
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15533 | Page 1

Robotic Automation Using PyBullet

Dhanesh Amin1, Nihar Kadam2, Shubhangi Mahadik3

1 Student, MCA Bharti Vidyapeeth Navi Mumbai, India
2 Student, MCA Bharti Vidyapeeth Navi Mumbai, India

3 Asst. Professor, MCA Bharti Vidyapeeth

---***---
Abstract - Physics-based simulations of passive

phenomena such as substances and liquids have become

almost ubiquitous in the industry. However, the introduction

of physically simulated characters was more modest.

Modelling the movements of humans and animals remains a
difficult problem, and there are currently few ways to simulate

the different behaviours shown in the real world. Permanent

challenges in this area include generalization and

manageability. While manually designed controller-based

methods have produced compelling results, the availability of

human insights limits new skills and the ability to generalize

to new situations. Humans can perform a variety of skills

themselves, but it is difficult to clarify the internal strategies

underlying such skills, and it is even more difficult to code

them into a controller. Mobility is another obstacle that has

hindered the adoption of simulated characters. Creating
motion for a simulated character is still notorious for being

difficult, and the current interface does not provide users with

an effective means of deriving the desired movement from the

simulated character. Reinforcement learning offers a

promising approach to motion synthesis. This approach

reduces the need for human insight by learning that agents

perform different skills through trial and error.

Key Words: Physics-based simulation, Reinforcement

Learning, motion synthesis, Simulated characters

1. INTRODUCTION

Bullet is a physics engine that simulates collision detection

and soft and rigid body dynamics. Bullet Physics Library is
free opensource software and is subject to the terms of the zlib
license. The main task of the physics engine is to perform
collision detection, resolve collisions and other constraints, and
provide updated world transformations for all objects. pybullet
is an easy-to-use physics simulation Python module for
robotics, games, visual effects, and machine learning. You can
use pybullet to load articulated bodies from URDF, SDF,
MJCF, and other file formats. pybullet provides forward
dynamics simulation, inverse dynamics computation, forward
and backward kinematics, collision detection, and ray crossing
queries. The Bullet Physics SDK contains examples of
Pybullet robots such as simulated Minotaur quadrupeds,
humanoids that perform TensorFlow inferences, and KUKA
arm grab objects. Multi-body, rigid, and deformable bodies
with reduced coordinates are handled by the integrated LCP
constraint solver, similar to the articulated island algorithm for
this task. It uses the Articulated Body algorithm to create linear
forward time dynamics and the Solver A matrix.

2.1 METHODOLOGY

The simulated robot described in the URDF file has a base
and optionally a link connected by a joint. Each joint connects
the parent link to the child link. The root of the hierarchy has a
single root parent called the base. The base can be completely
fixed with 0 degrees of freedom or completely free with 6
degrees of freedom. Each limb is connected to the parent’s
limb with a single joint, so the number of limbs is equal to the
number of limbs. Regular links have a link index in the range
[0..getNumJoints ()]. Since the base is not a regular” link”, we
will use Rule 1 as the link index. The articulated frame uses the
rule that it is represented relative to the inertial frame of the
parent center of gravity aligned with the principal inertial
axis.[2]

Robot simulators are critical to academic research,
education, and the development of safety-critical applications.
Reinforcement learning environments (simple simulations
combined with problem specifications in the form of reward
functions) are also important for standardizing the
development (and benchmarking) of learning algorithms.
However, full-scale simulators usually lack portability and
parallelism. Conversely, for toy-like problems, many
reinforcements learning environments trade high sample
throughput and realism. Public datasets have brought great
benefits to deep learning and computer vision, but there is still
a lack of software tools to develop control theory and
reinforcement learning approaches at the same time and make
fair comparisons. This article proposes an open source
OpenAI-Gym-like environment for the movement of
humanoid robots based on the Bullet physics engine. As far as
we know, its multi-agent and vision-based reinforcement
learning interface and support for realistic collision effects
make it the first of its kind.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15533 | Page 2

2.2 APPROACH

About PPO Algorithm

The policy gradient method is the basis of a recent break-

through that uses deep neural networks to control everything

from video games to 3D movement to Go. However, it is

difficult to get good results from the policy gradient method.

This is because it is sensitive to the choice of step size and is

too small to progress desperately. If it is too large, the signal

can be overwhelmed by noise and can cause catastrophic

performance degradation. Also, sampling efficiency is very

low, often requiring millions (or billions) of time steps to

learn a simple task.[2]

Researchers have attempted to address these deficiencies

with approaches such as TRPO and ACER by limiting or

optimizing the scope of policy updates. These methods have

their own trade-offs. ACER is much more complex than PPO

and requires out-of-policy fixes and replay buffer code, but is

slightly better than the Atari benchmark PPO. TRPOs are

useful for ongoing control tasks, but also for algorithms that

share parameters between policies and value functions, and

for solving problems in Atari and other areas where visual

input is important. Not easily compatible with additional

losses.

PPO

With supervised learning, you can be confident that you

can get good results with relatively few hyperparameter

adjustments by simply implementing a cost function and then

performing the steepest descent method. The road to success

in reinforcement learning is not so clear. The algorithm has

many moving parts that are difficult to debug and require

considerable tweaking to get good results. PPO attempts to

calculate updates that minimize cost functions at each step,

ensuring that deviations from previous guidelines are

relatively small, for ease of implementation, rehearsal

complexity, and coordination. Balance ease.
Earlier, we detailed a variant of PPO that uses an adaptive

KL penalty to control policy changes at each iteration. The

new variant uses a new objective function that is not normally

found in other algorithms.
This goal simplifies the algorithm by implementing a

method of performing confidence interval updates compatible

with stochastic gradient descent and removing the KL penalty

for requesting adaptive updates. In testing, this algorithm

showed the best performance for continuous control tasks and

was much easier to implement, but almost reached Atari’s

ACER performance.
In reinforcement learning terminology, a policy is a

mapping from action space to state space. You can think of

this as an instruction to take an action based on the state of the

environment in which the RL agent is located. When we talk

about agent ratings, we generally mean a rating policy feature

to see how well an agent works according to a particular

policy. The policy gradient method plays an important role

here. If the agent” learns” and does not really know which

action will give the best results in that state, it does so by

calculating the gradient of the policy. It works like a neural

network architecture and the output gradient is: H. Logs are

created with the probability of action in a particular state

related to the parameters of the environment, and policy

changes are reflected based on the gradient.

While this proven method works well, the main drawback

of these methods is their low sample efficiency and their high

sensitivity to hyperparameter adjustments such as choices

such as step size and learning rate. Unlike supervised learning,

which has relatively few hyperparameter adjustments and

guarantees a path to success or convergence, reinforcement

learning is much more complex due to the various moving
parts to consider. PPO is a cost function that balances key

factors such as ease of implementation, ease of adjustment,

sample complexity, and sample efficiency, ensuring that devi-

ations from previous guidelines are relative. The purpose is to

calculate updates at each step that minimizes. low. PPO is

actually a policy gradient method that also learns from online

data. Ensure that the updated policy is not much different

from the old policy and reduce training differences. The most

common implementation of PPO is through an actor critique

model that uses two deep neural networks. One handles

actions (actors) and the other handles rewards (criticisms).

The mathematical equation of PPO is shown below:
LCLIP (θ) = Eˆt[min(rt(θ)Aˆt, clip(rt(θ), 1 ε, 1 + ε)Aˆt)]
LCLIP () = Et[min(rt()At, clip(rt(), 1, 1+)At)]
θ is the policy parameter

tEt, denotes the empirical expectation over timesteps
rtrt, is the ratio of the probability under the new and old

policies, respectively

tAt, is the estimated advantage at time tt

ε is a hyper parameter, usually0.1or0.2
[1][5]
The following important inferences can be drawn from

the PPO equation:
This is a strategic gradient optimization algorithm. H. At

each step, there is an update to an existing strategy that seeks

to improve certain parameters. This ensures that the update is

not too big. H. The old policy isn’t much different from the

new policy (this is basically done by” clip”). The update range

is very narrow.

The profit function is the difference between the future

discount amount of reward for a particular state and action

and the value function of that policy.
Each update uses the severity sample ratio or the

likelihood ratio under the old and new policies. is a

hyperparameter that indicates the boundaries of the areas that

are allowed to be updated. This is how the working PPO

algorithm looks, in its entirety when implemented in Actor-

Critic style:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15533 | Page 3

What you can observe is that a small batch of

observations is used for updates and then discarded to

integrate a new batch of observations, also known as a” mini-

batch”. The updated policy is clipped to a small area to

disallow large updates that can be irreparably harmful. In

other words, PPO behaves exactly like any other policy

gradient method in the sense that it calculates the output

probability of the forward path based on various parameters

and calculates the gradient to improve the backward path

determination or probability. To do. This includes the use of

important sample rations such as its predecessor TRPO.

However, it also guarantees that the old and new policies are

at least in a certain proximity (indicated by) and do not allow

very large updates. It has become one of the most widely used

policy optimization algorithms in reinforcement learning.

3. CONCLUSIONS

This article introduced OpenAI Gymlike, an open source

multiquadcopter simulator written in Python and based on the

Bullet Physics engine. The striking and innovative features

of our proposal compared to similar existing tools are (i) a

more modular and sophisticated implementation of physics,
(ii) visual gym observation, and (iii). A multi-agent interface

for reinforcement learning. Using the example of trajectory

tracking and target velocity input, we showed how to use the

Gympybullet drone for low- and high-level control. It also

showed how to leverage work in separate workflows for

single-agent RL and multi-agent RL, based on a state-of-the-

art learning library. We believe that our work will help bridge

the gap between reinforcement learning and control research,

and help the community develop realistic MARL applications

for aerial robotics.

ACKNOWLEDGEMENT

I have great pleasure to express my gratitude to all those who

have contributed to and motivated me during my project work. I

want to thank my teachers, and parents for motivating me. It’s

because of their constant support I was able to get a job in this

wonderful company and become a part of this great project.

REFERENCES

1. https://openai.com/blog/openai-baselines-ppo/
2.https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_
 User_Manual.pdf (PyBullet)
3. https://arxiv.org/pdf/2103.02142v3.pdf (Quadcopter)

4. https://arxiv.org/pdf/1804.02717v3.pdf (DeepMimic)
5. https://openreview.net/pdf?id=r1etN1rtPB (PPO)

http://www.ijsrem.com/

