

Revolutionizing Medical Microbiology: The Role of Artificial Intelligence in Microbial Diagnostics and Research

Soumya Nigam¹, Shubham Saxena²

Corresponding Author: Soumya Nigam

Ph.D. Scholar¹, Department of Microbiology, SMS Medical College Jaipur

Digital Marketing Specialist², **Corresponding Author:** Ph.D. Scholar, Department of Microbiology, SMS Medical College Jaipur

Email id: ngm9416@gmail.com

Abstract:

Conventional microbial diagnostics face challenges related to specimen handling, microbial isolation, result interpretation, and delays in antimicrobial resistance determination. The integration of artificial intelligence (AI), particularly machine learning (ML), offers efficient and innovative solutions to these limitations. This review emphasizes the importance of standardized sample processing and highlights recent advances in AI-based approaches for microbial classification, microorganism interaction analysis, and enhanced microscopy. Applications of convolutional neural networks in automated bacterial identification, digital pathology, colony counting, antimicrobial susceptibility testing, and disease surveillance are discussed, with examples including malaria, mycobacteria, and SARS-CoV-2. Despite ethical concerns regarding data privacy, integrity, and bias, AI-driven diagnostics demonstrate robust potential to transform diagnostic microbiology.

Key Words: AI, M.L., D.L., CNN

Introduction:

Laboratory diagnosis of pathogens is a critical component of healthcare, relying on techniques such as culture, molecular analysis, and to identify infectious agents. However, conventional diagnostic methods are often limited by challenges in antimicrobial susceptibility testing, sample handling, subjective interpretation.[1] Artificial intelligence (AI), specifically machine learning and deep learning, have significantly transformed microbiological diagnostics by enabling rapid and accurate analysis of complex datasets, including microbial phenotypes, clinical metadata, and genetic sequences. AI-driven tools facilitate optimized treatment strategies, early detection, improved patient outcomes while also addressing the growing challenge of antimicrobial resistance. [2] This review highlights the emerging role of AI in microbial diagnostics, discussing its advantages, applications, limitations in the context of recent technological advancements.

1. Emerging Trends of AI and Machine Learning in Human Health

Artificial intelligence (AI) enables personalized and accurate diagnosis, ensuring data security and improving access to medical technologies [3, 4]. AI tools such as ChatGPT are increasingly integrated into routine and clinical workflows, with approximately 500 companies adopting Generative Pre-trained Transformer-based systems, reflecting their reliability [5–7]. AI and machine learning (ML) models efficiently uncover relational patterns within disease-associated and complex biological datasets, including genomic and sequencing data. ML applies mathematical modeling to identify predictive patterns through trained learning, while deep learning (DL), using artificial neural networks (ANNs), enhances performance through layered data processing driven by high-quality datasets [8].

ML and DL aids in cancer diagnosis, prognosis, and personalized medicine [9]. In computational pathology, DL-based image analysis has improved lymph node metastasis detection [10], Ki67 scoring in breast cancer [11], Gleason grading in prostate cancer [12], and molecular marker prediction [13], increasing prognostic accuracy by 15–25% [14].

The integration of AI with the Internet of Medical Things (IoMT) enables intelligent point-of-care testing, robotic surgery, individualized therapeutic strategies [15–17].

AI applications are advancing microbial diagnostics via volatile organic compounds (VOC) profiling, antimicrobial resistance (AMR) prediction. ML-based analysis of (VOCs) in biological samples has revealed disease and pathogen-specific signatures [18–25,26–29]. Moreover, ML-driven pan-genome approaches improve AMR prediction by identifying resistance-associated gene clusters and phenotypes [30,31].

2. The Impact of AI and Convolutional Neural Networks on the Diagnosis of Infectious Diseases

2.1 SARS –Cov-2

Deep learning (DL), particularly convolutional neural networks (CNNs), represents a recent advancement in artificial intelligence, through the multilayered structure of the human visual cortex and demonstrating strong capabilities in processing, image acquisition, and analysis [32]. Across biomedical applications, these attributes have positioned CNNs as powerful tools. During the SARS-CoV-2 pandemic, CNNs, other AI-based technologies were widely adopted for crucial tasks such as viral genome sequencing [33], development of vaccines [34], and drug discoveries [35].

In pathology laboratories, the AI-enabled digital pathology system has markedly improved the efficiency and accuracy of identifying microorganisms in cytological and histological specimens [36]. RT–PCR remains the gold standard for COVID-19 diagnosis through detection of SARS-CoV-2 [37], the revolutionary demand during the pandemic highlighted the need for faster and more reliable workflows. Several AI-assisted models were developed to enhance RT–PCR performance. Long short-term memory (LSTM) models have been applied to raw fluorescence data from RT–PCR cycles to reduce turnaround time [38]. Moreover, AI-based systems capable of fluorescence signals and automatically classifying amplification curves demonstrated improved diagnostic accuracy [39]. Machine learning (ML) models further enabled the identification of atypical RT–PCR curves associated with contamination or artifacts, reducing false-positive results [40]. ML and dense neural network (DNN) approaches have also been used to detect S.A.R.S.-CoV-2 variants based on cycle threshold (Ct) values and biosensor data [41, 42]. These AI tools played a crucial role in effective pandemic control, early detection, and patient isolation [43].

2.2 Malaria

Malaria remains a major global health burden, where accurate diagnosis is essential for effective treatment. Conventional diagnosis relies on light microscopy, peripheral blood smears, the gold standard, but is limited by dependency of an operator and difficulty in distinguishing life-cycle stages and *Plasmodium* species. Many, AI-based approaches—particularly CNNs such as VGG, YOLO, and ResNet—have been widely applied. These systems demonstrate robust performance and enable reliable estimation of parasitemia.

Advanced models, including mobile-based digital microscopy further enhance automated diagnosis in resource-limited settings [44–59].

2.3 Mycobacteria

Mycobacterial infections represent global health burden resulting in considerable morbidity and mortality. These infections predominantly affect individuals with predisposing conditions such as immunodeficiency and malnutrition [60]. Mycobacteria are broadly classified into two groups: *Mycobacterium tuberculosis* and atypical (nontuberculous) mycobacteria. These organisms are small, bacilli-shaped bacteria that pose diagnostic challenges, particularly when using conventional light microscopy and routine stains such as hematoxylin and eosin (H&E).

Although special staining techniques, including Ziehl–Neelsen and Auramine O stains, have improved visualization, manual detection of mycobacteria in clinical specimens remains labor-intensive and error-prone. A diagnosis of mycobacteriosis typically depends on the identification of at least one acid-fast bacillus (AFB).

Recent advancements focus on AFB detection using computer vision and digital imaging approaches. Artificial intelligence (AI)-based studies focuses on sputum cytology smears, several investigations have also applied CNNs to histopathological samples, including lung biopsy specimens [61, 62]. Image-processing algorithms for AFB detection have shown notable improvements, particularly in sputum [63, 64]. Enhanced color discrimination, such as optimized red-green contrast, pixel-based color segmentation in advanced AI models, has contributed significantly to improved performance [65]. Furthermore, CNN-based whole-slide image (WSI) patch analysis has demonstrated superior diagnostic accuracy [66].

Overall, advances in digital imaging and CNN-based analysis provide opportunities for the automated detection.

3. Artificial Intelligence–Driven Transformation of Diagnostic Microbiology

AI has transformed pathology by automating the recognition of cytological and morphological patterns associated with infections.

3.1 Revolution in Colony Counting

Colony counting by Manual method is prone to human error [67]. Recent advancement in machine learning (ML)–based image analysis enables high-resolution visual assessment systems with improved sensitivity, allowing detection of small colonies. AI-driven colony counting system requires standardized results while accounting for critical colony features such as size, shape, contrast [68]. Abilities include accurate colony segmentation, particularly for aggregated colonies, high-quality image acquisition and resolution, rapid processing (≤ 1 s per plate), and visualization under both white light and fluorescence [69]. Additional functional requirements include differentiation of chromatic and achromatic images, whole-plate or sector-based counting, real-time full-color display with zoom capability, and seamless data integration with laboratory information management systems (LIMS) [70].

In automated workflows, FDA-cleared platforms such as APAS Independence distinguish negative urine cultures from growth exceeding predefined thresholds and support screening for methicillin-resistant *Staphylococcus aureus* (MRSA) [71]. Similarly, PhenoMatrix (bioMérieux) demonstrates about identifying *Streptococcus pyogenes*, *Streptococcus agalactiae* (group B streptococcus) [72]. Becton Dickinson Kiestra, developed deep convolutional neural network (CNN)–based systems for automated urine culture image analysis [73].

Image analysis systems serves as rapid screening tools for differentiating positive and negative cultures, enabling early exclusion of plates with no growth or normal flora contamination and reducing manual workload [74,75]. Accurate assessment of contamination remains a major challenge for AI systems due to transport, clinical context specimen, variability, transport and processing conditions and the need for expert microbiological judgment [76]. ML-based colony counting continues to advance, persistent challenges—including low image resolution, high CFU density, background noise, plate boundary artifacts, and edge-located colonies—are being addressed through optimization [77].

3.2 Advancements in AI Applications for Antimicrobial Susceptibility Testing

Recent advances illustrate the critical role of artificial intelligence (AI) in antimicrobial susceptibility testing [78]. AI algorithms have shown effectiveness in detecting aminoglycoside resistance in *Staphylococcus aureus* and *Escherichia coli*, while computer vision–based culture screening enables early identification of resistant pathogens (MRSA and VRE) [79,80]. Integration of AI with total laboratory automation systems, (Kiestra TLA and WASPLab) is increasingly adopted in skilled laboratories [81]. Furthermore, MALDI-TOF MS with machine learning has extended its application from microbial identification to antimicrobial resistance prediction, achieving sensitivities up to 92.3% in *Campylobacter* species [80].

3.3 AI-Enhanced Microscopes for Automated Microbial Classification

Microscopes integrated with AI exhibit potential in examination of organisms and leveraging data in diagnosis and root cause analysis. An earlier study showed the efficacy of an automated AI-enhanced microscope in identifying bacterial images [68]. Machine intelligence acquired the capability to classify images into three distinct categories

(rod-shaped, chains or pairs, clusters). Furthermore, the system's ability for remote transmission of images to microbiologists on global scale enhances accessibility [68]

Conclusion:

Artificial intelligence has enhanced microbial diagnostics by improving the efficiency, speed, accuracy of pathogen detection and antimicrobial resistance analysis when integrated with conventional methods. Despite its transformative potential for public health and clinical care, challenges related to bias, ethics, data quality, bias, equitable access must be addressed through robust validation and regulatory oversight.

Ethical approval: Institutional Review Board approval is not required.

Declaration of patient consent: Patient's consent not required as there are no patients in this study.

Financial support and sponsorship: Nil

Conflicts of interest: Nil

References:

1. Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, et al. Advances in chemical and biological methods to identify microorganisms—from past to present. *Microorganisms*. 2019; 7:130.
2. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: *Artificial Intelligence in Healthcare*. Amsterdam: Elsevier; 2020. p. 25–60.
3. Naik N, Hameed B, Shetty DK, Swain D, Shah M, Paul R. Legal and ethical considerations in artificial intelligence in healthcare: Who takes responsibility? *Front Surg*. 2022; 9:266.
4. Ali T, Ahmed S, Aslam M. Artificial intelligence for antimicrobial resistance prediction: Challenges and opportunities toward practical implementation. *Antibiotics (Basel)*. 2023; 12:523.
5. Eysenbach G. The role of ChatGPT, generative language models, and artificial intelligence in medical education. *JMIR Med Educ*. 2023; 9:e46885.
6. Alto V. *Modern generative AI with ChatGPT and OpenAI models*. Birmingham (UK): Packt Publishing; 2023.
7. Talaei-Khoei A, Yang AT, Masialeti M. Incorporating ChatGPT within firms and agility-mediated performance. *Technovation*. 2024; 132:102975.
8. Deo RC. Machine learning in medicine. *Circulation*. 2015; 132:1920-30.
9. Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble deep learning-enabled clinical decision support for breast cancer diagnosis. *Biology (Basel)*. 2022; 11:439.
10. Kang J, Choi YJ, Kim IK, Lee HS, Kim H, Baik SH, et al. LASSO-based machine learning for lymph node metastasis prediction in T1 colorectal cancer. *Cancer Res Treat*. 2021; 53:773-83.
11. Song SE, Cho KR, Cho Y, Kim K, Jung SP, Seo BK, et al. Machine learning with multiparametric breast MRI. *Eur Radiol*. 2022; 32:853-63.
12. Bulten W, Kartasalo K, Chen PHC, Strom P, Pinckaers H, Nagpal K, et al. AI for diagnosis and Gleason grading of prostate cancer. *Nat Med*. 2022; 28:154-63.
13. Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step toward precision pathology. *J Intern Med*. 2020; 288:62-81.
14. Zhu W, Xie L, Han J, Guo X. Deep learning in cancer prognosis prediction. *Cancers (Basel)*. 2020; 12:603.

15. Manickam P, Mariappan SAM, Murugesan SM, Hansda S, Kaushik A, Shinde R, et al. AI and IoMT-assisted biomedical systems. *Biosensors (Basel)*. 2022; 12:562.
16. Prezja F, Äyrämö S, Pöölönen I, Ojala T, Lahtinen S, Ruusuvuori P, et al. Improved colorectal cancer tissue decomposition via deep learning. *Sci Rep.* 2023; 13:15879.
17. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial intelligence in colorectal cancer. *Curr Oncol.* 2021; 28:1581-607.
18. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al. Volatiles from the healthy human body. *J Breath Res.* 2014; 8:014001.
19. Amann A, Costello BL, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. The human volatilome. *J Breath Res.* 2014; 8:034001.
20. Wang C, Dong R, Wang X, Lian A, Chi C, Ke C, et al. Exhaled VOCs as lung cancer biomarkers. *Sci Rep.* 2014; 4:7312.
21. Schnabel R, Fijten R, Smolinska A, Dallinga J, Boumans ML, Stobberingh E, et al. VOC analysis for ventilator-associated pneumonia. *Sci Rep.* 2015; 5:17179.
22. Banday KM, Pasikanti KK, Chan ECY, Singla R, Rao KVS, Chauhan VS, et al. Urine VOCs to discriminate tuberculosis. *Anal Chem.* 2011; 83:5526-34.
23. Arasaradnam RP, Westenbrink E, McFarlane MJ, Harbord R, Chambers' S, O'Connell N, et al. VOC analysis in coeliac disease. *PLoS One.* 2014; 9:e107312.
24. Audrain B, Farag MA, Ryu CM, Ghigo JM. Bacterial volatile compounds. *FEMS Microbiol Rev.* 2015; 39:222-33.
25. Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P. Volatile microbial interactions. *ISME J.* 2015; 9:2329-35.
26. Muto-Fujita, A.; Takemoto, K.; Kanaya, S.; Nakazato, T.; Tokimatsu, T.; Matsumoto, N.; Kono, M.; Chubachi, Y.; Ozaki, K.; Kotera, M. Data integration aids understanding of butterfly–host plant networks. *Sci. Rep.* 2017, 7, 43368.
27. Libbrecht MW, Noble WS. Machine learning in genetics and genomics. *Nat Rev Genet.* 2015; 16:321-32.
28. Castelvecchi, D. Can we open the black box of AI? *Nat. News* 2016, 538, 20.
29. Nakhleh, M.K.; Amal, H.; Jeries, R.; Broza, Y.Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. *ACS Nano* 2017, 11, 112–125.
30. Kim JI, Maguire F, Tsang KK, Gouliouris T, Peacock SJ, McAllister TA, et al. Machine learning for antimicrobial resistance prediction: Current practice, limitations, and clinical perspective. *Clin Microbiol Rev.* 2022; 35:e00179-21.
31. Her HL, Wu YW. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of *Escherichia coli* strains. *Bioinformatics.* 2018; 34:i89–i95.
32. LeCun Y, Bengio Y, Hinton G. Deep learning. *Nature.* 2015; 521:436–444.
33. Bagabir SA, Ibrahim NK, Bagabir HA, Ateeq RH. COVID-19 and artificial intelligence: Genome sequencing, drug development and vaccine discovery. *J Infect Public Health.* 2022; 15:289–296.
34. Chiu HYR, Hwang CK, Chen SY, Shih FY, Han HC, King CC, et al. Machine learning for emerging infectious disease field responses. *Sci Rep.* 2022; 12:328.

35. Pham TH, Qiu Y, Zeng J, Xie L, Zhang P. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. *Nat Mach Intell.* 2021; 3:247–257.

36. Ong E, Cooke MF, Huffman A, Xiang Z, Wong MU, and Wang H, et al. Vaxign2: The second generation of the first web-based vaccine design program using reverse vaccinology and machine learning. *Nucleic Acids Res.* 2021; 49:W671–W678.

37. Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH. COVID-19 diagnosis: A comprehensive review of the RT-qPCR method for detection of SARS-CoV-2. *Diagnostics (Basel).* 2022; 12:1503.

38. Lee Y, Kim YS, Lee DI, Jeong S, Kang GH, Jang YS, et al. Application of a deep learning system developed to reduce RT-PCR time in COVID-19 detection. *Sci Rep.* 2022; 12:1234.

39. Ozbilge E, Sanlidag T, Baddal B. Artificial intelligence-assisted RT-PCR detection model for rapid diagnosis of COVID-19. *Appl Sci.* 2022; 12:9908.

40. Villarreal-González R, Acosta-Hoyos AJ, Garzon-Ochoa JA, Galán-Freyle NJ, Amar-Sepúlveda P, Pacheco-Londoño LC. Anomaly identification during PCR for SARS-CoV-2 detection using artificial intelligence. *Molecules.* 2021; 26:20.

41. Cabrera Alvargonzález J, Larrañaga Janeiro A, Pérez Castro S, Martínez Torres J, Martínez Lamas L, Daviña Nuñez C. Machine learning extraction of new information from SARS-CoV-2 rRT-PCR results. *Sci Rep.* 2023;13:7786.

42. Beduk D, de Oliveira Filho JI, Beduk T, Harmanci D, Zihnioglu F, Cicek C, et al. “All-in-one” SARS-CoV-2 variant recognition platform using machine learning. *Biosens Bioelectron X.* 2022; 10:100105.

43. Wang J, Yang X, Zhou B, Sohn JJ, Zhou J, Jacob JT, et al. Machine learning in lung ultrasound during the COVID-19 pandemic. *J Imaging.* 2022; 8:65.

44. Loddo A, Fadda C, Di Ruberto C. Evaluation of convolutional networks for malaria diagnosis. *J Imaging.* 2022; 8:66.

45. Kassim YM, Yang F, Yu H, Maude RJ, Jaeger S. Diagnosing malaria using deep learning on thick smear images. *Diagnostics (Basel).* 2021; 11:1994.

46. Rajaraman S, Silamut K, Hossain A, Ersoy I, Maude RJ, Jaeger S, et al. CNN behavior analysis for malaria parasite detection. *J Med Imaging.* 2018; 5:034501.

47. Horning MP, Delahunt CB, Bachman CM, Luchavez J, Luna C, Hu L, et al. Automated system performance on WHO malaria microscopy slides. *Malar J.* 2021; 20:110.

48. Loh DR, Yong WX, Yapeter J, Subburaj K, Chandramohanadas R. Deep learning for malaria screening using Mask R-CNN. *Comput Med Imaging Graph.* 2021; 88:101845.

49. de Souza Oliveira A, Costa MGF, Barbosa MGV, Costa Filho CFF. Novel approach for malaria diagnosis in thick blood smears. *Biomed Signal Process Control.* 2022; 78:103931.

50. Oliveira ADS, Costa MGF, Barbosa MGV, Costa Filho CFF. Performance of deep learning algorithms in malaria diagnosis. *Diagnostics (Basel).* 2023; 13:534.

51. Sengar N, Burget R, Dutta MK. Vision transformer-based malaria prediction from thin blood smears. *Comput Methods Programs Biomed.* 2022; 224:106996.

52. Park HS, Rinehart MT, Walzer KA, Chi JTA, Wax A. Automated detection of *Plasmodium falciparum* using machine learning. *PLoS One.* 2016; 11:e0163045.

53. Holmström O, Linder N, Ngasala B, Mårtensson A, Linder E, Lundin M, et al. Mobile digital microscopy and deep learning for parasite detection. *Glob Health Action*. 2017; 10(Suppl 3):1337325.

54. Yao X, Pathak V, Xi H, Chaware A, Cooke C, Kim K, and et al. increasing microscope field of view using machine learning. *Opt Express*. 2022; 30:1745–1761.

55. Abdurahman F, Fante KA, Aliy M. Malaria parasite detection using modified YOLO models. *BMC Bioinformatics*. 2021; 22:1–17.

56. Oliveira AD, Prats C, Espasa M, Serrat FZ, Sales CM, Silgado A, et al. Malaria system microapp for mobile diagnosis. *JMIR Res Protoc*. 2017; 6:e6758.

57. Yang F, Poostchi M, Yu H, Zhou Z, Silamut K, Yu J, et al. Smartphone-based malaria detection using deep learning. *IEEE J Biomed Health Inform*. 2019; 24:1427–1438.

58. Rosado L, Da Costa JMC, Elias D, Cardoso JS. Mobile-based malaria smears analysis. *Sensors (Basel)*. 2017; 17:2167.

59. Yu H, Yang F, Rajaraman S, Ersoy I, Moallem G, Poostchi M, et al. Malaria screener smartphone application. *BMC Infect Dis*. 2020; 20:1–8.

60. World Health Organization. Global Tuberculosis Report 2021. Geneva: WHO; 2021. Available from: WHO website (accessed 18 May 2024).

61. Xiong Y, Ba X, Hou A, Zhang K, Chen L, Li T. Automatic detection of *Mycobacterium tuberculosis* using artificial intelligence. *J Thorac Dis*. 2018; 10(3):1936–1940. doi:10.21037/jtd.2018.01.91.

62. Ibrahim AU, Guler E, Guvenir M, Suer K, Serte S, Ozsoz M. Automated detection of *Mycobacterium tuberculosis* using transfer learning. *J Infect Dev Ctries*. 2021; 15:678–686.

63. Panicker RO, Kalmady KS, Rajan J, Sabu MK. Tuberculosis bacilli detection using deep learning. *Biocybern Biomed Eng*. 2018;38:691–699.

64. El-Melegy M, Mohamed D, ElMelegy T, editors. Tuberculosis detection using Faster R-CNN. In: Proc IbPRIA 2019; Springer; 2019. p. 536–546.

65. Costa Filho CF, Levy PC, Xavier CM, Costa MG, Fujimoto LB, Salem J, editors. *Mycobacterium tuberculosis* recognition with microscopy. In: Proc IEEE EMBS; 2012.

66. Kuok C, Horng M, Liao Y, Chow N, Sun Y. CNN-based identification of *Mycobacterium tuberculosis*. *Microsc Res Tech*. 2019; 82:709–719.

67. Konstantinou, C.; Kostopoulos, S.; Glotsos, D.; Kalatzis, I.; Asvestas, P.; Ravazoula, P.; Michail, G.; Cavouras, D.; Sakellaropoulos, G. Assessment of HPV Risk Type in H&E-stained Biopsy Specimens of the Cervix by Microscopy Image Analysis. *Appl. Immunohistochem. Mol. Morphol*. 2020, 28, 702–710.

68. Smith, K.P.; Kang, A.D.; Kirby, J.E. Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. *J. Clin. Microbiol*. 2018, 56, e01521-17.

69. Sandle, T. Ready for the count? Back-to-basics review of microbial colony counting. *J. GxP Compliance* 2020, 24, 1–10.

70. Sandle T. Automated digital colony counting. *J GxP Compliance*. 2018; 22:1–10.

71. Rahmani AM, Azhir E, Ali S, Mohammadi M, Ahmed OH, Ghafour MY, et al. AI approaches for big data analytics. *PeerJ Comput Sci*. 2021; 7:e488.

72. De Young B, Morales M, Giglio S. AI for interpretive culture plate reading. *Front Microbiol.* 2022; 13:2898.

73. Alouani DJ, Ransom EM, Jani M, Burnham CA, Rhoads DD, Sadri N. CNN-based urine culture analysis. *Clin Chem.* 2022; 68:574–583.

74. Liu Y, Chen Y, Han L. Bioinformatics in the era of AI. *Innov Med.* 2023;1:100012.

75. Vasala A, Hytonen VP, Laitinen OH. Rapid diagnostics of antimicrobial resistance. *Front Cell Infect Microbiol.* 2020; 10:308.

76. DE Young, B.; Morales, M.; Giglio, S. Microbiology 2.0—A “behind the scenes” consideration for artificial intelligence applications for interpretive culture plate reading in routine diagnostic laboratories. *Front. Microbiol.* 2022, 13, 2898.

77. Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, et al. U-Net for cell counting and detection. *Nat Methods.* 2019; 16:67–70.

78. Peiffer-Smadja N, Delli  re S, Rodriguez C, Birgand G, Lescure FX, Fourati S, et al. Machine learning in clinical microbiology. *Clin Microbiol Infect.* 2020; 26:1300–1309.

79. Rhoads DD. Computer vision in clinical microbiology. *J Clin Microbiol.* 2020; 58:e00511-20.

80. Croxatto A, Prod'Hom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in bacteriology. *Clin Microbiol Infect.* 2016; 22:217–235.

81. Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, et al. MALDI-TOF and machine learning for AMR screening. *Front Microbiol.* 2022; 12:804484.