
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Review of Sign Language Detection Using Flutter and TensorFlow

Mst. Harsh Bhingarde

Finolex Academy of Management and

Technology, Ratnagiri.

University of Mumbai

harshbhingarde749@gmail.com

Mst. Sujal Jadhav

Finolex Academy of Management and

Technology, Ratnagiri.

University of Mumbai

sujaldeepakjadhav09@gmail.com

Mst. Kaiwalya Surve

Finolex Academy of Management and

Technology, Ratnagiri.

University of Mumbai

kaiwalyasurve9403@gmail.com

Mst. Ayush Bansod

Finolex Academy of Management and

Technology, Ratnagiri.

University of Mumbai

ayush09bansod@gmail.com

Abstract—Sign language is an indispensable mode of

communication for individuals who are deaf or hard of hearing.

However, the majority of the global population does not

understand sign language, creating a communication barrier

between the hearing-impaired community and others. This

paper presents a review of current methodologies and

technologies developed for sign language detection, with a

particular focus on integrating Flutter and TensorFlow to

enable real-time sign language recognition on mobile platforms.

The use of Flutter, a cross-platform framework for mobile

development, in conjunction with TensorFlow, an advanced

machine learning framework, provides an innovative solution to

efficiently detect and translate signs into spoken language or

text. The paper discusses existing approaches, identifying their

strengths and limitations, and highlights the gaps that remain in

achieving accurate, real-time sign detection. Through an

analysis of current solutions, we propose an architecture that

leverages the strengths of both Flutter and TensorFlow to

overcome the challenges of hardware limitations, data

availability, and processing efficiency. Furthermore, future

directions for enhancing the system’s scalability, accuracy, and

ease of use are discussed, with a focus on improving

communication for the hearing-impaired community.

Keywords—Sign Language Detection, Flutter, TensorFlow,

Machine Learning, Real-Time Recognition

Introduction

Communication plays a vital role in daily human interaction,

but for the hearing-impaired, sign language serves as a

primary medium. Unfortunately, the majority of the global

population, particularly those who can hear, do not understand

sign language. This language barrier creates significant

communication challenges, preventing full integration for

individuals who rely on sign language in educational, social,

and professional contexts.

Artificial intelligence (AI) and machine learning (ML)

advancements offer potential solutions by automating sign

language recognition and translation. These technologies can

bridge communication gaps by converting sign language into

spoken or written language. Current sign language detection

systems, however, are often restricted by hardware

requirements, computational power, and real-time

performance limitations. Many models focus only on static

gestures, which limits their usefulness when recognizing

dynamic signs used in everyday sign languages like

American Sign Language (ASL) or British Sign Language

(BSL).

By integrating Flutter and TensorFlow, there is the potential

to overcome these limitations. Flutter is a popular open-

source UI framework that supports the development of cross-

platform mobile applications, while TensorFlow is a highly

flexible ML platform. Together, they allow for the creation

of efficient mobile applications capable of real-time sign

language detection and translation.

This paper reviews the current literature on sign language

detection methods and proposes an architecture that

integrates Flutter and TensorFlow to address identified

challenges. The proposed approach is designed to be scalable,

adaptable to mobile devices, and capable of handling both

static and dynamic gestures in real-time.

I. LITERATURE REVIEW

Smith et al. (2018)
Methodology Used: Smith et al. employed a
Convolutional Neural Network (CNN) for static hand
gesture recognition. Their approach primarily focused on
identifying specific hand shapes from still images, using
deep learning to classify gestures based on static visual
cues.
Advantages: CNNs excelled in recognizing static hand
gestures, yielding high accuracy in classifying various
hand shapes. The model was relatively straightforward to
implement and provided a strong foundation for gesture
detection using image data.
Disadvantages: However, the model was limited to static
gestures, making it unsuitable for real-world applications
where dynamic gestures are frequently used.
Limitations: The static nature of the methodology
restricted its use in sign language recognition, which
typically involves continuous, dynamic gestures.
Gaps Identified: This method does not address dynamic
gesture recognition, limiting its application in real-time
scenarios. The proposed system aims to overcome this by

Prof.M.M.Hatiskar

Assistant Professor, Finolex

Academy of Management and

Technology, Ratnagiri.

University of Mumbai

mrunmayee.hatiskar@famt.ac.in

http://www.ijsrem.com/
mailto:harshbhingarde749@gmail.com
mailto:sujaldeepakjadhav09@gmail.com
mailto:kaiwalyasurve9403@gmail.com
mailto:ayush09bansod@gmail.com
mailto:mrunmayee.hatiskar@famt.ac.in

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

incorporating a hybrid CNN-LSTM model for both static
and dynamic gesture recognition.

Liu et al. (2019)
Methodology Used: Liu et al. utilized Long Short-Term
Memory (LSTM) networks to handle the temporal
dependencies in dynamic gestures. Their model was able
to capture the sequential nature of hand movements,
making it suitable for real-time dynamic sign language
recognition.
Advantages: LSTMs are highly effective for tasks that
involve temporal sequences, allowing the system to
recognize gestures over time, which is crucial for dynamic
sign languages.
Disadvantages: The system’s performance relied heavily
on the availability of a large, annotated dataset, which was
difficult to obtain, especially for various sign languages.
This limited the model's generalization capabilities.
Limitations: The high dependency on vast, labeled
datasets posed a challenge, as sign language datasets are
often scarce. The complexity of LSTM networks also
required significant computational resources.
Gaps Identified: The reliance on extensive datasets and
high computational costs restrict the use of LSTM models
on mobile devices. In our system, we use data
augmentation to mitigate the dataset size issue and
optimize the model using TensorFlow Lite for mobile
deployment.

Ahmad et al. (2020)
Methodology Used: Ahmad et al. proposed using a
Hidden Markov Model (HMM) for dynamic gesture
recognition. HMMs are particularly suitable for
recognizing time-series data, such as sequences of hand
gestures.
Advantages: HMMs offer a lightweight solution with
relatively low computational costs, making them efficient
in processing simple gestures in real-time.
Disadvantages: HMMs struggle with recognizing
complex gestures that involve subtle hand movements or
finger positioning, reducing their effectiveness in
comprehensive sign language detection.
Limitations: The model's ability to handle only simple
and less complex gestures limited its applicability to
complete sign language systems, where gestures vary in
complexity.
Gaps Identified: HMMs are not well-suited for handling
complex dynamic gestures in sign language. Our approach
integrates LSTMs and CNNs to address these challenges,
making it possible to recognize a wide range of static and
dynamic gestures efficiently.

Gupta and Sharma (2021)
Methodology Used: Gupta and Sharma implemented
deep learning models using TensorFlow for recognizing
both static and dynamic hand gestures. Their model
combined CNNs and recurrent networks to achieve high
accuracy in gesture detection.
Advantages: The use of TensorFlow allowed for fast

computation, and the deep learning models produced
highly accurate results. The system was able to handle a
variety of gestures, making it more versatile.
Disadvantages: Despite the high accuracy, the
computational resources required for running such deep
learning models were significant, making real-time
applications on mobile devices impractical.
Limitations: The high computational power and memory
requirements made the system unsuitable for mobile and
low-resource environments, limiting its scalability.
Gaps Identified: The main limitation here is the lack of
scalability for mobile platforms. By optimizing the
TensorFlow model using TensorFlow Lite, we aim to
reduce the model's size and resource consumption,
enabling real-time sign language recognition on mobile
devices.

Singh et al. (2022)
Methodology Used: Singh et al. used Support Vector
Machines (SVM) combined with preprocessing techniques
like image segmentation and feature extraction to enhance
the accuracy of static gesture recognition.
Advantages: SVMs provided an efficient and effective
method for detecting static gestures, especially when
combined with advanced preprocessing methods. The
model showed high accuracy for specific hand shapes and
configurations.
Disadvantages: The model struggled with dynamic
gestures due to the absence of a mechanism to handle
temporal sequences. Its scope was limited to static
gestures, making it unsuitable for comprehensive sign
language recognition.
Limitations: The SVM model was only applicable to
static gestures and lacked the ability to process continuous
sign language in real-time.
Gaps Identified: The inability to recognize dynamic
gestures is a major limitation. The proposed system
overcomes this by integrating LSTM networks for
dynamic gesture recognition while retaining CNNs for
static gesture detection.

Wu and Cao (2020)
Methodology Used: Wu and Cao proposed a hybrid CNN-
LSTM model to handle both spatial and temporal aspects
of sign language recognition. CNNs were used to extract
spatial features from individual frames, while LSTM
networks handled the temporal dependencies across
frames.
Advantages: The hybrid model effectively recognized
both static and dynamic gestures, offering a more
comprehensive solution for sign language recognition.
The combination of CNN and LSTM networks allowed for
accurate and efficient recognition of gestures over time.
Disadvantages: The computational power required for the
hybrid model was substantial, limiting its real-time
application on mobile devices or low-power platforms.
Limitations: The resource-intensive nature of the model
made it challenging to deploy on mobile platforms,
restricting its use to environments with sufficient
computational power.
Gaps Identified: Our proposed system aims to address
this by optimizing the hybrid model for mobile devices

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

using TensorFlow Lite, ensuring real-time performance
while maintaining accuracy.

Zhou et al. (2021)
Methodology Used: Zhou et al. employed deep learning
techniques for recognizing both static and dynamic hand
gestures. Their model used a CNN architecture with
multiple layers for feature extraction and classification.
Advantages: The deep learning model provided superior
accuracy in recognizing a wide range of gestures, both
static and dynamic. The multilayer CNN architecture was
particularly effective in distinguishing fine hand
movements.
Disadvantages: As with many deep learning models, the
computational requirements were high, limiting the
model’s performance on mobile platforms. Additionally,
the model struggled with handling noisy or incomplete
data.
Limitations: The high computational cost and sensitivity
to noisy input data limited the model’s real-world
applicability, particularly on mobile devices where
hardware resources are limited.
Gaps Identified: The limitations of high resource
consumption and noise sensitivity are addressed in our
approach by employing TensorFlow Lite for mobile
deployment and integrating preprocessing techniques to
handle noisy data.

Gao et al. (2020)
Methodology Used: Gao et al. introduced a MobileNet
architecture optimized for mobile devices. The model was
designed for efficient hand gesture recognition using
TensorFlow Lite, which reduced the computational load
while maintaining performance.
Advantages: MobileNet, being lightweight, provided an
efficient solution for mobile gesture recognition. The
model was optimized for low-power devices, ensuring that
it could run on smartphones and embedded systems.
Disadvantages: Despite its efficiency, the model’s
performance decreased when dealing with complex or
dynamic gestures, which are essential for a full sign
language recognition system.
Limitations: The model's limited capacity to handle
complex gestures restricted its use in broader sign
language applications.
Gaps Identified: Our system extends the capabilities of
MobileNet by incorporating LSTM networks to handle
dynamic gestures, ensuring comprehensive sign language
detection without compromising mobile performance.

To conclude, the reviewed methodologies demonstrate
significant advancements in sign language detection using
deep learning models like CNNs, LSTMs, and hybrid
architectures. However, many of these approaches face
limitations in handling real-time dynamic gestures, high
computational costs, and scalability on mobile platforms.
Our proposed system aims to bridge these gaps by
optimizing models for mobile deployment and enhancing
their ability to process both static and dynamic gestures
efficiently, ensuring robust real-time sign language
recognition across various environments.

II. METHODOLOGY

The proposed system for real-time sign language detection

integrates various technologies to create a comprehensive,

user-friendly mobile application using Flutter and

TensorFlow. This section elaborates on the user workflow,

components of the system, the technologies employed, the

backend infrastructure, and the design and testing phases to

ensure optimal performance.

A. User Workflow

The user interacts with the application by performing sign

language gestures in front of their smartphone camera. The

system captures these gestures in real-time and processes

them to generate the corresponding textual or spoken

output. The overall user workflow consists of the

following steps:

1. Gesture Input: The user presents a hand gesture or

sign in front of the camera.

2. Preprocessing: The input video is processed to

extract relevant frames, which are then resized and

normalized for efficient model inference.

3. Model Inference: The processed frames are fed into

a hybrid CNN-LSTM model deployed on the mobile

device to recognize both static and dynamic gestures.

4. Output: The recognized sign is converted into text,

which is displayed on the screen, and an audio output

is also generated using a text-to-speech engine for

accessibility.

5. Feedback Loop: The user can adjust their gesture if

necessary, with the app providing real-time feedback

on recognition accuracy.

B. System Components

The system is built using multiple components that ensure

seamless interaction, accurate gesture recognition, and real-

time performance:

1. Mobile Interface: The Flutter-based mobile app

provides a cross-platform user interface for both

Android and iOS users. The interface is designed for

simplicity and ease of use, focusing on accessibility

for users with hearing or speech impairments.

2. Camera Module: Integrated into the Flutter app, the

camera captures video input, which is crucial for

real-time gesture detection. The video stream is fed

into the TensorFlow Lite model for processing.

3. Hybrid Model: A combination of Convolutional

Neural Networks (CNNs) for spatial feature

extraction and Long Short-Term Memory (LSTM)

networks for temporal sequence processing is

utilized. This allows the system to recognize both

static and dynamic gestures.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

4. Backend Components: While the core inference

happens on-device, a lightweight backend server is

implemented to handle additional features such as

model updates, user data storage, and analytics. This

backend is built using Node.js and is hosted on a

cloud platform like AWS or Firebase.

C. Technologies Used

Several technologies are integrated to ensure the system

performs efficiently and meets real-time requirements:

1. Flutter: Flutter is used to create a cross-platform

mobile application. Its hot-reload feature speeds up

development, while its ability to run on both

Android and iOS ensures broad accessibility.

2. TensorFlow Lite: TensorFlow Lite is used for

running the hybrid CNN-LSTM model on mobile

devices. It ensures that the model runs efficiently

with reduced computational overhead, making it

suitable for low-powered devices.

3. Text-to-Speech (TTS): Google’s Text-to-Speech

API is integrated into the app to convert recognized

signs into spoken words, improving accessibility for

users.

4. Backend Technologies: A Node.js-based backend

handles user authentication, logging, and updates.

Cloud Firestore is used for real-time data storage

and retrieval. Firebase Hosting ensures scalability

and security for the app.

5. Google MediaPipe: MediaPipe is integrated to

provide gesture tracking and hand landmark

detection before feeding input into the hybrid model.

D. Design and Development

The system follows a modular design, separating the user

interface, gesture recognition engine, and backend services.

This modular approach ensures scalability, ease of

maintenance, and extensibility for future improvements.

1. Front-End Design: The front-end is designed in

Flutter, focusing on accessibility and simplicity. The

user interface is minimalistic with large buttons,

clear instructions, and easy navigation, catering to

users with disabilities.

2. Model Design: The hybrid CNN-LSTM model is

trained on a labeled dataset of both static and

dynamic gestures. CNNs are responsible for

extracting spatial features from individual frames,

while the LSTM processes the nature of gestures.

3. Preprocessing Pipeline: Before feeding the video

frames into the model, a preprocessing pipeline is

implemented. It includes frame extraction, resizing,

and normalization to ensure uniform input across

different devices.

 F. Testing and Validation

Rigorous testing is conducted to ensure the system

meets performance and accuracy expectations:

1. Model Accuracy Testing: The hybrid model is

tested on various datasets to validate its accuracy in

recognizing both static and dynamic gestures.

Precision, recall, and F1 scores are calculated to

evaluate the model's performance.

2. Mobile Device Testing: The system is tested on

multiple mobile devices with varying computational

resources to ensure smooth operation. The

TensorFlow Lite model is optimized to run

efficiently on low-power devices without sacrificing

accuracy.

3. User Testing: The app undergoes user testing with

individuals from the Deaf community to ensure that

the gesture recognition is accurate and meets real-

world requirements. Their feedback is used to refine

the app’s interface and functionality.

4. Real-Time Performance: The latency of gesture

recognition is measured to ensure that the app can

process and display results in real-time. The goal is

to maintain a response time of under 500

milliseconds for optimal user experience.

III. EXPECTED OUTCOMES

The proposed system is expected to provide an efficient, real-

time sign language recognition solution that is accessible on

mobile platforms. Future developments may include:

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

1. Extended Vocabulary: The system will eventually

support a broader range of gestures and multiple

sign languages, expanding its usability across

different linguistic regions and communities.

2. Continuous Learning: As more users interact with

the system, data-driven improvements will be

possible, allowing the model to fine-tune itself for

greater accuracy and responsiveness. Future

enhancements may include semi-supervised

learning to recognize new gestures without explicit

labeling.

3. User Customization: Future updates may allow

users to add custom gestures or signs, enabling

personalized interactions. This will be particularly

useful for gestures that are region-specific or used

by individuals within smaller communities.

4. Integration with Wearable Devices: Future

versions could integrate with wearable technologies

such as smart gloves or AR glasses to enhance

gesture recognition precision, especially in

environments where camera-based input may be

challenging.

5. Real-Time Translation: In addition to gesture

recognition, future iterations may incorporate real-

time translation from sign language to spoken

languages, enhancing communication between

hearing and non-hearing individuals.

6. Cross-Platform Compatibility: The system could

be expanded for compatibility with other devices

such as smart TVs, AR/VR headsets, and even

desktop platforms, ensuring its accessibility across

different hardware environments.

7. Gesture-to-Action Mapping: Future work could

explore mapping gestures to control smart devices

or perform actions such as controlling home

automation systems, turning sign language gestures

into commands.

8. Collaborative Learning and Crowdsourcing: A

feature allowing users to contribute new gestures

could be introduced, building a community-driven

dataset that evolves over time and supports multiple

regional variations of sign language.

REFERENCES

[1] Koller, O., Ney, H., & Bowden, R. (2015). Deep Learning of Mouth

Shapes for Sign Language Recognition. IEEE International
Conference on Computer Vision (ICCV).

[2] Camgoz, N. C., Koller, O., Hadfield, S., & Bowden, R. (2017).

SubUNets: End-to-End Hand Shape and Continuous Sign

Language Recognition. IEEE International Conference on Computer
Vision (ICCV).

[3] Pigou, L., Dieleman, S., Kindermans, P. J., Schrauwen, B. (2014).

Sign Language Recognition Using Convolutional Neural Networks.
European Conference on Computer Vision (ECCV).

[4] Ko, J. H., Suh, Y. J., & Hong, S. P. (2018). Real-Time Sign

Language Recognition Using Deep Learning. IEEE Access.

[5] Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., & Kautz, J.

(2016). Online Detection and Classification of Dynamic Hand

Gestures with Recurrent 3D Convolutional Neural Networks. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[6] Neverova, N., Wolf, C., Taylor, G. W., & Nebout, F. (2016).

ModDrop: Adaptive Multi-Modal Gesture Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[7] Shanableh, T., & Assaleh, K. (2011). Arabic Sign Language

Recognition in User-Independent Mode. IEEE Transactions on
Systems, Man, and Cybernetics.

[8] Sincan, O. A., & Kara, Y. (2020). Hand Gesture Recognition Using

Convolutional Neural Networks. IEEE Access.

[9] Zhou, Z., & Yin, J. (2016). Real-Time American Sign Language

Recognition Using Depth Data and SVM. IEEE Transactions on
Human-Machine Systems.

[10] Mehta, S., & Chheda, M. (2018). Indian Sign Language Recognition

System for Deaf and Dumb Using Convolutional Neural Networks.
IEEE International Conference on Intelligent Computing and Control
Systems (ICICCS).

[11] Liu, X., Wang, Z., & Yang, M. (2020). Sign Language Recognition

with Multi-Cue Deep Learning Framework. IEEE Access.

[12] Huang, J., Zhou, W., Li, H., & Li, W. (2015). Sign Language

Recognition Using 3D Convolutional Neural Networks. IEEE
Transactions on Multimedia.

[13] Simonyan, K., & Zisserman, A. (2014). Two-Stream Convolutional

Networks for Action Recognition in Videos. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[14] Hu, J., Wu, T., & He, K. (2018). Squeeze-and-Excitation Networks

for Gesture Recognition. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[15] Molchanov, P., Tyree, S., Tkachuk, A., Kautz, J., & Yang, X. (2017).

Hand Gesture Recognition with Convolutional and Recurrent

Neural Networks. IEEE International Conference on Computer Vision
(ICCV).

[16] Kang, J., & Park, S. (2018). Real-Time Dynamic Hand Gesture

Recognition Using 3D Convolutional Neural Networks. IEEE
Transactions on Industrial Electronics.

[17] Pu, J., Zhuang, Y., & Xie, L. (2019). Sign Language Recognition

Using Deep Dynamic Time Warping and CNNs. IEEE Access.

[18] Koller, O., Bowden, R., & Ney, H. (2018). Continuous Sign

Language Recognition: Towards Large Vocabulary Statistical

Recognition Systems Handling Multiple Signers. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

http://www.ijsrem.com/
https://ieeexplore.ieee.org/document/7058099
https://ieeexplore.ieee.org/document/7058099
https://ieeexplore.ieee.org/document/8100146
https://ieeexplore.ieee.org/document/8100146
https://ieeexplore.ieee.org/document/8100146
https://ieeexplore.ieee.org/document/6847131
https://ieeexplore.ieee.org/document/6847131
https://ieeexplore.ieee.org/document/8396251
https://ieeexplore.ieee.org/document/8396251
https://ieeexplore.ieee.org/document/7785089
https://ieeexplore.ieee.org/document/7785089
https://ieeexplore.ieee.org/document/7785089
https://ieeexplore.ieee.org/document/7486611
https://ieeexplore.ieee.org/document/7486611
https://ieeexplore.ieee.org/document/5954135
https://ieeexplore.ieee.org/document/5954135
https://ieeexplore.ieee.org/document/9157840
https://ieeexplore.ieee.org/document/9157840
https://ieeexplore.ieee.org/document/7570025
https://ieeexplore.ieee.org/document/7570025
https://ieeexplore.ieee.org/document/8377763
https://ieeexplore.ieee.org/document/8377763
https://ieeexplore.ieee.org/document/9157802
https://ieeexplore.ieee.org/document/9157802
https://ieeexplore.ieee.org/document/7378013
https://ieeexplore.ieee.org/document/7378013
https://ieeexplore.ieee.org/document/7410867
https://ieeexplore.ieee.org/document/7410867
https://ieeexplore.ieee.org/document/8357975
https://ieeexplore.ieee.org/document/8357975
https://ieeexplore.ieee.org/document/8119063
https://ieeexplore.ieee.org/document/8119063
https://ieeexplore.ieee.org/document/8119063
https://ieeexplore.ieee.org/document/8658520
https://ieeexplore.ieee.org/document/8658520
https://ieeexplore.ieee.org/document/8975767
https://ieeexplore.ieee.org/document/8975767
https://ieeexplore.ieee.org/document/8563479
https://ieeexplore.ieee.org/document/8563479
https://ieeexplore.ieee.org/document/8563479

