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Abstract - Physics-based simulations of passive 

phenomena such as substances and liquids have become 

almost ubiquitous in the industry. However, the introduction 

of physically simulated characters was more modest. 

Modelling the movements of humans and animals remains a 
difficult problem, and there are currently few ways to simulate 

the different behaviours shown in the real world. Permanent 

challenges in this area include generalization and 

manageability. While manually designed controller-based 

methods have produced compelling results, the availability of 

human insights limits new skills and the ability to generalize 

to new situations. Humans can perform a variety of skills 

themselves, but it is difficult to clarify the internal strategies 

underlying such skills, and it is even more difficult to code 

them into a controller. Mobility is another obstacle that has 

hindered the adoption of simulated characters. Creating 
motion for a simulated character is still notorious for being 

difficult, and the current interface does not provide users with 

an effective means of deriving the desired movement from the 

simulated character. Reinforcement learning offers a 

promising approach to motion synthesis. This approach 

reduces the need for human insight by learning that agents 

perform different skills through trial and error. 
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1. INTRODUCTION  

 
Bullet is a physics engine that simulates collision detection 

and soft and rigid body dynamics. Bullet Physics Library is 
free opensource software and is subject to the terms of the zlib 
license. The main task of the physics engine is to perform 
collision detection, resolve collisions and other constraints, and 
provide updated world transformations for all objects. pybullet 
is an easy-to-use physics simulation Python module for 
robotics, games, visual effects, and machine learning. You can 
use pybullet to load articulated bodies from URDF, SDF, 
MJCF, and other file formats. pybullet provides forward 
dynamics simulation, inverse dynamics computation, forward 
and backward kinematics, collision detection, and ray crossing 
queries. The Bullet Physics SDK contains examples of 
Pybullet robots such as simulated Minotaur quadrupeds, 
humanoids that perform TensorFlow inferences, and KUKA 
arm grab objects. Multi-body, rigid, and deformable bodies 
with reduced coordinates are handled by the integrated LCP 
constraint solver, similar to the articulated island algorithm for 
this task. It uses the Articulated Body algorithm to create linear 
forward time dynamics and the Solver A matrix. 

 

2.1 METHODOLOGY 

 

The simulated robot described in the URDF file has a base 
and optionally a link connected by a joint. Each joint connects 
the parent link to the child link. The root of the hierarchy has a 
single root parent called the base. The base can be completely 
fixed with 0 degrees of freedom or completely free with 6 
degrees of freedom. Each limb is connected to the parent’s 
limb with a single joint, so the number of limbs is equal to the 
number of limbs. Regular links have a link index in the range 
[0..getNumJoints ()]. Since the base is not a regular” link”, we 
will use Rule 1 as the link index. The articulated frame uses the 
rule that it is represented relative to the inertial frame of the 
parent center of gravity aligned with the principal inertial 
axis.[2] 

Robot simulators are critical to academic research, 
education, and the development of safety-critical applications. 
Reinforcement learning environments (simple simulations 
combined with problem specifications in the form of reward 
functions) are also important for standardizing the 
development (and benchmarking) of learning algorithms. 
However, full-scale simulators usually lack portability and 
parallelism. Conversely, for toy-like problems, many 
reinforcements learning environments trade high sample 
throughput and realism. Public datasets have brought great 
benefits to deep learning and computer vision, but there is still 
a lack of software tools to develop control theory and 
reinforcement learning approaches at the same time and make 
fair comparisons. This article proposes an open source 
OpenAI-Gym-like environment for the movement of 
humanoid robots based on the Bullet physics engine. As far as 
we know, its multi-agent and vision-based reinforcement 
learning interface and support for realistic collision effects 
make it the first of its kind. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                    Volume: 06 Issue: 07 | July - 2022                         Impact Factor: 7.185                                  ISSN: 2582-3930                                                                                                                                               
 

© 2022, IJSREM      | www.ijsrem.com                DOI: 10.55041/IJSREM15533                                          |        Page 2 

2.2 APPROACH 

 

About PPO Algorithm 

The policy gradient method is the basis of a recent break- 

through that uses deep neural networks to control everything 

from video games to 3D movement to Go. However, it is 

difficult to get good results from the policy gradient method. 

This is because it is sensitive to the choice of step size and is 

too small to progress desperately. If it is too large, the signal 

can be overwhelmed by noise and can cause catastrophic 

performance degradation. Also, sampling efficiency is very 

low, often requiring millions (or billions) of time steps to 

learn a simple task.[2] 
 

Researchers have attempted to address these deficiencies 

with approaches such as TRPO and ACER by limiting or 

optimizing the scope of policy updates. These methods have 

their own trade-offs. ACER is much more complex than PPO 

and requires out-of-policy fixes and replay buffer code, but is 

slightly better than the Atari benchmark PPO. TRPOs are 

useful for ongoing control tasks, but also for algorithms that 

share parameters between policies and value functions, and 

for solving problems in Atari and other areas where visual 

input is important. Not easily compatible with additional 

losses. 

PPO 

With supervised learning, you can be confident that you 

can get good results with relatively few hyperparameter 

adjustments by simply implementing a cost function and then 

performing the steepest descent method. The road to success 

in reinforcement learning is not so clear. The algorithm has 

many moving parts that are difficult to debug and require 

considerable tweaking to get good results. PPO attempts to 

calculate updates that minimize cost functions at each step, 

ensuring that deviations from previous guidelines are 

relatively small, for ease of implementation, rehearsal 

complexity, and coordination. Balance ease. 
Earlier, we detailed a variant of PPO that uses an adaptive 

KL penalty to control policy changes at each iteration. The 

new variant uses a new objective function that is not normally 

found in other algorithms. 
This goal simplifies the algorithm by implementing a 

method of performing confidence interval updates compatible 

with stochastic gradient descent and removing the KL penalty 

for requesting adaptive updates. In testing, this algorithm 

showed the best performance for continuous control tasks and 

was much easier to implement, but almost reached Atari’s 

ACER performance. 
In reinforcement learning terminology, a policy is a 

mapping from action space to state space. You can think of 

this as an instruction to take an action based on the state of the 

environment in which the RL agent is located. When we talk 

about agent ratings, we generally mean a rating policy feature 

to see how well an agent works according to a particular 

policy. The policy gradient method plays an important role 

here. If the agent” learns” and does not really know which 

action will give the best results in that state, it does so by 

calculating the gradient of the policy. It works like a neural 

network architecture and the output gradient is: H. Logs are 

created with the probability of action in a particular state 

related to the parameters of the environment, and policy 

changes are reflected based on the gradient. 

While this proven method works well, the main drawback 

of these methods is their low sample efficiency and their high 

sensitivity to hyperparameter adjustments such as choices 

such as step size and learning rate. Unlike supervised learning, 

which has relatively few hyperparameter adjustments and 

guarantees a path to success or convergence, reinforcement 

learning is much more complex due to the various moving 
parts to consider. PPO is a cost function that balances key 

factors such as ease of implementation, ease of adjustment, 

sample complexity, and sample efficiency, ensuring that devi-

ations from previous guidelines are relative. The purpose is to 

calculate updates at each step that minimizes. low. PPO is 

actually a policy gradient method that also learns from online 

data. Ensure that the updated policy is not much different 

from the old policy and reduce training differences. The most 

common implementation of PPO is through an actor critique 

model that uses two deep neural networks. One handles 

actions (actors) and the other handles rewards (criticisms). 

The mathematical equation of PPO is shown below: 
LCLIP (θ) = Eˆt[min(rt(θ)Aˆt, clip(rt(θ), 1 ε, 1 + ε)Aˆt)] 
LCLIP () = Et[min(rt()At, clip(rt(), 1, 1+)At)] 
θ is the policy parameter 

tEt, denotes the empirical expectation over timesteps  
rtrt, is the ratio of the probability under the new and old 

policies, respectively 

tAt, is the estimated advantage at time tt 

ε is a hyper parameter, usually0.1or0.2 
[1][5] 
The following important inferences can be drawn from 

the PPO equation: 
This is a strategic gradient optimization algorithm. H. At 

each step, there is an update to an existing strategy that seeks 

to improve certain parameters. This ensures that the update is 

not too big. H. The old policy isn’t much different from the 

new policy (this is basically done by” clip”). The update range 

is very narrow. 
 

The profit function is the difference between the future 

discount amount of reward for a particular state and action 

and the value function of that policy. 
Each update uses the severity sample ratio or the 

likelihood ratio under the old and new policies. is a 

hyperparameter that indicates the boundaries of the areas that 

are allowed to be updated. This is how the working PPO 

algorithm looks, in its entirety when implemented in Actor-

Critic style: 
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What you can observe is that a small batch of 

observations is used for updates and then discarded to 

integrate a new batch of observations, also known as a” mini-

batch”. The updated policy is clipped to a small area to 

disallow large updates that can be irreparably harmful. In 

other words, PPO behaves exactly like any other policy 

gradient method in the sense that it calculates the output 

probability of the forward path based on various parameters 

and calculates the gradient to improve the backward path 

determination or probability. To do. This includes the use of 

important sample rations such as its predecessor TRPO. 

However, it also guarantees that the old and new policies are 

at least in a certain proximity (indicated by) and do not allow 

very large updates. It has become one of the most widely used 

policy optimization algorithms in reinforcement learning. 
 

 
3. CONCLUSIONS 

 
This article introduced OpenAI Gymlike, an open source 

multiquadcopter simulator written in Python and based on the 

Bullet Physics engine. The striking and innovative features 

of our proposal compared to similar existing tools are (i) a 

more modular and sophisticated implementation of physics, 
(ii) visual gym observation, and (iii). A multi-agent interface 

for reinforcement learning. Using the example of trajectory 

tracking and target velocity input, we showed how to use the 

Gympybullet drone for low- and high-level control. It also 

showed how to leverage work in separate workflows for 

single-agent RL and multi-agent RL, based on a state-of-the- 

art learning library. We believe that our work will help bridge 

the gap between reinforcement learning and control research, 

and help the community develop realistic MARL applications 

for aerial robotics. 
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