

Review of Sustainable Materials for Automotive Applications

Puru Vohra¹, Pratham Dagar¹, Pallavi Sharma¹ and Nazish Ahmad Shamsi¹

Department of Mechanical Engineering, Manav Rachna University, Faridabad

Abstract

The global automotive industry is undergoing a major transition toward sustainable manufacturing practices in response to increasingly stringent environmental regulations, rising fuel costs, and growing societal emphasis on eco-friendly mobility. Among the various strategies adopted, material innovation plays a pivotal role in reducing vehicle mass, improving fuel efficiency, lowering greenhouse gas emissions, and enhancing recyclability across the product life cycle. This review presents a comprehensive and critical assessment of sustainable materials currently employed and under development for automotive applications. The scope includes bio-based polymers, natural fiber-reinforced polymer composites, recycled and secondary metals, advanced lightweight alloys such as aluminum and magnesium, and emerging smart and multifunctional materials.

The mechanical, thermal, and environmental performance of these materials is systematically discussed alongside relevant processing techniques, including injection molding, compression molding, and additive manufacturing. Key advantages—such as weight reduction, renewability, and reduced carbon footprint—are analyzed, along with limitations related to durability, moisture sensitivity, cost, and large-scale manufacturability. Furthermore, life cycle assessment (LCA) methodologies are reviewed to quantify environmental impacts from raw material extraction to end-of-life recycling or disposal. Recent industrial applications and case studies covering automotive interiors, body structures, powertrain components, and energy storage systems are highlighted to demonstrate real-world implementation. Finally, major challenges and future research directions, including material standardization, hybrid material systems, and circular economy integration, are identified. This review aims to serve as a valuable technical reference for students, researchers, and engineers working in the field of sustainable automotive materials.

Keywords: Sustainable materials · Automotive applications · Lightweight materials · Bio-composites · Green manufacturing · Life cycle assessment

1 Introduction

The transportation sector is experiencing a decisive shift toward environmentally sustainable practices due to its substantial contribution to global greenhouse gas emissions. Road-based transportation alone accounts for approximately 25% of total global CO₂ emissions, necessitating urgent interventions in vehicle design, manufacturing, and material selection. One of the most effective engineering strategies adopted to address this challenge is vehicle lightweighting, wherein reductions in structural mass lead directly to improved fuel efficiency, lower energy consumption, and reduced emission intensity.

1.1 Transition from Conventional to Sustainable Automotive Materials

Conventional automotive materials, predominantly steel and aluminum alloys, have long been favored for their high strength-to-cost ratio, crashworthiness, and manufacturability. However, these materials exhibit high embodied energy and carbon intensity due to energy-intensive extraction, refining, and forming processes. As environmental regulations become more stringent and life-cycle emissions emerge as critical design criteria, reliance on traditional materials presents inherent sustainability limitations. Sustainable automotive materials emphasize a life-cycle engineering approach that accounts for raw material sourcing, manufacturing energy demand, operational performance, and end-of-life recovery. These materials include renewable and bio-derived reinforcements, closed-loop recyclable metals, and thermoplastic systems designed for disassembly and reuse. Compared to conventional materials, such alternatives

demonstrate reduced energy consumption during production and improved recyclability, supporting circular manufacturing models.

1.2 Classification of Sustainable Materials for Automotive Applications: Recent research classifies sustainable automotive materials based on their structural and functional roles within vehicle architecture. Natural fiber-reinforced composites (NFRCs), employing reinforcements such as flax, hemp, and kenaf, are increasingly adopted in interior and semi-structural components due to their low density, favorable specific stiffness, and superior vibration and noise damping properties. Bio-based polymers derived from renewable feedstocks such as starch and lignocellulosic biomass are used in interior trims, housings, and non-load-bearing components, reducing dependence on petroleum-based plastics. In addition, recycled and secondary metals—including low-carbon “green steel” produced via hydrogen-based reduction and recycled aluminum alloys—offer significant reductions in life-cycle emissions while maintaining structural performance.

1.3 Impact on Vehicle Performance and Electrification: The integration of sustainable lightweight materials provides measurable performance benefits. Studies consistently indicate that a 10% reduction in vehicle mass results in a 6–8% improvement in fuel economy for internal combustion engine vehicles. In electric vehicles (EVs), lightweighting is even more critical, as mass reduction directly enhances driving range, improves energy efficiency, and offsets the high weight of battery systems. Consequently, sustainable materials play a pivotal role in enabling next-generation low-emission and zero-emission vehicle platforms [1].

2 Sustainability Requirements in Automotive Materials

Sustainable automotive materials must satisfy a balanced combination of mechanical performance, environmental responsibility, regulatory compliance, and economic feasibility. From an engineering perspective, a high strength-to-weight ratio is essential to support vehicle lightweighting initiatives. Additionally, these materials should exhibit a low carbon footprint, achieved through reduced energy consumption during raw material extraction, processing, and manufacturing.

Recyclability—and where applicable, biodegradability—is a key requirement for supporting circular economy principles and minimizing end-of-life environmental impact. At the same time, materials must comply with stringent automotive safety, durability, and reliability standards to ensure long-term structural integrity and crashworthiness. Cost-effectiveness remains critical, as materials must be scalable and economically viable for high-volume production [2].

Life Cycle Assessment (LCA) is widely used to quantitatively evaluate material sustainability. LCA provides a comprehensive assessment of environmental impacts across all stages of a material’s life cycle, enabling informed decision-making during material selection and vehicle design.

3 Bio-Based Polymers in Automotive Applications

Bio-based polymers are increasingly recognized as sustainable alternatives to conventional petroleum-derived plastics in automotive applications. Derived from renewable resources such as corn starch, sugarcane, vegetable oils, and cellulose, these materials reduce fossil fuel dependency and associated greenhouse gas emissions. Their adoption supports sustainability targets while maintaining functional performance for non-structural components.

Fig 1: Importance of Susutainability

The diagram highlights the key pillars of sustainability in the automotive industry, centered on reducing environmental impact while improving efficiency. It emphasizes strategies such as energy-efficient vehicles, circular economy adoption, sustainable manufacturing, eco-friendly material sourcing, and responsible supply chains. Together, these elements support the transition toward a low-carbon, resource-efficient, and future-ready automotive ecosystem [3].

3.1 Common Bio-Polymers

Polylactic acid (PLA) is widely used in interior trims and panels due to its ease of processing and low density. Polyhydroxyalkanoates (PHA) exhibit biodegradability and favorable impact resistance, making them suitable for selected interior components. Bio-based polyamides, partially or fully derived from renewable feedstocks, offer enhanced thermal and mechanical properties and are increasingly employed in under-the-hood applications [4].

Bio-based polymers offer advantages such as renewability, reduced carbon emissions, and lightweight characteristics. However, limitations include lower thermal resistance, moisture sensitivity, and higher material costs. Ongoing research focuses on blending, reinforcement, and surface modification to address these challenges.

3.2 Natural Fibers

NFRCs have emerged as sustainable alternatives to glass fiber-reinforced polymers for non-structural automotive components. Fibers such as jute, flax, hemp, kenaf, and sisal offer low density, favorable specific properties, renewability, and reduced environmental impact.

4. Applications and Industrial Case Studies of Sustainable Automotive Materials: The integration of sustainable materials in the automotive sector has progressed from experimental trials to large-scale industrial implementation across interior, structural, and functional components. These applications demonstrate the technical feasibility, environmental benefits, and performance reliability of sustainable materials under real-world operating conditions.

4.1 Interior Applications: Automotive interiors represent one of the most mature application domains for sustainable materials due to moderate mechanical load requirements and high design flexibility. Natural fiber-reinforced polymer composites (NFRCs), based on flax, hemp, kenaf, and jute fibers, are widely used in door panels, dashboard substrates, seat backs, and package trays [5]. These materials offer low density, good specific stiffness, and excellent vibration and acoustic damping properties. Manufacturers such as BMW, Mercedes-Benz, Audi, and Toyota have successfully adopted NFRCs to reduce vehicle weight while enhancing interior comfort and sustainability.

Bio-based and recycled polymers are also extensively used in interior trims, upholstery, and non-structural housings. Recycled polypropylene (rPP) and recycled polyethylene terephthalate (rPET) are commonly applied in seat fabrics, carpeting, and interior panels, achieving significant reductions in embodied energy and carbon emissions compared to virgin plastics.

4.2 Structural and Semi-Structural Components

In structural applications, recycled metals and lightweight alloys play a dominant role. Recycled aluminum alloys are increasingly employed in body-in-white structures, closures, wheels, and chassis components due to their high strength-to-weight ratio and excellent recyclability. The recycling of aluminum requires up to 95% less energy than primary production, making it a critical enabler of low-carbon vehicle architectures.

Magnesium alloys, which are approximately one-third lighter than aluminum, are utilized in steering wheels, seat frames, and transmission housings. Although their application remains limited by corrosion and joining challenges, ongoing advancements in alloy development and surface treatments are expanding their industrial viability.

4.3 Case Studies from Automotive OEMs

BMW i-Series: BMW's i-Series vehicles incorporate extensive use of natural fiber composites and recycled plastics in interior and semi-structural components. These materials contribute to significant mass reduction and lower life-cycle emissions while meeting premium quality and safety standards [6].

Ford Motor Company: Ford has pioneered the application of soy-based polyurethane foams in seat cushions and interior components. This bio-based alternative reduces petroleum consumption and greenhouse gas emissions while maintaining comfort, durability, and safety requirements.

Toyota Motor Corporation: Toyota has integrated bio-plastics derived from plant-based sources into interior trims and hybrid vehicle components. These materials support Toyota's long-term environmental strategy and contribute to reduced vehicle carbon footprint, particularly in hybrid and electric vehicle platforms.

5. Challenges and Future Scope

Despite significant progress, several technical and economic challenges limit the widespread adoption of sustainable materials in automotive applications. One of the primary concerns is long-term durability and aging behavior under cyclic mechanical loads, thermal exposure, moisture ingress, and ultraviolet radiation. Bio-based polymers and natural fiber composites, in particular, require improved resistance to environmental degradation to ensure long service life.

Standardization and certification present additional barriers. The lack of unified testing protocols and material standards for sustainable materials complicates qualification for safety-critical automotive components. Furthermore, the recycling of multi-material and hybrid structures—such as fiber-reinforced composites combined with metals—remains technically challenging and energy-intensive. Cost scalability is another critical issue, especially for mass-market vehicles [7]. While sustainable materials offer long-term environmental benefits, higher initial material and processing costs can limit industrial adoption. Advances in material hybridization, automated manufacturing, surface modification technologies, and closed-loop recycling systems are essential to overcome these limitations.

Future research should focus on the development of high-performance bio-hybrid composites, advanced lightweight alloys with improved corrosion resistance, and smart materials with multifunctional capabilities. Additionally, digital tools such as life cycle assessment (LCA), material informatics, and additive manufacturing are expected to play a vital role in optimizing sustainable material selection and design.

6. Conclusion

Sustainable materials are playing an increasingly critical role in shaping the future of automotive engineering by enabling vehicle lightweighting, reduced emissions, and enhanced recyclability. Bio-based polymers, natural fiber-reinforced composites, recycled plastics, recycled metals, and advanced lightweight alloys have demonstrated strong potential across a wide range of automotive applications, from interior components to structural systems. Industrial

case studies from leading automotive manufacturers confirm the technical feasibility and environmental benefits of these materials in real-world vehicles.

Although challenges related to durability, standardization, cost, and end-of-life recycling persist, continued advancements in materials science, manufacturing technologies, and circular economy practices are expected to accelerate large-scale adoption. The strategic integration of sustainable materials will be essential for meeting global emission targets and advancing next-generation green mobility solutions.

References

1. Ashby, M. F. (2013). *Materials and the environment*. Elsevier.
2. Avérous, L. (2007). Biodegradable multiphase systems based on plasticized starch: A review. *Journal of Macromolecular Science, Part C: Polymer Reviews*, 44(3), 231–274.
3. BMW Group. (2021). *BMW Group sustainability report 2021*. BMW Group.
4. Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2015). Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. *Industrial Crops and Products*, 65, 27–35.
5. European Automobile Manufacturers Association. (2022). *Sustainability reports*. ACEA.
6. Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. *Progress in Polymer Science*, 37(11), 1552–1596.
7. Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. *Composites Part A: Applied Science and Manufacturing*, 83, 98–112.