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Abstract:

Conventional microbial diagnostics face challenges related to specimen handling, microbial isolation, result
interpretation, and delays in antimicrobial resistance determination. The integration of artificial intelligence (Al),
particularly machine learning (ML), offers efficient and innovative solutions to these limitations. This review
emphasizes the importance of standardized sample processing and highlights recent advances in Al-based approaches
for microbial classification, microorganism interaction analysis, and enhanced microscopy. Applications of
convolutional neural networks in automated bacterial identification, digital pathology, colony counting, antimicrobial
susceptibility testing, and disease surveillance are discussed, with examples including malaria, mycobacteria, and
SARS-CoV-2. Despite ethical concerns regarding data privacy, integrity, and bias, Al-driven diagnostics demonstrate
robust potential to transform diagnostic microbiology.
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Introduction:

Laboratory diagnosis of pathogens is a critical component of healthcare, relying on techniques such as culture,
molecular analysis, and to identify infectious agents. However, conventional diagnostic methods are often limited by
challenges in antimicrobial susceptibility testing, sample handling, subjective interpretation.[ 1] Artificial intelligence
(Al), specifically machine learning and deep learning, have significantly transformed microbiological diagnostics by
enabling rapid and accurate analysis of complex datasets, including microbial phenotypes, clinical metadata, and
genetic sequences. Al-driven tools facilitate optimized treatment strategies, early detection, improved patient outcomes
while also addressing the growing challenge of antimicrobial resistance. [2] This review highlights the emerging role
of Al in microbial diagnostics, discussing its advantages, applications, limitations in the context of recent
technological advancements.

1. Emerging Trends of Al and Machine Learning in Human Health

Artificial intelligence (Al) enables personalized and accurate diagnosis, ensuring data security and improving access to
medical technologies [3, 4]. Al tools such as ChatGPT are increasingly integrated into routine and clinical workflows,
with approximately 500 companies adopting Generative Pre-trained Transformer—based systems, reflecting their
reliability [5—7]. Al and machine learning (ML) models efficiently uncover relational patterns within disease-
associated and complex biological datasets, including genomic and sequencing data. ML applies mathematical
modeling to identify predictive patterns through trained learning, while deep learning (DL), using artificial neural
networks (ANNS), enhances performance through layered data processing driven by high-quality datasets [8].

ML and DL aids in cancer diagnosis, prognosis, and personalized medicine [9]. In computational pathology, DL-based
image analysis has improved lymph node metastasis detection [10], Ki67 scoring in breast cancer [11], Gleason
grading in prostate cancer [12], and molecular marker prediction [13], increasing prognostic accuracy by 15-25% [14].
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The integration of Al with the Internet of Medical Things (IoMT) enables intelligent point-of-care testing, robotic
surgery, individualized therapeutic strategies [15-17].

Al applications are advancing microbial diagnostics via volatile organic compounds (VOC) profiling, antimicrobial
resistance (AMR) prediction. ML-based analysis of (VOCs) in biological samples has revealed disease and pathogen-
specific signatures [18-25,26-29].Moreover, ML-driven pan-genome approaches improve AMR prediction by
identifying resistance-associated gene clusters and phenotypes [30,31].

2. The Impact of AI and Convolutional Neural Networks on the Diagnosis of Infectious Diseases
2.1 SARS —Cov-2

Deep learning (DL), particularly convolutional neural networks (CNNs), represents a recent advancement in artificial
intelligence, through the multilayered structure of the human visual cortex and demonstrating strong capabilities in
processing, image acquisition, and analysis [32]. Across biomedical applications, these attributes have positioned
CNNs as powerful tools. During the SARS-CoV-2 pandemic, CNNs, other Al-based technologies were widely
adopted for crucial tasks such as viral genome sequencing [33], development of vaccines [34], and drug discoveries
[35].

In pathology laboratories, the Al-enabled digital pathology system has markedly improved the efficiency and accuracy
of identifying microorganisms in cytological and histological specimens [36]. RT-PCR remains the gold standard for
COVID-19 diagnosis through detection of SARS-CoV-2 [37], the revolutionary demand during the pandemic
highlighted the need for faster and more reliable workflows. Several Al-assisted models were developed to enhance
RT-PCR performance. Long short-term memory (LSTM) models have been applied to raw fluorescence data from
RT-PCR cycles to reduce turnaround time [38]. Moreover, Al-based systems capable of fluorescence signals and
automatically classifying amplification curves demonstrated improved diagnostic accuracy [39]. Machine learning
(ML) models further enabled the identification of atypical RT—PCR curves associated with contamination or artifacts,
reducing false-positive results [40]. ML and dense neural network (DNN) approaches have also been used to detect
S.A.R.S.-CoV-2 variants based on cycle threshold (Ct) values and biosensor data [41, 42]. These Al tools played a
crucial role in effective pandemic control, early detection, and patient isolation [43].

2.2 Malaria

Malaria remains a major global health burden, where accurate diagnosis is essential for effective treatment.
Conventional diagnosis relies on light microscopy, peripheral blood smears, the gold standard, but is limited by
dependency of an operator and difficulty in distinguishing life-cycle stages and Plasmodium species. Many, Al-based
approaches—particularly CNNs such as VGG, YOLO, and ResNet—have been widely applied. These systems
demonstrate robust performance and enable reliable estimation of parasitemia.

Advanced models, including mobile-based digital microscopy further enhance automated diagnosis in resource-limited
settings [44—59].

2.3 Mycobacteria

Mycobacterial infections represent global health burden resulting in considerable morbidity and mortality. These
infections predominantly affect individuals with predisposing conditions such as immunodeficiency and malnutrition
[60]. Mycobacteria are broadly classified into two groups: Mycobacterium tuberculosis and atypical (nontuberculous)
mycobacteria. These organisms are small, bacilli-shaped bacteria that pose diagnostic challenges, particularly when
using conventional light microscopy and routine stains such as hematoxylin and eosin (H&E).

Although special staining techniques, including Ziehl-Neelsen and Auramine O stains, have improved visualization,
manual detection of mycobacteria in clinical specimens remains labor-intensive and error-prone. A diagnosis of
mycobacteriosis typically depends on the identification of at least one acid-fast bacillus (AFB).
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Recent advancements focus on AFB detection using computer vision and digital imaging approaches. Artificial
intelligence (Al)-based studies focuses on sputum cytology smears, several investigations have also applied CNNs) to
histopathological samples, including lung biopsy specimens [61, 62]. Image-processing algorithms for AFB detection
have shown notable improvements, particularly in sputum [63, 64]. Enhanced color discrimination, such as optimized
red—green contrast, pixel-based color segmentation in advanced Al models, has contributed significantly to improved
performance [65]. Furthermore, CNN-based whole-slide image (WSI) patch analysis has demonstrated superior
diagnostic accuracy [66].

Overall, advances in digital imaging and CNN-based analysis provide opportunities for the automated detection.
3. Artificial Intelligence—Driven Transformation of Diagnostic Microbiology

Al has transformed pathology by automating the recognition of cytological and morphological patterns associated with
infections.

3.1 Revolution in Colony Counting

Colony counting by Manual method is prone to human error [67]. Recent advancement in machine learning (ML)—
based image analysis enables high-resolution visual assessment systems with improved sensitivity, allowing detection
of small colonies. Al-driven colony counting system requires standardized results while accounting for critical colony
features such as size, shape, contrast [68]. Abilities include accurate colony segmentation, particularly for aggregated
colonies, high-quality image acquisition and resolution, rapid processing (<1 s per plate), and visualization under both
white light and fluorescence [69]. Additional functional requirements include differentiation of chromatic and
achromatic images, whole-plate or sector-based counting, real-time full-color display with zoom capability, and
seamless data integration with laboratory information management systems (LIMS) [70].

In automated workflows, FDA-cleared platforms such as APAS Independence distinguish negative urine cultures from
growth exceeding predefined thresholds and support screening for methicillin-resistant Staphylococcus aureus
(MRSA) [71]. Similarly, PhenoMatrix (bioMérieux) demonstrates aboutidentifying  Streptococcus
pyogenes,Streptococcus agalactiae (group B streptococcus) [72]. Becton Dickinson Kiestra, developed deep
convolutional neural network (CNN)—based systems for automated urine culture image analysis [73].

Image analysis systems serves as rapid screening tools for differentiating positive and negative cultures, enabling early
exclusion of plates with no growth or normal flora contamination and reducing manual workload [74,75]. Accurate
assessment of contamination remains a major challenge for Al systems due to transport, clinical context specimen,
variability, transport and processing conditions and the need for expert microbiological judgment [76]. ML-based
colony counting continues to advance, persistent challenges—including low image resolution, high CFU density,
background noise, plate boundary artifacts, and edge-located colonies—are being addressed through optimization [77].

3.2Advancements in AI Applications for Antimicrobial Susceptibility Testing

Recent advances illustrate the critical role of artificial intelligence (Al) in antimicrobial susceptibility testing [78]. Al
algorithms have shown effectiveness in detecting aminoglycoside resistance in Staphylococcus aureus and
Escherichia coli, while computer vision—based culture screening enables early identification of resistant pathogens
(MRSA and VRE) [79,80]. Integration of Al with total laboratory automation systems, (Kiestra TLA and WASPLab)
is increasingly adopted in skilled laboratories [81]. Furthermore, MALDI-TOF MS with machine learning has
extended its application from microbial identification to antimicrobial resistance prediction, achieving sensitivities up
to 92.3% in Campylobacter species [80].

3.3 AI-Enhanced Microscopes for Automated Microbial Classification

Microscopes integrated with Al exhibit potential in examination of organisms and leveraging data in diagnosis and
root cause analysis. An earlier study showed the efficacy of an automated Al-enhanced microscope in identifying
bacterial images [68]. Machine intelligence acquired the capability to classify images into three distinct categories
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(rod-shaped, chains or pairs, clusters). Furthermore, the system’s ability for remote transmission of images to
microbiologists on global scale enhances accessibility [68]

Conclusion:

Artificial intelligence has enhanced microbial diagnostics by improving the efficiency, speed, accuracy of pathogen
detection and antimicrobial resistance analysis when integrated with conventional methods. Despite its transformative
potential for public health and clinical care, challenges related to bias, ethics, data quality, bias, equitable access must
be addressed through robust validation and regulatory oversight.

Ethical approval: Institutional Review Board approval is not required.
Declaration of patient consent: Patient’s consent not required as there are no patients in this study.
Financial support and sponsorship: Nil

Conflicts of interest: Nil

References:

1. Franco-Duarte R, Cernakova L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, et al. Advances in chemical and
biological methods to identify microorganisms—from past to present. Microorganisms. 2019; 7:130.

2. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Artificial Intelligence in
Healthcare. Amsterdam: Elsevier; 2020. p. 25-60.

3. Naik N, Hameed B, Shetty DK, Swain D, Shah M, Paul R. Legal and ethical considerations in artificial intelligence
in healthcare: Who takes responsibility? Front Surg. 2022; 9:266.

4. Ali T, Ahmed S, Aslam M. Arttificial intelligence for antimicrobial resistance prediction: Challenges and
opportunities toward practical implementation. Antibiotics (Basel). 2023; 12:523.

5. Eysenbach G. The role of ChatGPT, generative language models, and artificial intelligence in medical education.
JMIR Med Educ. 2023; 9:¢46885.

6. Alto V. Modern generative AI with ChatGPT and OpenAl models. Birmingham (UK): Packt Publishing; 2023.

7. Talaei-Khoei A, Yang AT, Masialeti M. Incorporating ChatGPT within firms and agility-mediated performance.
Technovation. 2024; 132:102975.

8. Deo RC. Machine learning in medicine. Circulation. 2015; 132:1920-30.

9. Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble deep learning-enabled clinical decision support for breast
cancer diagnosis. Biology (Basel). 2022; 11:439.

10. Kang J, Choi YJ, Kim IK, Lee HS, Kim H, Baik SH, et al. LASSO-based machine learning for lymph node
metastasis prediction in T1 colorectal cancer. Cancer Res Treat. 2021; 53:773-83.

11. Song SE, Cho KR, Cho Y, Kim K, Jung SP, Seo BK, et al. Machine learning with multiparametric breast MRI.
Eur Radiol. 2022; 32:853-63.

12. Bulten W, Kartasalo K, Chen PHC, Strom P, Pinckaers H, Nagpal K, et al. Al for diagnosis and Gleason grading
of prostate cancer. Nat Med. 2022; 28:154-63.

13. Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step toward precision pathology. J Intern
Med. 2020; 288:62-81.

14. Zhu W, Xie L, Han J, Guo X. Deep learning in cancer prognosis prediction. Cancers (Basel). 2020; 12:603.
© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56169 | Page 4


https://ijsrem.com/

ijSR:l:{
..o #z  International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

15. Manickam P, Mariappan SAM, Murugesan SM, Hansda S, Kaushik A, Shinde R, et al. Al and IoMT-assisted
biomedical systems. Biosensors (Basel). 2022; 12:562.

16. Prezja F, Ayréimé S, Polonen I, Ojala T, Lahtinen S, Ruusuvuori P, et al. Improved colorectal cancer tissue
decomposition via deep learning. Sci Rep. 2023; 13:15879.

17. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial intelligence in colorectal cancer.
Curr Oncol. 2021; 28:1581-607.

18. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al. Volatiles from the healthy human
body. J Breath Res. 2014; 8:014001.

19. Amann A, Costello BL, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. The human volatilome. J Breath Res.
2014; 8:034001.

20. Wang C, Dong R, Wang X, Lian A, Chi C, Ke C, et al. Exhaled VOCs as lung cancer biomarkers. Sci Rep. 2014;
4:7312.

21.Schnabel R, Fijten R, Smolinska A, Dallinga J, Boumans ML, Stobberingh E, et al. VOC analysis for ventilator-
associated pneumonia. Sci Rep. 2015; 5:17179.

22. Banday KM, Pasikanti KK, Chan ECY, Singla R, Rao KVS, Chauhan VS, et al. Urine VOCs to discriminate
tuberculosis. Anal Chem. 2011; 83:5526-34.

23. Arasaradnam RP, Westenbrink E, McFarlane MJ, Harbord R, Chambers’ S, O’Connell N, et al. VOC analysis in
coeliac disease. PLoS One. 2014; 9:e107312.

24. Audrain B, Farag MA, Ryu CM, Ghigo JM. Bacterial volatile compounds. FEMS Microbiol Rev. 2015; 39:222-33.

25. Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P. Volatile microbial interactions. ISME J. 2015;
9:2329-35.

26. Muto-Fujita, A.; Takemoto, K.; Kanaya, S.; Nakazato, T.; Tokimatsu, T.; Matsumoto, N.; Kono, M.; Chubachi, Y.;
Ozaki, K.; Kotera, M. Data integration aids understanding of butterfly—host plant networks. Sci. Rep. 2017, 7, 43368.

27. Libbrecht MW, Noble WS. Machine learning in genetics and genomics. Nat Rev Genet. 2015; 16:321-32.
28. Castelvecchi, D. Can we open the black box of AI? Nat. News 2016, 538, 20.

29. Nakhleh, M.K.; Amal, H.; Jeries, R.; Broza, Y.Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-
Shai, L.; et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled
molecules. ACS Nano 2017, 11, 112-125.

30. Kim JI, Maguire F, Tsang KK, Gouliouris T, Peacock SJ, McAllister TA, et al. Machine learning for antimicrobial
resistance prediction: Current practice, limitations, and clinical perspective. Clin Microbiol Rev. 2022; 35:¢00179-21.

31. Her HL, Wu YW. A pan-genome-based machine learning approach for predicting antimicrobial resistance
activities of Escherichia coli strains. Bioinformatics. 2018; 34:189—195.

32. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436-444.

33. Bagabir SA, Ibrahim NK, Bagabir HA, Ateeq RH. COVID-19 and artificial intelligence: Genome sequencing,
drug development and vaccine discovery. J Infect Public Health. 2022; 15:289-296.

34. Chiu HYR, Hwang CK, Chen SY, Shih FY, Han HC, King CC, et al. Machine learning for emerging infectious
disease field responses. Sci Rep. 2022; 12:328.

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56169 | Page 5


https://ijsrem.com/

ijSR:l:{
..o #z  International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

35. Pham TH, Qiu Y, Zeng J, Xie L, Zhang P. A deep learning framework for high-throughput mechanism-driven
phenotype compound screening and its application to COVID-19 drug repurposing. Nat Mach Intell. 2021; 3:247-257.

36. Ong E, Cooke MF, Huffman A, Xiang Z, Wong MU, and Wang H, et al. Vaxign2: The second generation of the
first web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 2021;
49:W671-W678.

37.Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH. COVID-19 diagnosis: A comprehensive review of the
RT-qPCR method for detection of SARS-CoV-2. Diagnostics (Basel). 2022; 12:1503.

38. Lee Y, Kim YS, Lee DI, Jeong S, Kang GH, Jang YS, et al. Application of a deep learning system developed to
reduce RT-PCR time in COVID-19 detection. Sci Rep. 2022; 12:1234.

39. Ozbilge E, Sanlidag T, Baddal B. Artificial intelligence-assisted RT-PCR detection model for rapid diagnosis of
COVID-19. Appl Sci. 2022; 12:9908.

40.Villarreal-Gonzalez R, Acosta-Hoyos AJ, Garzon-Ochoa JA, Galan-Freyle NJ, Amar-Sepulveda P, Pacheco-
Londoiio LC. Anomaly identification during PCR for SARS-CoV-2 detection using artificial intelligence. Molecules.
2021; 26:20.

41.Cabrera Alvargonzalez J, Larrafiaga Janeiro A, Pérez Castro S, Martinez Torres J, Martinez Lamas L, Daviia
Nufiez C. Machine learning extraction of new information from SARS-CoV-2 rRT-PCR results. Sci Rep.
2023;13:7786.

42.Beduk D, de Oliveira Filho JI, Beduk T, Harmanci D, Zihnioglu F, Cicek C, et al. “All-in-one” SARS-CoV-2
variant recognition platform using machine learning. Biosens Bioelectron X. 2022; 10:100105.

43.Wang J, Yang X, Zhou B, Sohn JJ, Zhou J, Jacob JT, et al. Machine learning in lung ultrasound during the COVID-
19 pandemic. J Imaging. 2022; 8:65.

44. Loddo A, Fadda C, Di Ruberto C. Evaluation of convolutional networks for malaria diagnosis. J Imaging. 2022;
8:66.

45. Kassim YM, Yang F, Yu H, Maude RJ, Jaeger S. Diagnosing malaria using deep learning on thick smear images.
Diagnostics (Basel). 2021; 11:1994.

46.Rajaraman S, Silamut K, Hossain A, Ersoy I, Maude RJ, Jaeger S, et al. CNN behavior analysis for malaria parasite
detection. ] Med Imaging. 2018; 5:034501.

47. Horning MP, Delahunt CB, Bachman CM, Luchavez J, Luna C, Hu L, et al. Automated system performance on
WHO malaria microscopy slides. Malar J. 2021; 20:110.

48.Loh DR, Yong WX, Yapeter J, Subburaj K, Chandramohanadas R. Deep learning for malaria screening using Mask
R-CNN. Comput Med Imaging Graph. 2021; 88:101845.

49. de Souza Oliveira A, Costa MGF, Barbosa MGV, Costa Filho CFF. Novel approach for malaria diagnosis in thick
blood smears. Biomed Signal Process Control. 2022; 78:103931.

50. Oliveira ADS, Costa MGF, Barbosa MGV, Costa Filho CFF. Performance of deep learning algorithms in malaria
diagnosis. Diagnostics (Basel). 2023; 13:534.

51. Sengar N, Burget R, Dutta MK. Vision transformer-based malaria prediction from thin blood smears. Comput
Methods Programs Biomed. 2022; 224:106996.

52. Park HS, Rinehart MT, Walzer KA, Chi JTA, Wax A. Automated detection of Plasmodium falciparum using
machine learning. PLoS One. 2016; 11:¢0163045.

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56169 | Page 6


https://ijsrem.com/

{I:SR:F:{
s International Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

53.Holmstrom O, Linder N, Ngasala B, Martensson A, Linder E, Lundin M, et al. Mobile digital microscopy and deep
learning for parasite detection. Glob Health Action. 2017; 10(Suppl 3):1337325.

54. Yao X, Pathak V, Xi H, Chaware A, Cooke C, Kim K, and et al. increasing microscope field of view using
machine learning. Opt Express. 2022; 30:1745-1761.

55. Abdurahman F, Fante KA, Aliy M. Malaria parasite detection using modified YOLO models. BMC
Bioinformatics. 2021; 22:1-17.

56.0liveira AD, Prats C, Espasa M, Serrat FZ, Sales CM, Silgado A, et al. Malaria system microapp for mobile
diagnosis. JMIR Res Protoc. 2017; 6:e6758.

57.Yang F, Poostchi M, Yu H, Zhou Z, Silamut K, Yu J, et al. Smartphone-based malaria detection using deep
learning. IEEE J Biomed Health Inform. 2019; 24:1427-1438.

58. Rosado L, Da Costa JMC, Elias D, Cardoso JS. Mobile-based malaria smears analysis. Sensors (Basel). 2017;
17:2167.

59.Yu H, Yang F, Rajaraman S, Ersoy I, Moallem G, Poostchi M, et al. Malaria screener smartphone application.
BMC Infect Dis. 2020; 20:1-8.

60. World Health Organization. Global Tuberculosis Report 2021. Geneva: WHO; 2021. Available from: WHO
website (accessed 18 May 2024).

61.Xiong Y, Ba X, Hou A, Zhang K, Chen L, Li T. Automatic detection of Mycobacterium tuberculosis using
artificial intelligence. J Thorac Dis. 2018; 10(3):1936—-1940. doi:10.21037/jtd.2018.01.91.

62. Ibrahim AU, Guler E, Guvenir M, Suer K, Serte S, Ozsoz M. Automated detection of Mycobacterium tuberculosis
using transfer learning. J Infect Dev Ctries. 2021; 15:678—-686.

63. Panicker RO, Kalmady KS, Rajan J, Sabu MK. Tuberculosis bacilli detection using deep learning. Biocybern
Biomed Eng. 2018;38:691-699.

64.El-Melegy M, Mohamed D, ElMelegy T, editors. Tuberculosis detection using Faster R-CNN. In: Proc IbPRIA
2019; Springer; 2019. p. 536-546.

65.Costa Filho CF, Levy PC, Xavier CM, Costa MG, Fujimoto LB, Salem J, editors. Mycobacterium tuberculosis
recognition with microscopy. In: Proc IEEE EMBS; 2012.

66.Kuok C, Horng M, Liao Y, Chow N, Sun Y. CNN-based identification of Mycobacterium tuberculosis. Microsc
Res Tech. 2019; 82:709-719.

67 Konstantinou, C.; Kostopoulos, S.; Glotsos, D.; Kalatzis, 1.; Asvestas, P.; Ravazoula, P.; Michail, G.; Cavouras, D.;
Sakellaropoulos, G. Assessment of HPV Risk Type in H&E-stained Biopsy Specimens of the Cervix by Microscopy
Image Analysis. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 702—710.

68. Smith, K.P.; Kang, A.D.; Kirby, J.E. Automated interpretation of blood culture gram stains by use of a deep
convolutional neural network. J. Clin. Microbiol. 2018, 56, e01521-17.

69. Sandle, T. Ready for the count? Back-to-basics review of microbial colony counting. J. GxP Compliance 2020, 24,
1-10.

70. Sandle T. Automated digital colony counting. J GxP Compliance. 2018; 22:1-10.

71. Rahmani AM, Azhir E, Ali S, Mohammadi M, Ahmed OH, Ghafour MY, et al. Al approaches for big data
analytics. Peer] Comput Sci. 2021; 7:¢488.

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56169 | Page 7


https://ijsrem.com/

II:SR:MR
s International Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 10 Issue: 01 | Jan - 2026 SJIF Rating: 8.586 ISSN: 2582-3930

72. De Young B, Morales M, Giglio S. Al for interpretive culture plate reading. Front Microbiol. 2022; 13:2898.

73. Alouani DJ, Ransom EM, Jani M, Burnham CA, Rhoads DD, Sadri N. CNN-based urine culture analysis. Clin
Chem. 2022; 68:574-583.

74. Liu Y, Chen Y, Han L. Bioinformatics in the era of Al. Innov Med. 2023;1:100012.

75. Vasala A, Hytonen VP, Laitinen OH. Rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol.
2020; 10:308.

76.DE Young, B.; Morales, M.; Giglio, S. Microbiology 2.0—A “behind the scenes” consideration for artificial
intelligence applications for interpretive culture plate reading in routine diagnostic laboratories. Front. Microbiol.
2022, 13, 2898.

77.Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, et al. U-Net for cell counting and detection. Nat
Methods. 2019; 16:67-70.

78.Peiffer-Smadja N, Delliere S, Rodriguez C, Birgand G, Lescure FX, Fourati S, et al. Machine learning in clinical
microbiology. Clin Microbiol Infect. 2020; 26:1300-1309.

79..Rhoads DD. Computer vision in clinical microbiology. J Clin Microbiol. 2020; 58:¢00511-20.

80.Croxatto A, Prod’Hom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in bacteriology. Clin Microbiol
Infect. 2016; 22:217-235.

81.Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, et al. MALDI-TOF and machine learning for
AMR screening. Front Microbiol. 2022; 12:804484.

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM56169 | Page 8


https://ijsrem.com/

