

Review on Tribological Behaviour of Bronze-Metal matrix Composite

Vijaya B. Shingane¹, Dr. M. S. Kadam²

¹PG Student, Mechanical Engineering Department, MGM's Jawaharlal Nehru Engineering College, Aurangabad. ²Professor, Mechanical Engineering Department, MGM's Jawaharlal Nehru Engineering College, Aurangabad.

Abstract: Metal matrix composites are engineered materials with a combination of two or more dissimilar materials, (at least one of which is a metal) to obtain enhanced properties. The use of different kind of composite materials is in constant growing over the years, because they have better physical, mechanical and tribological properties comparing to matrix materials. Bronze, an industrially relevant material, is always at a constant need for improvement in its properties. It should possess superior hardness, wear resistance and high tensile properties. The microstructure of the composite was characterized by using an optical microscope. The mechanical and tribological tests were carried out on the developed composite samples as per standards. It was observed that the hardness of the developed bronze composite increases with an increase in the reinforcement addition. The tensile properties were found to improve with addition of reinforcement particles into bronze matrix but.

Keywords: Metal matrix Composite, Friction and wear, Tribology Setup.

1. INTRODUCTION

bronzes are commonly used for a variety of tribological applications are used in journal and sleeve bearings, bushings and other heavy load supports in airframes, off-road construction equipment, mining equipment, and heavy manufacturing equipment. The alloys are known to be less susceptible to scuffing and galling under severe contact conditions in the boundary lubrication regime. In general, these alloys have a combination of properties such as adequate strength, excellent corrosion resistance, and high thermal conductivity that make them suitable for various challenging tribological applications. Bronze and brass alloys with a variety of compositions and microstructures are commercially available and are used for tribological applications. Bronze is not a good candidate for hard coatings, in part because it is relatively soft and in part because of inherently poor adhesion of coatings onto copper-based materials.

Another approach that could be applicable for bronze material is near-surface region is microstructural modification. This can take the form of machining, mechanical peening, etc. Such operations can be used to cold work or refine the grain size and microstructure of the near-surface layer through recrystallization. The near-surface layer properties of relatively soft materials can also be enhanced by the incorporation of a hard second phase. This can be done by a variety of techniques such as near-surface melting and particle incorporation, for instance by laser. of course, melting and resolidification of the near-surface material can sometimes be accompanied by some undesirable defects such as

microstructural and compositional heterogeneities, both of which can have detrimental effects on the properties and performance of the surface layer. A relatively new surface modification technique that can be used to enhance the near-surface material properties of bronze is friction stir processing (FSP).

1.1 Composite materials

It consists of just two materials in which on is matrix or binder surrounds the other material called reinforcement in the form of fibres or particulate. Generally, a composite material is composed of reinforcement (fibers, particles, flakes, and/or fillers) embedded in a matrix (polymers, metals, or ceramics). The matrix holds the reinforcement to form the desired shape while the reinforcement improves the overall mechanical properties of the matrix. When designed properly, the new combined material exhibits better strength than each individual material.

Volume fraction of component materials should be above 5 % of total volume and their properties must differ from one another. Usually, volume fraction of one material is significantly higher than the volume fractions of the others and that material is called – matrix. Matrix can be ceramic, metal and polymer.

"The composites are compound materials which differ from alloys by the fact that the individual components retain their characteristics but are so incorporated into the composite as to take advantage only of their attributes and not of their shortcomings", in order to obtain an improved material. Composites are multifunctional material systems that provide characteristics not obtainable from any discrete material. They are cohesive structures made by physically combining two or more compatible materials, different in composition and characteristics and sometimes in form. Composite materials are heterogeneous materials consisting of two or more solid phases, which are in intimate contact with each other on a microscopic scale. They can be also considered as homogeneous materials on a microscopic scale in the sense that any portion of it will have the same physical property

1.2 Need of Composite Material

The biggest advantage of composite material is to enhancing mechanical and physical properties such as light weight as well as strong and system efficiency. The use of different kind of composite materials is in constant growing over the years, because they have better physical, mechanical and tribological properties compared to matrix materials. Composites based upon light metals like aluminium, magnesium and zinc, grace to their low density, are being applied in many industries, including the automotive. Among all these, Brass based composites might be the most frequently used ones and extensive research has been performed on possibilities of their use for manufacturing of the tribomechanical components, so they will be analyzed in the following text as representatives of the light metals based composites. While composites have already proven their worth as weight-saving materials, the current challenge is to make them cost effective. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. It is obvious, especially for

composites, that the improvement in manufacturing technology alone is not enough to overcome the cost hurdle. It is essential that there be an integrated effort in design, material, process, tooling, quality assurance, manufacturing, and even program management for composites to become competitive with metals.

The composites industry has begun to recognize that the commercial applications of composites promise to offer much larger business opportunities than the aerospace sector due to the sheer size of transportation industry. Thus the shift of composite applications from aircraft to other commercial uses has become prominent in recent years. MMCs have also begun to substitute for conventional materials in household appliances, computers, audio and video equipment, as well as in sport appliances. Compressive and tensile strength, as well as the hardness at room and elevated temperatures, are also increased significantly, resulting in an improvement in the wear resistance of the composite material.

Whilst the use of composites will be a clear choice in many instances, material selection in others will depend on factors such as working lifetime requirements, number of items to be produced (run length), complexity of product shape, possible savings in assembly costs and on the experience & skills the designer in tapping the optimum potential of composites. In some instances, best results may be achieved through the use of composites in conjunction with traditional materials.

1.3 Characteristics of the composite

Composites consist of one or more discontinuous phases embedded in a continuous phase. The discontinuous phase is usually harder and stronger than the continuous phase and is called the 'reinforcement' or 'reinforcing material', whereas the continuous phase is termed as the ' matrix'. Properties of composites are strongly dependent on the properties of their constituent materials, their distribution and the interaction among them.

Figure 1: Orientation and Shape of reinforcement in composite material

The shape of the discontinuous phase (which may by spherical, cylindrical, or rectangular cross-sanctioned prisms or fibers), the size and distribution (which controls the texture of the material) and volume fraction determine the interfacial area, which plays an important role in determining the extent of the interaction between the reinforcement and the matrix. The orientation of the reinforcement affects the isotropy of the system. A fibrous reinforcements are

characterized by its length and diameter so we distinguish, long (continuous) fibers (Figs. 1d and 1e) and short (discontinuous) fibers - whiskers (Figs. 1b and 1c). Arrangement can be, as well, preferred (Fig. 1b) and random (Fig. 1c), and often the direction of fibers is changed from one layer to another (Fig. 1e).

Title, Name & Year	Input	Response	Optimiza	Work	Remark
	Parameter	Paramete	tion	material	
		r	Techniqu		
			e		
Optimization Study on	Reinforceme	Wear rate,	Taguchi	Bronze	The obtained findings reveal that a 10%
Surface Roughness and	nt,	surface	Method	with	reinforcement ratio gives better surface
Tribological Behavior of	Temperature	roughness		graphite	quality and coefficient of friction
Recycled Cast Iron	and pressure	and coeff			Taguchi design of experiment
Reinforced Bronze		of friction			technique can be very efficiently used
MMCs Produced by Hot					in the optimization of process
Pressing					parameters
Aydın Güne					
MDPI-2021					
Development of Bronze	Reinforceme	Wear rate,	Taguchi	Bronze	It was observed that the hardness of the
Metal Matrix Composite	nt, load and	hardness	Method	and SiC	developed bronze composite increases
for Automobile and	temperature	and tensile			with an increase in the Reinforcement
Marine Applications		strength			addition. The tensile properties were
					found to improve with addition of
Rohit U. Krishnan					reinforcement particles into bronze
					matrix The tensile properties of the
Materials Science Forum-					developed composite increased
2019					significantly and reduced the
					Percentage elongation rate compared to
					that of unreinforcement bronze.
Tribological Investigation	Reinforceme	Wear rate	Taguchi	bronze	It has been observed that at same
and Development of	nt and load		Method	with SiC	operating conditions pure brass has
bronze composite Bearing					higher wear value as compare to brass
Material					composites.

2. LITERATURE SURVEY

Ι

Sagar Shinde					
IJCET-2018					
On some mechanical	Reinforceme	Wear rate	Taguchi	Bronze	Taguchi design of experiment
properties and wear	nt, Speed,		Method	and	technique can be very efficiently used
behavior of Sintered	load			Al_2O_3	in the optimization of process
bronze based composites					parameters
reinforced with some					Adding reinforcement in sintered
Aluminides micro					bronze leads to increasing its hardness,
additives					but the flexural strength may increase
					or decrease depending on the chemical
E. Feldshtein					composition of aluminides.
IJMET-2017					
Tribotechnical Properties	Reinforceme	coeff of	Taguchi	bronze	as a rule it is lower in comparison with
Of Sintered Bronze-Based	nt, load and	friction	Method	with Ni	sintered bronze under stable
Composites Reinforced	sliding	and wear			Loading and concentrated contact
With Al-Based Hard	speed	rate			conditions. When the loading is
Particulates					increased, differences in the friction
					coefficients are observed.
					In the MMC wear process, micro-
Larisa Dyachkova					craters are formed on the contact
Composite theory and					surface and it is the principal reason for
practice-2017					the decrease in the wear rate
Enhancement of the	Deinfe	Ween	Ta and 11	Duan	The EQD masses and 1 and
Enhancement of bronze	Reinforceme	wear rate	I aguchi Method	Bronze	The FSP process produced some
alloy surface properties	nt, speed	and heat		with Mg	increase in the hardness of the
by FSP second-phase	and time	affected			processed surface layer via a
particle incorporation		zone			combination of grain refinement and
					dispersion hardening. In the as-
O.O. Ajay					processed condition, FSP treatment
					resulted only in marginal improvement
Elsevier -2017					in wear. Surface polishing to remove
					the roughening effect and the loose

					burrs associated with the FSP process
					resulted in significant
					improvement in the sliding wear
					resistance of the bronze material
					under lubricated sliding contact against
					hardened steel. Given the
					observed load shielding by hard
					second-phase particles in the baseline
					bronze
Dry sliding friction and	Percentage	Wear rate,	Taguchi	Bronze	the reinforcing particles may reduce the
wear behavior	of	Tensile	Method	With	wear resistance instead of increasing it
of bronze matrix	Reinforceme	strength		Ni3A	through moving from the matrix
composites reinforced	nt, Sliding	and			At the lower sliding speed the
with Ni3Al particles:	distance	hardness			coefficients of friction of composites
Comparison					increased with increasing friction load
with conventional brake					whereas it reduced for conventional
lining					brake lining. In addi- tion, the
					coefficient of friction of composite also
brahim Çelikyüre					increased with increase in reinforcing
					particle size at the lower sliding speed
Int. J. Mater. Res-2016.					
Microstructure And	Reinforceme	Wear rate	Taguchi Method	Bronze	The results indicate possibility of
Tribological Properties Of	nt, load and		Method	with	manufacturing of good quality,
Tin Bronze-Graphite	sliding			Graphite	especially in terms of tribological
Composites Made By Stir	speed				properties, composite materials with
Casting					particles of lubricating phase (graphite)
					in the process of melting and casting
					with simultaneous mechanical stirring
					in a liquid state and confirm the
					possibility of application of the
					examined composite materials of lead-
					free copper-graphite type for sliding
					elements operating in conditions of
					cientents operating in conditions of

1.3 CONCLUSIONS

- 1. The available literatures about metal matrix composites reveal that there are different types of reinforcement such as graphite, boron carbide, tungsten disulphide and molybdenum disulphide which reduces the wear rate and improves the mechanical properties of the brass based metal matrix composite materials.
- 2. The experiments were carried out and on the basis of comparison with the results & the analysis, it was concluded that the predicted values match the experimental values reasonably well for Wear rate, Hardness, Tensile Strength etc.
- 3. The optimization techniques used by various researchers with different techniques are Taguchi method, RSM (Response Surface Methodology), Algorithm, Grey rotational analysis were mentioned in the review
- 4. From the literature survey it clear that very few works has been carried out by varying wt% of SiC as a parameter for dry sliding wear rate of bronze as a base material and SiC as reinforcement in composite using Tribology Setup.
- 5. From the literature it is also clear that many researchers have studied the effect of different parameters like load, sliding velocity, sliding distance, frequency, temperature, counter face hardness and weight percentage of reinforcement and found out that these parameter have significant influence on wear rate. But less work has done with combination of load, reinforcement, and Frequency was not studies.
- 6. A lot of research on the dry sliding wear behavior of MMCs has been reported. It is clear from the above literature that the wear properties are improved remarkable by introducing a hard inter metallic compound into the aluminium matrix. Work published in the literature is mainly concerned with SiC. A few attempts have been made to fabricate MMC to increase the wear resistance characteristics using low cost reinforcement like bauxite, corundum, granites, and sillimanite. The ever-increasing demand for low cost reinforcement stimulated the interest towards the utilization low cost reinforcement like SiC.
- 7. From the literature survey it clear that very few work has been carried out by varying wt% of silicon carbide powder as a parameter for dry sliding wear rate of bronze as a base material and silicon powder powder as a reinforcement in composite using pin tribology Setup machine.
- 8. Mechanical properties of the silicon powder powder is better than the earlier material used by the researchers, so, I have used this material to increase the strength, hardness and less wear rate than the other material.

ACKNOWLEDGMENT

I would like to express my deepest gratitude and sincere thanks to my guide **Dr. M. S. Kadam**, Department of Mechanical Engineering, MGM's Jawaharlal Neharu Engineering College, Aurangabad for his valuable time and keen interest in my review work. His intellectual advice has helped me in every step of my review work and motivated my efforts.

REFERENCES

- E. Feldshtein, p. Kiełek and t. Kiełek, "on some mechanical properties and wear behavior of Sintered bronze based composites reinforced with some Aluminides microadditives", Int. J. of Applied Mechanics and Engineering" (2017).
- 2) Rohit U. Krishnan ,a, Jithin Mohan, "Development of Bronze Metal Matrix Composite for Automobile and Marine Applications" (2019)
- 3) Aydın Güne,s 1, Ömer Sinan , "Optimization Study on Surface Roughness and TribologicalBehavior of Recycled Cast Iron Reinforced Bronze MMCs Produced by Hot Pressing", (2021)
- 4) Larisa dyachkov, eugene feldshtein, "tribotechnical properties of sintered bronze-based composites reinforced with al-based hard particulates". (2017)
- 5) O.O. Ajayi, Cinta Lorenzo-Martin, "Enhancement of bronze alloy surface properties by FSP secondphase particle incorporation (2017)
- 6) Z.N. Farhat, Y. Ding, D.O. Northwood, A.T. Alpas, Effect of grain size on friction and wear of nanocrystalline aluminum, Mater. Sci. Eng. A206 (2018) 302–313.
- L. Zhou, G. Liu, Z. Han, K. Lu, Grain size effect on wear resistance of nanostructured AISI 52100 steel, Scrip. Mater. 58 (2008) 445–448.
- 8) S.H. Aldajah, O.O. Ajayi, G.R. Fenske, S. David, Effect of friction stir processing on tribological performance of high carbon steel, Wear 267 (2019) 350–355.
- Dodds, A.H. Jones, S. Cater, Tribological enhancement of AISI 420 martensitic stainless steel through FSP, Wear 302 (2013) 863–877.
- 10) C. Lorenzo-Martin, O.O. Ajayi, Rapid surface hardening and enhanced tribological performance of 4140 steel by FSP, Wear 332–333 (2015) 962–970.
- 11) O.O. Tinubu, S. Das, A. Dutt, J.E. Mogonye, V. Ageh, R. Xu, J. Forsdike, R.S. Mishra, T.W. Scharf, Friction stir processing of A-286 SS: microstructural evolution during wear, Wear 356–357 (2016) 94– 100.
- 12) E. Hong, B. Kaplin, T. You, M.-S. Suh, Y.S. Kim, H. Choe, Tribological properties of copper alloybased composites reinforced with WC particles, 2017

- 13) Aydın Güne, s 1, Ömer Sinan, "Optimization Study on Surface Roughness and TribologicalBehavior of Recycled Cast Iron Reinforced Bronze MMCs Produced by Hot Pressing", (2021)
- 14) Larisa dyachkov, eugene feldshtein, "tribotechnical properties of sintered bronze-based composites reinforced with al-based hard particulates". (2017)
- J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology 92-93 (1999), 1 - 7.