analytics. Among these technologies, IoT plays a vital role because it enables real-time monitoring and control of manufacturing operations, leading to higher efficiency, improved product quality, and increased productivity. IoT supports the creation of a fully connected factory where machines and devices are equipped with sensors and actuators that continuously gather and share data. This real-time information helps monitor production activities, identify irregularities, and predict maintenance needs, allowing manufacturers to make timely and informed decisions. In addition, IoT enables remote supervision and control of equipment, reducing the need for on-site presence and offering greater operational flexibility. The figure represents a continuous cycle involving five essential components of modern technological systems. The cycle begins with Sensor Technology, which collects data from various sources. This data is stored and processed through Cloud Computing, providing scalable and accessible computing power. Next, Big Data Analytics handles large volumes of information to extract meaningful insights and patterns. These insights are then utilized by Artificial Intelligence, enhancing decision-making and predictive accuracy. Finally, Dynamic Reconfiguration applies AI-generated insights to adjust and optimize processes in real time, completing the cycle and continuously improving system performance and effectiveness.

5. RESEARCH METHODOLOGY

To develop a comprehensive understanding of IoT-driven Smart Manufacturing (Industry 4.0) within the manufacturing sector, this study aims to evaluate its current level of adoption and analyze the major challenges encountered during implementation. In addition, the study explores the opportunities and benefits offered by IoT-enabled smart manufacturing systems and examines future trends and potential applications that may shape the next phase of industrial development. The following section outlines the proposed framework and methodology of the study.

Objectives

- To evaluate the current state of IoT-driven Smart Manufacturing (Industry 4.0) across various manufacturing environments.
- To identify the key challenges manufacturers face during the implementation of IoT-based Industry 4.0 solutions.
- To explore the opportunities and benefits associated with IoT-enabled Smart Manufacturing in the manufacturing sector.
- To discuss future directions and potential applications of IoT-powered Industry 4.0 technologies within modern manufacturing.

ISSN: 2582-3930

Fig 1 - Proposed Methodology

6. CONCLUSIONS

In the smart mini-manufacturing system prototype, automated processes replace manual data collection and analysis. The system uses a NodeMCU ESP32 microcontroller to establish wireless communication between the physical setup and the remote interface through HTTP and MQTT protocols. An IR sensor mounted on the conveyor belt measures speed and captures count data, while a DC motor drives the belt's motion. A monitoring dashboard developed in Google Spreadsheets enables real-time visualization and control of system operations, and all collected data is stored in a cloud-based database. Automated data analysis is performed within Google Spreadsheets using a PWM (Pulse Width Modulation) decision table, which compares actual production output with expected values. This comparison helps adjust the PWM settings to increase or decrease the conveyor belt speed, ensuring more accurate and efficient production flow. This case study represents a small-scale model of an intelligent manufacturing system. It involves assembling hardware components, integrating software, designing user interfaces, and developing algorithms and control logic to support system functionality. The prototype's performance is evaluated against predefined criteria to validate its effectiveness. The results show that the prototype aligns with key Industry 4.0 principles. Following the proposed methodology, the system can be scaled up for broader implementation in industrial environments, demonstrating strong potential for full deployment across manufacturing processes or facilities.

REFERENCES

- 1. Qin, Jiao; Liu, Yun; Grosvenor, Roger,2016, A Categorical Framework of Manufacturing for Industry 4.0 and Beyond,Procedia CIRP,ISSN 2212-8271,pp 79-84.
- Zhang, Yu; Ren, Shiyan; Liu, Yihua; Si, Sheng,2017, A Big Data Analytics Architecture for Cleaner Manufacturing and Maintenance Processes of Complex Products,IEEE Access, ISSN 2169-3536, pp 5779-5793
- 3 Kang, Hyeonjoong; Lee, Juyeon; Choi, Seokjin; Kim, Hyesook, 2016, Smart Manufacturing: Past Research, Present Findings, and Future Directions, Applied Sciences, ISSN 2076-3417, pp 1-16.
- 4 Jeschke, Sabina; Brecher, Christian; Meisen, Tobias; et al.,2017, Industrial Internet of Things and Cyber Manufacturing Systems, Industrial Internet of Things, pp 3-19
- 5 Müller, Julian M.; Kiel, Daniel; Voigt, Kai-Ingo, 2018, What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability, Technological Forecasting and Social Change, ISSN 0040-1625, pp 1193-1208
- 6 Gilchrist, Alasdair,2016, Industry 4.0: The Industrial Internet of Things, Industry 4.0: The Industrial Internet of Things, pp 1 239.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53499 | Page 2

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

- 7 Kolberg, Dennis; Zühlke, Detlef, 2015, Lean Automation Enabled by Industry 4.0 Technologies, IFAC, ISSN 2405-8963, pp 1870-1875.
- 8 Bi, Zhuming; Xu, Li Da; Wang, Chengen, 2014, Internet of Things for Enterprise Systems of Modern Manufacturing, International Journal of Production Research, ISSN 0020-7543, pp 2833-2849
- 9 Gilchrist, Alasdair, 2016, Smart Manufacturing and the Internet of Things, Industry 4.0: The Industrial Internet of Things, pp 23-54.
- 10 Liao, Yongxin; Deschamps, Frederic; Loures, Eduardo de Freitas; et al. ,2017, Past, Present and Future of Industry 4.0 A Systematic Literature Review and Research Agenda Proposal, International Journal of Production Research, ISSN 0020-7543, pp 116-143.
- 11 Helo, Petri; Hao, Yuqi,2017, Cloud Manufacturing System for Sheet Metal Processing, Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, pp 15-22.
- 12 Jazdi, Nasser, 2014, Cyber Physical Systems in the Context of Industry 4.0, IEEE International Conference on Automation, Quality and Testing, Robotics, ISSN 1844-7872, pp 1-4.
- 13 Xu, Xun,2012, From Cloud Computing to Cloud Manufacturing, International Journal of Production Research, ISSN 0020 7543, pp 295-1314.
- 14 Lee, Jay, 2015, Smart Factory Systems, Manufacturing Letters, ISSN 2213-8463, pp 20-23.
- 15 Zhou, Kemin; Ling, Bo; Ye, Huajun,2017, Big Data Driven Smart Energy Management: From Big Data to Big Insights, Journal of Manufacturing Systems, ISSN 0278-6125, pp 169-180.

© 2025, IJSREM | <u>https://ijsrem.com</u> DOI: 10.55041/IJSREM53499 | Page 3