

Review on Effectiveness of Battery-Super Capacitor Combination in Electric Vehicles

Abstract - Utilizing a super-capacitor bank, used as an influence buffer to tame sudden changes in power going into and coming out from electronics' battery of an electrical or hybrid electric vehicle is examined in this research. The study takes into account both the simple situation, in the bank of super-capacitors is linked directly in Along with the battery and the casing, in through a DC-DC converter, to which it is connected directly, it is essential for the best performance. Computer simulations that simulate vehicle acceleration and deceleration are used to illustrate the work. Additionally displayed is some data from an experimental circuit. It is anticipated that appropriate hybrid electrical energy storage system design will have a significant positive impact on that of the battery bank health.

KeyWords:Super capacitors, deepcycle batteries, regenerativ e braking, power transients, and DC/DC converters are all rel ated to electric and hybrid vehicles

1.INTRODUCTION (Size 11, Times New roman)

When operating standard gasoline-powered automobiles in cities, where frequent cycles of acceleration and deceleration are necessary, a large amount of energy is lost through the brakes. Therefore, recovering energy from braking is a useful strategy for increasing a vehicle's range, and only electric or hybrid-electric vehicles are capable of doing so (HEV). By using the generator using a traction motor to apply brakes on the wheels and battery recharging, regenerative breaking in these vehicles is able to recover a portion in terms of kinetic energy contained inside the mass of the moving object.

The Associate Electric vehicle battery bank is built to handle peak power consumption, which frequently jeopardizes the necessary weight and area requirements. The auxiliary motor (API) of a degree HEV, on the other hand, is designed to supply the typical power needed by the vehicle, whereas the battery fits within to provide the power spikes necessary for acceleration and uphill climbs, and only permits brief power during braking. The electrical load profile of EVs and HEVs has a pattern of frequent acceleration and braking with high peaks and severe valleys, despite the fact that they are more economical than normal vehicles in metropolitan settings. As a result of the subsequent battery current fluctuating in and out, the battery tends to experience intense heat.

Once batteries are close to full state-of-charge (SOC), overheating of batteries is a concern, and capacity loss becomes much more significant because, at this point, they are unable to withstand large current bursts from regenerative breaking without degrading. The limitations of supercapacitors' higher power density and rapid charge and discharge times (also known as electrochemical capacitors or ultracapacitors) have many more advantages than the use of batteries, instead of using brief bursts of power Thus, by including a super-capacitor, the bank may assist the battery during vehicle and hill climbing. Acceleration Its quick recharging ability also helps the battery capture regenerative braking energy. In recent years, attention has been drawn to this important benefit of battery-super-capacitor energy storage/supply systems in transportation, in addition to in various applications. Additionally, using super-capacitors enables a reduced battery size and virtually unlimited chargedischarge cycles (because there are no internal resistances) (chemical processes that make up their energy storage system). In addition, these gadgets don't employ toxic substances and require no upkeep.

To achieve the best performance, special considerations should be made if the integration of a hybrid energy storage system has begun. The most efficient method of utilization Using an influence converter, the super-capacitor bank may regulate the amount of energy it contains. Even if there is no direct association of the Placing the super-capacitor over the terminals of the battery will reduce the battery's transient current going in and out. The direct super capacitor-battery shunt connection is reviewed in the paper, followed by a brief discussion of the issues with element modeling..

2. COMPONENT REQUIRED:

This part discusses the modeling of these three of the most important system components of an electric vehicle: the electrical load, battery bank, and supercapacitor bank. All the components are explained below.

A. BATTERY BANK

It's not easy to model batteries because they provide adequate energy while tolerating temperature-dependent molecular chemistry processes. Therefore, a battery's electrical behaviour may be a nonlinear performance of multiple regularly changing parameters, including internal temperature, charge status, charge/discharge rate, etc. The two factors that affect a battery's capacity are temperature and discharge rate. This relationship is described by the Peuket equation, $I = \frac{\alpha}{\sqrt{\beta}}/t$ which links I (A) to the discharge current and discharge time t (hr), where α and β are constants. Given the battery capacity C_{T0} at temperature T_0 the capacity at some other temperature is computed by $C_T = C_{T0}(1 + \sigma(T - T_0))$. σ is a temperature constant.

An approximate model that is often used for batteries is a Thevenin equivalent circuit that consists of the open circuit voltage in series with an effective internal resistance. Both

voltage and resistance values are functions of the battery SOC, and these relations are generally supplied the manufacturer. SOC is defined the percentage of energy left in a battery (after supplying a certain amount of amp-hours) relative to its full capacity.

The open-circuit voltage is often approximated by a linear function of the SOC: $Voc = a_1 + a_2$ **SOC**, at some specific temperature (e.g., 80^0 F). The battery internal resistance has static and dynamic values that depend of battery SOC, whether the battery is being charged or discharged and rate of charge/discharge. In short duration studies, however, the amount of amp-hours in and out of the battery **is a** small fraction of the battery capacity. Hence it is fair to assume that battery internal voltage is constant during such periods, and a quasi-steady state model with fixed open-circuit voltage and internal resistance values are used in this case, one during charging and another during discharging.

B. SUPERCAPACITOR BANK

The super-capacitors' resistance, as well as the inductance of their electrodes, a series R-L circuit is used to represent the terminal wires and wires, much like in regular capacitors. The insulation between the electrodes of the device is also deficient. This causes a leak current, which is shown by excessive shunt resistance. Super-capacitors differ from conventional capacitors in that they are significantly more cost-effective, meaning that their series resistance may be much lower and their shunt resistance may be much more valuable. Super-capacitors have a self-discharge time constant that is hundreds of times bigger than that of regular capacitors. The official contains many sophisticated models that are suitable for dynamic analysis units. The study under investigation tries to find out if a brief analysis of the power (or current) flow during acceleration and between the supercapacitor bank and the battery during acceleration and quickness is possible. As a result, the leak resistance won't be noticeable because of the small amount of inaccuracy, and the super-capacitor bank will be represented merely by a series R-C circuit.

C. .ELECTRICAL LOAD

The electrical load in electric vehicles consists mainly of an inverter-fed induction motor for motive power. During regenerative breaking, the motor is turned into a generator by reducing the frequency of its terminal voltage, thus reversing power flow and producing braking torque. Detailed modelling **of** inverter-fed motor drives is found in standard power electronics and drive textbooks. **As far** as the power source is concerned, power demand is sufficient for analysis. Since the DC bus voltage is not allowed to vary significantly from its nominal value, current demand gives a good approximation of power demand. Thus, the load can be modelled simply by a time-varying current source that reverses direction as the vehicle switches from coasting or acceleration to regenerative braking.

3. DIRECT SUPER CAPACITOR CONNECTION:

After attempts are made to maximise the functionality of this additional sub-system, it will be difficult to combine the super-capacitor with the battery-load circuit. The only way to connect is to directly connect a after precharging it to the voltage of the battery terminals, connect the super-capacitor in parallel with the battery bank. When the load current, denoted by iL in Figure 1, is shown to be flowing downhill, such a connection is indicated (i.e., positive throughout acceleration breaking and coasting, and negative throughout regenerative braking).

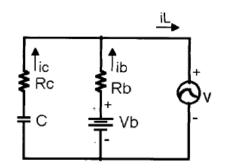


Fig. 1. Parallel connection of supercapacitor bank, battery bank, and electrical load.

Given a precise load current profile associated with a brief driving cycle, Kirchoff's voltage and current laws can be used to compute the super-capacitor current and battery current (I).

$$\begin{split} i_c + ~i_b &= i_L \\ V &= V_c - ~i_c R_c = v_b - i_b R_b \\ &= -C * \frac{d}{dt} v_c \end{split}$$

where vc and vb stand for, respectively, voltages of the battery and internal capacitor. The vc equation of first order is produced when (1) and (3) are substituted in (2):

$$\frac{\mathrm{d}V_{\mathrm{c}}}{\mathrm{d}t} + \alpha V_{\mathrm{c}} = \alpha V_{\mathrm{b}} + \beta i_{\mathrm{L}}$$

Where,

i_c

$$\propto = \frac{1}{C(R_b + R_c)}$$

$$\beta = -\frac{R_{b}}{C(R_{b} + R_{c})}$$

The answer to (5) can be expressed as in the following equation, Eqn. (6):

$$V_{c} = Ke^{-\alpha t} + V_{b} + \beta e^{-\alpha t} \int i_{L} * e^{\alpha t} dt$$

where K is established by changing v, from its initial value to vb.

4. EFFECTS OF DIRECT CONNECTION:

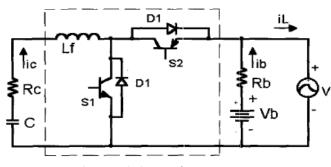
It should be noted that the bank of super-capacitors in the previous circuit cannot have its power flow controlled since the voltage at its terminals must always match the voltage at the battery terminals. The internal voltages and resistances of the two branches alone dictate how much current is divided between the super-capacitor and battery banks. Due to direct connection, the state of charge(SOC) of the battery will no longer be maintained. If the SOC of the battery goes below the threshold value, it will take a longer time to charge.

HOW TO SOLVE THE PROBLEM:

We have to connect the buck/boost converter in between the super capacitor and battery so that the desired connection is then addressed by using a **DC/DC** converter. in the boost mode when discharging, and in the buck mode when charging the super-capacitor bank. The analysis is illustrated by computer simulations of an actual system. **Part** of the simulations is verified by experimental data on a prototype model.

CONNECTION OF A SUPERCAPACITOR THROUGH A POWER CONTROLLER

The above straight connection clearly indicates that optimal use of the super-capacitor bank requires a power flow controller between the two energy storage subsystems. The objective is to maintain the battery current as constant as possible with a slow transition from low to high current during transients to limit battery stress. On the other hand, the super-capacitor ought to charge as fast as possible without exceeding the maximum current from regenerative breaking and to discharge most of its stored energy during acceleration.


Energy flow in and out of the super-capacitor can be controlled with a pulse-with-modulated (PWM) DC/DC converter with a simple topology as shown in Fig. 2 [7], [8]. The super-capacitor is discharged during acceleration at a rate controlled by modulating switch S1. In this boost mode, energy is delivered to inductor Lf when S1 is turned ON (State 1), then transferred to the load through diode D2 when SI is turned OFF (State 2). During deceleration, the supercapacitor is charged at a rate controlled by modelling switch S2. Here, energy is transferred to Lf when S2 is turned ON (State 3), then to the super-capacitor through diode D1 when S2 is turned OFF (State 4). The analytical expression of the super-capacitor current can be determined by the second order differential equation.

$$\frac{\mathrm{d}^2 \mathrm{i}_{\mathrm{c}}}{\mathrm{d} \mathrm{t}^2} + \frac{\mathrm{R}_{\mathrm{c}}}{\mathrm{L}_{\mathrm{f}}} * \frac{\mathrm{d} \mathrm{i}_{\mathrm{c}}}{\mathrm{d} \mathrm{t}} + \frac{1}{\mathrm{C} \mathrm{L}_{\mathrm{f}}} \mathrm{i}_{\mathrm{c}} = \mathrm{f}(\mathrm{t})$$

Where
$$f(t)=0$$
 in state 1 and 4, and
 $f(t) = \frac{R_b}{L_c} * \frac{di_L}{dt}$

When the power demand changes in States 2 and 3, the power controller alone controls the energy The power controller governs the flow of energy in and out of the super-capacitor only during fluctuations in power demand. Consequently, quasi-steady state relations between the converter input and output parameters do not exist in this case, and one has to resort to circuit simulation software such as PSpice.

The basic controls for the static power converter in Fig. 2 can be summarised as follows. The super-capacitor must be charged by the battery bank or by an off board power supply prior to vehicle use. During the initial stages of vehicle acceleration, power flow out of the super-capacitor should be matched to that of the load demand as long as the device current rating is not exceeded. This requires the controller to adjust the ON state pulse of S1 accordingly. As the capacitor continues to discharge, the battery current should gradually increase and ultimately reach the load current when the energy stored in the capacitor reaches low levels. During regenerative breaking, the super-capacitor should be charged at the maximum possible rate (by modulating switch S2) so that a small fraction of the load current flows into the battery bank. The current injected by the load is then diverted slowly into the battery as the capacitor approaches full charge.

Buck/Boost Converter

Fig. 2. Supercapacitor integration through power flow controller.

5. NUMERICAL ILLUSTRATION

The performance of the series hybrid-electric bus system as an installed part of the energy storage for freshly built supercapacitor banks is being studied to highlight the analysis in the sections above. The internal combustion engine in this hybrid vehicle's APU burns hydrogen. When the battery bank has reached or is very near to reaching full capacity, the study duplicates the APU and the vehicle power circuit turned off, mimicking the vehicle engine standing once. For the purpose of simplicity, this is done. The battery system consists of two batteries. Figure 3 shows one of the

parallel-connected banks next to the supercapacitor bank. Here, a basic description of both the battery and supercapacitor subsystems is provided. Deep-cycle valve-regulated lead-acid (VRLA) battery modules totaling 28 . Figure 3 shows one of the parallel-connected banks next to the bank of supercapacitors. Here is a brief explanation of the battery and supercapacitor subsystems. 28 VRLA (valve-regulated lead-acid) battery modules for deep-cycle use. One of the parallel-connected banks is shown adjacent to the supercapacitor bank in Figure 3. Here is a brief explanation of the battery and supercapacitor subsystems. The twenty-eight deep-cycle valve-regulated lead-acid (VRLA) battery modules that make up each of the two battery banks are linked in series. Each unit can deliver and has a 12 V rating. C_T0= 85 Ah @ C/3 (at To = 80° F).

Below is a description of these varied battery specifications :-

- internal static resistance during charging: $4m\Omega$ for SOC 5 80%, and 10 m Ω at SOC = 90% recharge current limit: 400 A,
- Peukert's equation constants: $\alpha = 1.33$ and $\beta = 256$,
- capacity-temp. dependence parameter: $\sigma = 0.004$,
- V,, vs. SOC parameters: $a_1 = 11.80$, $a_2 = 1.32$,
- battery subsystem rating: 336 VDC, 170 Ah@C/3.

The 150 cells that make up the supercapacitor are strung together. Each cell is rated at 2.5 V and 2,500 F. Here are some further details :

- cell series resistance = $1 \text{ m}\Omega$,
- cell leakage resistance: 30052,
- cell peak voltage: 2.7 V,
- cell rated current: 400 A,
- supecapacitor subsystem rating rated voltage: 375 V, peak voltage: 405 V, capacitance: 16.67 Farads, energy storage capability: 1.2 MJ

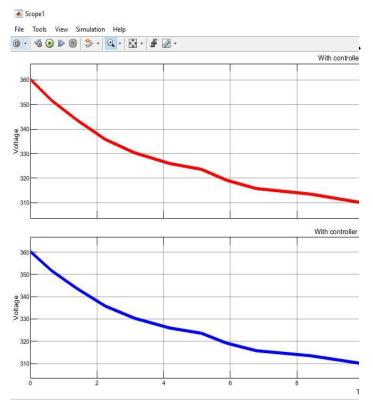
It is necessary to balance capacitor cells since no two are exactly alike and because internal parallel resistance and cell capacitance have an impact on how voltage is delivered. To distribute the total stack voltage over the capacitor bank uniformly, bypass resistor s are connected in parallel with each cell and scaled to be dominant. A charge equalisation is missing from the battery pack, though. Monitoring the battery's state is done through a data collection system. The user gets alerted if any voltages are unexpectedly high or low. Additionally, the terminal voltage and internal cell temperatures are noted. <image><image><image>

Fig. 3. (a) Supercapacitor bank, (b) battery bank.

A prototype has been made using a specialized device that simulates realistic current patterns by accelerating and decelerating while producing and absorbing current. A single 12 V battery cell was connected in parallel to a string of six super-capacitor cells of the same brand and type in order to evaluate how well the super-capacitor-battery combination worked both during charge and discharge. The following test strategy was finished:

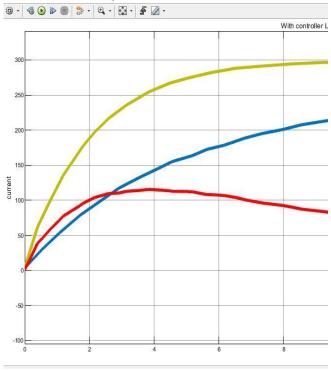
- 1. Super-capacitor strings are pre-charged and connected in parallel with battery units.
- 2. 200 A of steady current should be injected until the voltage reaches 14.2 V, the maximum permitted value, and then the current should be reduced to keep the voltage there for 10 seconds.
- 3. For 30 seconds, turn off the load.

Connect a 200A load for 10 seconds, then turn off the electricity.


6.SIMULATION RESULTS OF DIRECT CONNECTION OF SUPER – CAPACITOR AND BATTERY:-

a. Without controller battery and Super capacitor Voltage :-

By directly connecting the battery and the super capacitor, both discharge voltage equally. It is not feasible because if the battery voltage goes below the SOC, then it is very difficult to charge that battery.


Volume: 06 Issue: 10 | October - 2022

b. Without controller Load / Super-Capacitor / **Battery Current :-**

The effect of the controller is that the battery reaches its peak current after 10 seconds, then current starts to decreasing. Peak current is more flowing in this case.

File Tools View Simulation Help

Observation From Results:-

- 1. No management of power flow of Super-capacitor and battery.
- Super-capacitor loose there voltage in large amount. 2.
- 3. Battery peak current is high.

4 The super-capacitor voltage goes below SOC.

Expected Results after connecting the controller

- 1. Reduction in the battery current
- 2. Reduction in the battery voltage
- 3. SOC of super-capacitor have to be improved Proper power flow management

CONCLUSIONS

The observation is that direct connection of the super capacitor with the battery will not effectively work, so the design of the controller is important. The controller helps to manage the direction of switches according to the charging and discharging. Controller helps to manage the power flow in and out of Super capacitor and Battery

REFERENCES

[1] Bopche, L. M., Deosant, A. A., & Ahmad, M. (2016). Combination of parallel connected super capacitor& battery for enhancing battery life. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques,vol 12 pp 73-78, Mar 1997

[2] Abedi, M. R., & Lee, K. Y. (2013). Dynamic model analysis and control of a grid connected wind energy system integrated with a super-capacitor bank. 2013 IEEE Power & Energy Society General Meeting.doi:10.1109/pesmg.2013.

[3] Zhang Haoming, Sun Yukun, Ding Shenping, & Wang Yinghai. (2008). Application of super capacitor with full digital converter in hybrid electric vehicle energy transmission system. (vol 12 pp 212-215, 27 10 2008)

[4] Wu, B., Zhuo, F., Long, F., Gu, W., Qing, Y., & Liu, Y. (2011). A management strategy for electrical device battery super capacitor hybrid energy system in solar car. -8thInternational Conference on Power Electronics - ECCE Asia, vol 44 no 1 pp1-6, June 2011

P.R.Sawarkar. Dr.S.G.Tarnekar. [5] Dr.S.B.Bodkhe"Improvement In Energy Transactions In Ultra Capacitor Banks By Series/Parallel Re-combination" "-an Indian patent filed by GHRLABS, in 2012.

Shuai Lu, Student member, IEEE, Keith A. [6] Corzine, Member, IEEE and Mehdi Ferdowsi, Member, IEEE "High Efficiency Energy Storage System Design for Hybrid Electric Vehicle with Motor Drive Integration" in Electrical and Computer Engineering Department University of Missouri - Rolla, MO, USA, 2006.

[7] FATIH CINGOZ "Accelerated simulation of super capacitors using order reduction techniques and waveform relaxation methods" M.S. Thesis, Presented to the Faculty of the Graduate School of The University of Texas at Arlington, May 2012