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Abstract - The accurate detection and classification of 

brain tumors in Magnetic Resonance Technology is 

critical to accurate diagnosis and therapy planning. 

However, the absence of annotated MR imaging datasets 

presents a significant challenge for advanced machine 

learning models, which require a range of data to achieve 

high accuracy and generalizability. This study provides a 

novel data augmentation method to enhance MR images 

for improved tumor identification by combining noise-to-

image and image-to-image Generative Adversarial 

Networks (GANs). Noise-to-image GANs generate 

synthetic MR images from random noise, expanding the 

dataset with a range of anatomical variations, whereas 

image-to-image GANs refine and enhance existing MR 

images, highlighting important features relevant to tumor 

detection. 

The enlarged set of input data was taken to teach CNN, 

which was then correlated to a baseline model built solely 

on the original dataset. The GAN-augmented model beat 

the baseline cancer sorting and division tasks, as 

measured by parameters such as accuracy, recall, F1-

score, and Dice coefficient. An ablation study verified the 

independent contributions of noise-to-image and image-

to-image GANs, demonstrating that both types of 

augmentation operate together to improve model 

performance. 

This work illustrates the promise of GAN-based 

augmentation in medical imaging by giving a realistic 

solution to data restrictions and improving the robustness 

of deep learning models in brain tumor detection. This 

technology provides the way for more accurate and 

reliable based on artificial intelligence tools for diagnosis 

that can help medical practitioners make clinical 

decisions by integrating alternative GAN techniques. 

Key Words:  GAN-based augmentation, Deep learning, 

Image augmentation techniques, Generative adversarial 

networks (GANs) 

1.INTRODUCTION  

MR imaging (MRI) plays an important role in the 

identification and evaluation of cancers of the brain, 

allowing for precise visualization of anatomical structures 

and anomalies. 

. Although it allows for the fine-grained viewing of 

anatomical features and anomalies, magnetic resonance 

imaging (MRI) is essential for the diagnosis and 

evaluation of brain tumors. Deep learning models, which 

depend on vast volumes of data to reliably identify and 

categorize brain tumors, are severely hampered by the 

scarcity of varied and high-quality MRI datasets. GANs 

have become increasingly potent data integration 

techniques in recent years. They may produce realistic yet 

synthetic medical images to enhance model performance 

in situations with limited data. Researchers can increase 

the volume and diversity of training data by employing 

GAN-based augmentation approaches, especially noise-

to-image and image-to-image GANs. This enables the 

creation of more reliable and accurate supervised learning 

models for tumor detection and classification. 

In order to improve brain MR image processing, 

particularly for tumor diagnosis, this work investigates the 

combination of  techniques for learning and GAN-based 

augmentation methods. Our aim is to generate a complete 

augmentation pipeline by fusing image-to-image GANs, 

which can enhance and refine preexisting MR images, 

with noise-to-image GANs, which create artificial MR 

images from random noise. By increasing the variety of 

training data and reducing overfitting, this pipeline helps 

deep learning-based tumor detection models. 

Additionally, this strategy might raise the model's 

generalizability, allowing for a more precise and 

trustworthy diagnosis across a variety of patient 

demographics and imaging procedures. Numerous studies 

have been conducted on medical image segmentation in 

recent years [1], [2], [3], [4], [5], [6], [7].  
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Sapra et al. [1] proposed image segmentation 

techniques and a modified probabilistic neural network 

(PNN) model to carry out automatic brain tumor 

classification. Their method outperformed previous PNN 

based models and it achieved 100% accuracy in their 

classification task. Amin et al. [2] suggested 

differentiating cancerous and non-cancerous MRI of the 

brain tissue by going through a three-step process. Those 

steps include image processing, feature extraction, and 

image classification. Threshold segmentation and 

morphological operations were suggested. by Zhang et al. 

[3] for cancer identification and division . Alfonse et al 

.[4] suggested a slightly different approach, in which to 

extract the features, the Fast Fourier Transform is 

utilized.Minimal-Redundancy-Maximal-Relevance is 

used for feature reduction, and finally, the SVM was 

utilized for classification. By utilizing these three 

methods, they achieved an accuracy of 98.9%. A new 

study performed by Dong et al. [5] suggested a fully CNN-

based system that is used for identification of brain 

cancerous tumors and segmentation problem. Deepak et 

al. [6] has provided a classification system that uses model 

learning and pre-trained GoogLeNet [7] to obtain features 

from MRI images.  

To generate and modify brain Magnetic Resonance (MR) 

pictures with or without tumors individually ,We suggest 

a dual-step DA method based on GANs.: (i) Progressive 

Growing of GANs (PGGANs) [8], a low-to-high 

resolution noise-to-image GAN, generates 

realistic/diverse 256 × 256 pictures, which aids DA. Most 

CNN architectures use 256 × 256 input sizes (e.g., 

InceptionResNetV2 [9]: 299 × 299, ResNet-50 [10]: 224 

× 224); (ii) Multimodal UNsupervised Image-to-image 

Translation (MUNIT) [11] that combines 

GANs/Variational AutoEncoders (VAEs) [12] or 

SimGAN [13] that uses a DA-focused GAN loss refines 

the texture/shape of the PGGAN-generated images to fit 

them into the actual distribution of images. Because 

training a single complex GAN system is already tough, 

instead of end-to-end training, we employ a two-step 

technique for performance enhancement via an ensemble 

generation process. 

 

2. LITERATURE REVIEW 

A. Deep Learning in Brain Tumor Detection: 

Smart learning-based methods, especially  CNNs, have 

been thoroughly examined for the identification and 

classification of malignancies in brain MR images. 

According to studies by Kamnitsas et al. (2017) and 

Pereira et al. (2016), CNN architectures are Suitable for 

accurately segmenting tumors; however, their 

performance is  highly reliant   on the quantity and 

diversity of training data. However, these methods are 

vulnerable to overfitting when data is scarce, which 

highlights the necessity of advanced augmentation 

techniques to improve the models' accuracy and 

generalizability. 

B. Challenges in MR Image Augmentation: 

Image simulation for diagnostic purposes has made 

extensive use of conventional image augmentation 

techniques, including rotation, flipping, scaling, and 

intensity modifications. Although, these methods can 

enhance model performance, they frequently fall short of 

producing the extent  of diversity required to effectively 

generalize across patient clinical proof that has not yet 

been seen. These straightforward changes, specifically 

when dealing with complex entities like tumors in brain 

MR images, are ineffective at simulating the variety of 

real-world medical data, claim Shorten and Khoshgoftaar 

(2019). As a result, GANs have drawn interest due to their 

capacity to produce intricate and realistic synthetic data, 

especially in fields with small dataset sizes. 

C. Generative Adversarial Networks (GANs) in 

Medical and diagnostic Image Synthesis. 

Employing a dual-network system—one that creates 

simulated images and the other that separates actual from 

synthetic data—GANs, which were first presented by 

Goodfellow et al. (2014), have completely changed the 

area of creating simulated images. In clinical  image 

synthesis, GANs have shown useful for tasks like 

generating anonymous patient data for training, 

mimicking realistic lesions, and producing synthetic MRI 

images (Shin et al., 2018, Han et al., 2019). GANs are 

frequently employed in brain tumor diagnosis for two 

primary functions: image-to-image translation, which 

involves enhancing particular features in preexisting 

images, and noise-to-image creation, which involves 

producing artificial images from noise. 

D. Boosting Tumor Detection Accuracy Using GAN-

Based Augmentation and Deep Learning. 

It has been demonstrated that mixing deep learning 

models with GAN-based augmentation greatly improves 

medical picture analysis performance. Researchers like 

Sandfort et al. (2019) discovered that CNNs performed 

better for tumor classification when synthetic GAN-

generated images were included to training datasets. 

More recently, Liu et al. (2022) showed that merging 

image-to-image and noise-to-image GANs might 

improve picture quality in MR imaging and ease data 

shortages, offering a complete augmentation pipeline. 

http://www.ijsrem.com/
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This dual strategy is a viable option to improve the 

training data's excellence and variation, which will 

ultimately raise the accuracy and dependability of deep 

and smart learning models for the identification of brain 

tumors. 

 

3.METHODOLOGY 

A. Classification  

The classification of the resonance scans was done With 

the aid of the FastAi V2 library, the MRI scans were 

classified. It is a library designed specifically for creating 

applications based on deep learning. Released in August 

2020, FastAi V2 boasts advanced integrated deep 

learning models and techniques. We just needed to write 

a few lines of code to create, train, and test our 

classification model thanks to this library. First, two 

nested folders (Yes and No) were formed in a training 

directory. Next, we added pictures from our dataset to 

each folder according to whether or not they had a tumor 

or not in Figure 1. After that, we created a testing 

directory with the intention of using it for validating how 

well the model works with hidden images. We began 

developing the model in Google Colab as soon as the set 

of data was prepared. The RadomSplitter function was 

used to separate the training data into training and 

validation. The RandomResizedCrop function was then 

used to resize the photos to 224 × 224. We used the FastAi 

library's cnn learner class to construct our object 

categorization model. The neural network architecture 

resnet34 served as the foundation for this model. Before 

achieving an accuracy score of above 90%, we had to 

train the model for 100 epochs. The training process's loss 

vs. learning rate curve is displayed in Figure 2. 

 
Fig.1. Brain Tumor MRI images have been  classified 

into dual different classes (”Yes” and ”No”). 

 

Fig.2. Loss V learning rate graph of the fastAi CNN 

model. 

B. Object detection using YOLO V5 

1) YOLOv5 Model:We used YOLO V5, the most 

recent version of YOLO, to construct our object detection 

model. The Darknet framework is utilized to maintain this 

model, which offers a single network that can be utilized 

used to perform bounding box prediction and object 

categorization. Figure 4 shows the Darknet framework's 

general design. The primary distinction between YOLO 

V5 and V4  regarding  architecture is like this : the former 

is written in PyTorch. As a result, YOLO version 5 is 

significantly lighter and quicker. The benchmark COCO 

dataset was utilized to train the YOLO V5 model, which 

we used. Our specially labeled MRI pictures were used to 

further train this model.  

YOLO is a single CNN that lacks a complicated 

pipeline, in contrast to other neural network-based 

frameworks used for recognizing objects. It has dual 

layers that are completely connected for bounding box 

prediction and twenty-four layers of convolution network  

for taking out features from the pictures. The Darknet 

framework is applied  to construct this network. 

 

Fig.3.Object detection architecture 

2) Setting Up The YOLOv5 Environment in Google 

Colab: We built and ran our custom object detector model 

in Google Colab as it’s an excellent tool for data science 

http://www.ijsrem.com/
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projects. At first, we cloned the YOLOv5 repository to our 

Colab notebook environment. And then, we installed all 

the necessary dependencies. This was done in order to set 

up the programming environment required for running 

object detection models. We ran our training on a GPU 

environment instead of the CPU environment. The cause 

of  that is neural network-based models, particularly those 

applied for object detection, run significantly faster on 

GPUs. For this study, the The Tesla P100 GPU that was 

provided was being utilized by Google Colab. We then 

mounted our custom annotated dataset from drive to our 

Colab runtime. 

3) Training The Custom YOLOv5 Object Detector: 

Before we could start training our model, we had to define 

some of the critical parameters. Those parameters were 

image and batch sizes, number of epochs, the path to our 

data, model’s configuration, the path for storing the 

weights generated by YOLO, etc. After setting the 

parameters, we ran the training command.  

4) Measuring the YOLOv5 Object Detector's 

Performance: Following the successful completion of the 

course, we moved on to evaluate  how efficient the 

training process worked. We used Python's utils package 

to view the validation statistics. Figure 4 displays these 

validation metrics. 

 

Fig.4.A look at the different validation metrics used by 

YOLO. 

While analyzing our results in a more understandable 

approach, we used parameters like recall, accuracy, and 

precision, mean average precision, F1 score, etc. Here are 

the formulas used to determine these metrics:  

 

Accuracy =(T P + F N)/(T P + T N + F P + F N) 

 (1) 

Precision =( T P)/ (  T P + F P)   

 (2) 

Recall =( T P)/( T P + F N)    (3) 

F1 =(2∗ Precision∗ Recall )/(Precision Recall)   (4) 

Here,  

• TP = True Positive (The number of images that are 

accurately detected to be positive)  

• FP = False Positive ( The number of images predicted 

to be positive but actually were negative)  

• TN = True Negative (The number of images that were 

correctly predicted to be negative)  

• FN = False Negative (The number of images that were 

wrongly predicted to be negative). 

5) Running the Detector on Test Images: Now that we had 

a fully trained model on our hands, it was time for us to 

run the testing set  on the model to know how accurate 

the model was at detecting brain tumors on MRI images. 

After the training was completed, the weights generated 

during the teaching process had been stored in the weights 

folder. We provided the path to the weights file, and  in 

addition we also specified the location of the test set. 

After that, we ran the command for running the detector 

on each of the test images. This model ran at a swift pace 

on the Tesla P100 GPU as, on average, it only took 7 ms 

for processing each of the images. In total, it took the 

detector 3.486 seconds to detect brain tumors on the test 

data set comprised of 498 images. 

C. PGGAN-BASED IMAGE GENERATION  

Prior to processing In order to improve GAN/ResNet-50 

training, we remove the first and last slices (#30 to #130) 

from the total of 155 slices. Additionally, because the 

BRATS 2016 dataset's tumor/non-tumor annotation, 

which is based on 3D volumes, is extremely inaccurate or 

ambiguous on 2D slices, we eliminate (i) tumor images 

that are labeled as non-tumor, (ii) non-tumor images that 

are labeled as tumor, (iii) borderline images with unclear 

tumor/non-tumor appearance, and (iv) images that have 

missing brain parts due to  the skull-stripping procedure2. 

We separate the complete set of data  (220 patients) for 

tumor detection into: 

 
Fig.5. creation of brain MR images. Convolutional layers 

with N × N spatial resolution are referred to as N × N. 

 

• Training set (154 patients/4, 679 tumor/3, 750 non-

tumor images);  

http://www.ijsrem.com/
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• Validation set (44 patients/750 tumor/608 non-tumor 

images);  

• Test set (22 patients/1, 232 tumor/1, 013 non-tumor 

images). The training set pictures are zero-padded to a 

power of 2: 256×256 pixels from 240 × 240 pixels. This 

is performed out for better PGGAN training, as we only 

utilize the training set for GAN training to be fair. 

Example genuine MR pictures are shown in Fig. 1. A 

GAN training technique called PGGANs [10] gradually 

expands a generator and discriminator, beginning with 

low resolution and adding layers of model information as 

training goes on. In order to create realistic and varied 256 

x 256 brain MR pictures, our work uses PGGANs. We 

train and produce tumor and non-tumor images 

independently.  

Details of PGGAN Implementation The Wasserstein loss 

with gradient penalty is used in the PGGAN architecture. 

E y˜∼Pg [D(y˜)]− E y∼Pr [D(y)]+λgp Pg is the model 

distribution defined by the generated sample y˜ = G(z) (z 

∼ p(z) is the input noise z to the generator sampled from 

a Gaussian distribution), Pr is the data distribution 

defined by the true data sample y, and E[·] indicates the 

expected value, the discriminator D ∈ D (i.e., the set of 1-

Lipschitz functions), (1). For the random sample yˆ ∼ 

Pyˆ, a gradient penalty is applied, where λgp is the 

gradient penalty coefficient and ∇yˆ is the gradient 

operator applied to the produced samples. 

3.1 FLOWCHART 

 
Fig.6 brain tumor workflow 

 

 

 

3.2 RESULTS 

A. Classification  

We trained the FastAi based CNN model for up to 100 

epochs for the classification task. Its performance was 

satisfactory, and it achieved an accuracy of 95.78% when 

it was run on the testing set. We had split the dataset 

consisting of 1992 images into a training set comprising 

1494 images (75% of the total MRI scans) and a testing 

set comprising 498 images of (25% of the total MRI 

scans). The testing test, which included fresh and unseen 

images for the model, was used to gauge the model's 

performance (see table 1). This used MRI images It had 

never been observed previously to mimic how the model 

would behave in actual situations. This model's recall was 

95.65% and its accuracy was 96.70%. In addition, the 

model's F1 score was 96.17%. The model's confusion 

matrix, which is displayed in figure 7, may be used to 

examine this performance. 

 

 
Fig.7. Confusion matrix produced by the classification 

model. 

B. Brain Tumor Detection in YOLOv5  

Additionally, YOLOv5's model for object detection 

demonstrated remarkable performance on the test set 

photographs. The accuracy it achieved on the previously 

viewed photos was 85.95%. We obtained output pictures 

with bounding boxes surrounding the tumor areas that 

showed the presence of a brain tumor on the MRI scan 

images after the model was run on the test set. The 

training set photos' ground truth is displayed in Figure 7. 

Additionally, figure 8 shows the output that the model 

produced. The output photos included bounding boxes 

and a confidence score that shows the bounding box's 

http://www.ijsrem.com/
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accuracy, as the figure illustrates. 250 epochs were in use 

to teach  the YOLOv5 model. The accuracy score of this 

model was 85.95%, the F1 score was 88.30%, and the 

mAP at.5 score was 89.30%. These YOLOv5 model 

performance metrics 

 
Fig.8. Ground truth of training data 

 
Fig.9.255x255 success and failure 

C. Tumor Detection with ResNet-50: A Deep Learning 

Approach. 

pre-processing. We downsize all actual photos from 240 

× 240 pixels and all PGGAN-generated images from 256 

× 256 pixels since ResNet-50's input size is 224 × 224 

pixels. A CNN based on residual learning with 50 layers 

is called ResNet-50 [12]. Because of its exceptional 

performance in image classification tasks [36], including 

binary classification [37], we use it to identify cancerous 

tumors in brain  in resonant  images (i.e., the binary 

classification of tumor/non-tumpor images). For the 

binary classification of encephalon  cancers  (i.e., 

identifying the Isocitrate Dehydrogenase status in low-

/high-grade gliomas), Chang et al. [38] also employed a 

comparable 34-layer residual convolutional network. DA 

Configurations We evaluate the following 10 DA settings 

under adequate pictures with and without ImageNet [16] 

pre-training (i.e., 20 DA setups) in order verify the effect 

of  PGGAN-based DA and its refinement using 

MUNIT/SimGAN: 

 
Fig.9. Examples of MR images created by PGGAN and 

improved by MUNIT/SimGAN. 

3. CONCLUSION 

This study illustrates  how effective deep smart  learning 

models and GAN-based augmentation strategies work 

together to improve encephelon MR image processing for 

tumor diagnosis. We produced synthetic MR images by 

combining noise-to-image and image-to-image GANs, 

which enhance the training dataset by adding varied and 

accurate depictions of tumor features and brain anatomy. 

By addressing the prevalent issues of restricted variability 

and data scarcity in medical imaging, this dual GAN 

technique enhances model generalizability and lowers the 

chance of overfitting. The models trained on GAN-

augmented datasets outperform baseline models in 

problems involving splitting tumors and categorization 

tasks ,obtaining greater accuracy, recall, and Dice 

coefficients. While noise-to-image GANs offered a wider 

range of samples that increased model adaptability, 

image-to-image GANs were especially useful in 

increasing key anatomical characteristics and improving 

the quality of already-existing MR images. The ablation 

investigation emphasized the joint influence of these two 

GAN techniques on model performance and further 

validated their complimentary strengths. 

Although GANs present encouraging options for medical 

imaging data augmentation, issues like computational 

expense and the requirement for meticulous model 

parameter adjustment still exist. To further enhance the 

caliber and applicability of synthetic images, Future 

studies ought to look at this more sophisticated GAN 

designs, such as conditional or attention-based GANs. 

Furthermore, applying this strategy to additional imaging 

modalities and medical applications may confirm that 

GAN-augmented deep learning pipelines are generally 

applicable. 
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