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Abstract - Fingerprint recognition is a pivotal technology in 

modern biometric systems, offering robust and secure methods 

for identity verification and authentication. This project presents 

a comprehensive approach to fingerprint recognition by 

leveraging advanced deep learning techniques, particularly 

capsule networks, alongside classical image augmentation 

methods to enhance the robustness and accuracy of the system. 

The system comprises three core modules: Data Augmentation, 

Model Training, and Testing and Prediction. The augmentation 

module applies a diverse range of transformations, including 

color filtering, grayscale conversion, and blur effects, to generate 

a wide variety of training samples, thereby improving the 

model's ability to generalize across different fingerprint patterns. 

These augmented datasets are encapsulated into compact zip 

files for efficient storage and retrieval. The training module 

employs a user-selected deep learning architecture, such as 

ResNet50, VGG16, or EfficientNetB0, as a base model, with a 

capsule network layer added for capturing spatial hierarchies 

within the fingerprint features. This network is designed to 

classify fingerprints into distinct categories with high accuracy, 

utilizing a categorical cross-entropy loss function optimized by 

Adam. The training pipeline includes data generators for loading 

and preprocessing fingerprint images, ensuring consistency and 

scalability. In the testing module, a trained model is deployed to 

predict fingerprint classes from unseen images. A graphical 

interface guides users through selecting pre-trained models and 

testing images, while prediction results, including confidence 

scores, are visually presented alongside the input images. This 

seamless integration enhances user interaction and 

interpretability of the results. The project emphasizes modularity 

and user customization, allowing the selection of models, 

adjustment of parameters, and intuitive augmentation controls. 

By combining traditional image processing techniques with 

state-of-the-art deep learning architectures, this system 

demonstrates the potential for accurate, efficient, and user- 

friendly fingerprint recognition solutions, suitable for a wide 

range of applications in security and identity management. 

Key Words: Data Augmentation, Genetic Operators, IoT, 

Fingerprinting, Sigfox, Localization, Positioning, 

Reproducibility, Machine Learning, knn. 

1. INTRODUCTION 

Biometric recognition systems have become an integral part of 

modern security frameworks, offering reliable methods for 

authenticating individuals based on their unique physical or 

behavioral traits. Among various biometric modalities, 

fingerprint recognition stands out due to its widespread 

acceptance, non-intrusiveness, and proven accuracy over decades 

of use in law enforcement, personal security, and access control 

systems. The ridges and valleys on human fingertips form 

patterns that are distinct for every individual, making 

fingerprints an ideal candidate for biometric authentication. 

 

2. RELATED WORKS 

 
There has been an increasing interest on the subject of 

fingerprint augmentation over the last years . The existing works 

on fingerprint augmentation can be categorized into two main 

approaches. The first one consists of rule-based fingerprint 

augmentation methods, while the second one concerns the 

generation of synthetic fingerprints through generative modelling 

methods. In this section, we present an overview of the related 

work of both these approaches. 

 

The methods of augmenting fingerprints through rule-based 

approaches, as the one proposed in the current work, utilize the 

concepts of adding noise or permuting received values of 

training fingerprints. Xiao et al. [7] propose a fingerprint 

augmentation method, exemplifying it using a public WiFi 

dataset, which has multiple receptions at each training location. 

 

Assuming that at each training location a data matrix of size m 

by n is recorded, corresponding to m receptions for each of the n 

access points, the authors of [7] propose the generation of a new 

data matrix of equal size (m by n), which is produced upon 

permuting the elements of each column of the original data 

matrix. The authors report an improvement, in terms of mean 

localization error, of approximately 10%. 

 

In a recent series of two consecutive works, Sinha et al. [8], [9], 

have proposed three fingerprint augmentation schemes. In the 

first work [8], the authors utilize an indoor dataset in a single 

floor setting, where a very big volume of data, of over 10000 

data points, is collected. Assuming the same m by n data matrix 
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available at each fingerprint, as in [7], they propose the 

generation of multiple augmented m by n data matrices, each of 

which differs from the original matrix simply by the subtraction 

of a constant number from a random reception reported on the 

matrix. 

 

Alternatively, the authors propose another strategy where a 

uniformly random value (selected inside the range of values of 

the certain access point) is used instead of the subtraction of a 

constant. In their followup work, Sinha et al. [9] propose a 

method that offers greater variety of generated fingerprints. In 

that work, each row of the generated matrices results by 

randomly selecting one of the m original receptions for each of 

the n access points, from the real training set. In both these 

works [8], [9], each m by n data matrix creates a grey scale 

image which feeds a CNN model. Each such image is treated as 

one fingerprint. The most recent work [9] yields the best results, 

reporting significant improvements in comparison to the case of 

only using the original training set. 

 

It is noteworthy that the above presented works assume the 

availability of a multitude of measurements on each of the 

training locations. Given the fact that the collection of training 

data is considered a costly and timely process, which is often 

mentioned as the main barrier of the utilization of fingerprinting 

techniques, removing such a requirement can be a significant 

advantage. To the best of our knowledge, ProxyFAUG is the first 

relevant work that does not require multiple measurements per 

location, and which instead operates with the notion of 

proximity. 

 

Not requiring multiple measurements at the same location in 

order to perform fingerprint augmentation, allows the application 

of fingerprint augmentation in a wider range of fingerprint 

datasets, collected by different surveying techniques. The Sigfox 

dataset used in this work, along with other Low Power Wide 

Area Network (LPWAN) datasets which were published together 

[10], were collected with a particular surveying method. More 

specifically, data were collected by postal service cars which 

circulated around the city center of Antwerp, while carrying the 

relevant hardware. Such datasets could profit from proximity 

based augmentation, as they cannot always meet the strict 

requirement of multiple measurements per location. 

 

Lastly, the utilization of generative modelling in the generation 

of synthetic fingerprints has recently started getting traction. Zou 

et al. [3] propose the combination of Conditional Generative 

Adversarial Networks (GAN) conditioned on the outcome of a 

Gaussian process regression, to generate fingerprints in indoor 

locations that were not reachable by a robot which collected the 

original set of fingerprints. 

 

An improvement of 33% per cent in terms of mean error is 

reported [3]. Similarly, GAN architectures were also utilized by 

two other relevant, recent works [4], [5]. Nabati et al. [4], 

exemplify GAN-based fingerprint generation, in a four-room 

(four-class) classification setting, with 250 training samples for 

each class. Results indicated that using only 10% of the training 

data to synthesize a volume of fingerprints equal to the 90% of 

the original dataset, can result in a synthetic dataset that achieves 

a performance similar to the original dataset. Li et al. [5], explore 

GAN-based fingerprint generation, in a limited, 7-by-7 meter 

setting, exemplifying the feasibility of collection effort reduction 

without an expense in terms of accuracy. 

3. THE PROPOSED PROXYFAUG METHOD 

 
A. The ProxyFAUG Concept 

 

The main conceptual idea behind the proposed augmentation 

scheme is presented in this section. It is often the case that 

fingerprints taken either at exactly the same location or in close 

proximity present noticeable differences. These differences 

among two fingerprints may concern either distinct sets of 

receiving basestations between the two fingerprints, or different 

measurement values from the same basestation (for instance, in 

the signal strength, for the RSSI case) among the two 

fingerprints. 

 

Such differences among fingerprints are exemplified in Figure 1. 

More particularly, in Figure 1, Fingerprints A and B have 

received the same values from the 1st and 3rd basestation. 

Basestation 2 was heard only from Fingerprint A while 

basestation 4 was heard only from Fingerprint B . Basestations 5 

and 6 were heard in both fingerprints but with different received 

values. Lastly, the 7th and 8th basestation were not heard in 

either of the fingerprints and 3rd basestation. Basestation 2 was 

heard only from Fingerprint A while basestation 4 was heard 

only from Fingerprint B . Basestations 5 and 6 were heard in 

both fingerprints but with different received values. Lastly, the 

7th and 8th basestation were not heard in either of the 

fingerprints. 

 

Similar fluctuations among proximal fingerprints are a common 

issue in fingerprint datasets. The idea that ProxyFAUG explores 

is the creation of new fingerprints, as a combination of signal 

receptions among proximal fingerprints. The assumption is that a 

valid fingerprint reception in the area between proximal 

Fingerprints A and B could contain a combination of values of 

the two fingerprints. For instance, regarding the example of 

Figure 1, a fingerprint could reasonably have values from both 

Basestations 2 and 4 or from none of them. Such two cases are 

exemplified by the augmented Fingerprints Aug1 and Aug2 of 

Figure 1, which are produced with the ProxyFAUG operators 

presented below. 

 

B. The ProxyFAUG Operators 

 

ProxyFAUG proposes an adjustment of the crossover and 

mutation operators of genetic algorithms, in order to implement 

the rules that will create the augmented fingerprints, in 

accordance with the logic presented above. In the crossover 

operation, two real fingerprints from the training set, the parents, 

are combined to produce a new, augmented fingerprint. 

ProxyFAUG uses a uniform crossover, under which each feature 

(meaning the reception value of a specific basestation) is chosen 

from either of the two parents with an equal probability. 

Traditionally, the crossover operator of genetic algorithms 

(often referenced as recombination operator as well) implies that 

each pair of parents generates two complementary offsprings. 

ProxyFAUG doesn’t impose this restriction and generates one 

augmented fingerprint per pair of parents, in order to better 

control the volume of the augmented dataset. Nevertheless, 

generating two complementary fingerprints for each pair of 

parents would be a valid option as well. 
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C. The ProxyFAUG Proccess 

 

In this section, we will present the process that ProxyFAUG 

follows in order to augment a training set of fingerprints. The 

process is presented in pseudocode, in Algorithm 1. The process 

contains a number of parameters that determine it, and which 

the designer is called to tune. The parameters, which are 

summarized in Table I, are subsequently explained in detail. 
 

 

Figure 1: Generation of Augmented Fingerprints via 

ProxyFAUG Crossover and Mutation 

Fig. 1. Example of parent fingerprints A and B producing two 

augmented fingerprints, by the ProxyFAUG crossover and 

mutate operators. The aug- mented fingerprints indicate with 

the color of each cell, the origin of its value from the respective 

parent. A cell that underwent a mutation is indicated with green 

color. 

 

The mutation operator, in the traditional genetic algorithm 

setting, concerns the arbitrary flip of a bit in a bit sequence, based 

on a designer-defined mutation probability. 

 

In Proxy- FAUG, we use the mutation operator, in conjunction 

with the creation of a new, augmented fingerprint by the crossover 

oper- ator. More specifically, in the augmented fingerprint 

resulting from the crossover operation, each feature has a 

probability equal to the mutation probability to be altered. 

 

If a feature is mutated, it is replaced by a random value 

uniformly selected in the range between the respective values of 

this feature for the two parents. For instance, in Figure 1, the 

value of the fifth feature of Aug2 has been mutated. 

 

The resulting value 73 is obtained by a random sampling in the 

range [71, 78], which is defined by the respective values of the 

fifth feature of the parent Fingerprints A and B. The reason 

for limiting the mutation outcome in this range, is for getting 

random mutations which range in plausible and meaningful 

values. 

 

Since the adjusted versions of the two operators are used in 

conjunction and sequentially in ProxyFAUG, we will refer to 

their combined usage as crossover-and-mutate. Figure 1 exem- 

plifies the two operators, with the creation of two, independent 

between them, augmented fingerprints. 

 

The above defined operators describe the part of the aug- 

mented fingerprint that concerns the features, meaning the 

signals that characterize a certain location. Since in Proxy- 

FAUG the fingerprints that are recombined in order to produce 

new augmented ones have not been necessarily collected at the 

same location, but in proximity, the location with which the 

augmented fingerprint is associated with remains to be defined. 

ProxyFAUG uses the midpoint location of the two parrent 

fingerprints, to characterize the resulting augmented fingerprint. 

 

Algorithm 1: Pseudocode of the ProxyFAUG proccess. 

 

Input: training set, r, N, Smax, pm 

Output: augmented training set 

for training point ∈ training set do 

Define cluster of training points in range r from 

training point; 

if cluster size > Smax then 

 

randomly keep Smax points in the cluster; 

end 

Define cluster pairs containing all pairs of the 

cluster elements; 

for pair ∈ cluster pairs do 

 

Create N augmented fingerprints by the 

crossover-and-mutate operator with pm on the 

pair; 

Add the N augmented fingerprints in the 

augmented training set; 

end end 

 

Copy training set in augmented training set; Return augmented 

training set; 

 

Initially, the notion of proximity should be concretely de- fined 

by the range parameter r, which represents the maximum 

geographic distance between two fingerprints for them to be 

considered as proximal. Each fingerprint in the training set will 

form, together with a set of randomly selected proximal 

fingerprints, a cluster. Since there might be a big amount of 

fingerprints in the proximity of a certain fingerprint, we define 

Smax as the maximum cluster size. With this limitation, each 

training fingerprint will form a cluster together with at most 

Smax − 1 other fingerprints that exist in a range of r meters from 

it. If there are up to Smax−1 fingerprints in the range of a given 

fingerprint, they will compose, together with the said fingerprint, 

a cluster of size that is at most equal to Smax. Alternatively, if 

the are Smax or more fingerprints in range, a random selection 

takes place for forming the cluster of size Smax. 
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Table 1: The Parameters of ProxyFAUG 

 

 
Parameter 

 
Explanation 

 

R Range: The range (maximum geometric 

distance) within which fingerprints will be 

considered to be proximal 

 

Smax 

 

Maximum cluster size: The maximum 

number of training fingerprints that will form 

a cluster, including the fingerprint functioning 

as a reference from which the range parameter 
is measured. 

 

N 

 

Crossovers per pair: The amount of 

augmented fingerprints that are produced, by 
each pair of fingerprints selected from a 

cluster. 

 

Pm 

 

Mutation probability: The probability with 

which the value of a cell of the augmented 

fingerprint gets replaced by a random value. 

The value is sampled by a uniform distribution 

in the range between the respective cell values 
of the two parents of the augmented 

fingerprint. 

Once the cluster has been defined, all possible pairs of 

fingerprints are identified. Each pair will function as the parents 

over which the combined crossover-and-mutation operator, 

presented in III-B, will be performed. Since a pair might have 

multiple recombinations that can be useful, a parameter N is 

available to be tuned by the designer, which will determine the 

number of augmented fingerprints produced by a pair of parents, 

through the crossover-and-mutate operator. As mentioned in 

Section III-B, the midpoint location of the two parent 

fingerprints, is assigned as the ground truth location of each 

augmented fingerprint. 

 

4. EXPERIMENTATION AND RESULTS 

 
Selection and Motivation In this section, we will investigate the 

effect of the ProxyFAUG data augmentation scheme on the 

performance of a positioning system, utilizing a public dataset of 

a real-world Sigfox deployment [10]. The Sigfox dataset used in 

this study has been collected in the urban area of Antwerp, in 

Belgium. Datasets of LPWANs, such as this Sigfox dataset, 

constitute appropriate test-beds for the ProxyFAUG augmentation 

scheme for following reasons 

`Secondly, such big urban datasets are often characterized by an 

uneven density of recorded fingerprints. Spatial zones with low 

density of fingerprints might not have enough variance in the 

training set so as to correctly match a new signal reception with 

one of the fingerprints of the zone. Moreover, since a big amount 

of basestations is present, it is often the case that distinct sets of 

basestations are present in fingerprints collected at the same (or in 

proximal) locations. One could assume that the numerous 

permutations of the sets of basesations that are present in these 

fingerprints could constitute valid potential fingerprints, as 

described in SectionIII-A and exemplified in Figure 1. The 

possibility to augment fingerprints in the way proposed by 

ProxyFAUG can increase the variance of the dataset and enhance 

the accuracy of a positioning system. Conceptually, ProxyFAUG 

aims to fill in the gaps of the data collection, an action which 

seems appropriate in this kind of datasets. 

 

Lastly, the big volume of data of such datasets, comes hand in 

glove with the intention of ProxyFAUG to enrich the training set 

with multiple valid permutations of recorded fingerprints, so as to 

create a dense mesh of points in the signal space, that would 

allow new receptions to be correctly affiliated with fingerprints 

that are close to the actual location under question. Having 

presented the intuition behind the setting selection of the 

mentioned Sigfox dataset for exemplifying and testing 

ProxyFAUD, we proceed to the experimentation part. B. Tuning 

In order to evaluate the influence of the ProxyFAUG 

 

The process can be summarized as follows. Each fingerprint of 

the training set composes a cluster of a maximum size Smax, 

together with other randomly selected fingerprints of the training 

set, which should all lay in its vicinity, in a geometric distance 

that is at most equal to the range parameter r. Each possible pair 

of fingerprints of a cluster produces an amount of augmented 

fingerprints equal to the parameter N , through the crossover- 

and-mutate operator. 

 

Lastly, the big volume of data of such datasets, comes hand in 

glove with the intention of ProxyFAUG to enrich the training set 

with multiple valid permutations of recorded fingerprints, so as 

to create a dense mesh of points in the signal space, that would 

allow new receptions to be correctly affiliated with fingerprints 

that are close to the actual location under question. Having 

presented the intuition behind the setting selection of the 

mentioned Sigfox dataset for exemplifying and testing 

ProxyFAUD, we proceed to the experimentation part. 

 

A. Tuning 

 

In order to evaluate the influence of the ProxyFAUGmentation 

scheme on a positioning system, we will compare the 

performance of the same fingerprinting method in two cases: in 

the case of only using the original training set, against the case 

where the augmented training set is used. As the positioning 

method, we will use the one that, to the best of our knowledge, is 

the best performing published method dealing with the given 

dataset, presented by Anagnostopoulos and Kalousis [11]. As 

suggested in [11], the dataset is initially preprocessed by the 

powed transformation, which has been initially introduced by 

Torres-Sospedra et al. [12], with the parameter β of the powed 

transform set to 2.6. Moreover, the arbitrary value −200 which 

was set in the original dataset in replacement of the out-of-range 

missing values is replaced by the experimental minimum 

received RSSI value of the training set, that is −157. Lastly, the 

Bray-Curtis dissimilarity is used as a distance metric in a kNN 

setting, were k = 6 is set. It is worth noting that the same train / 

validation / test set split used in [11], which is publicly available 

[13], has been reused in the current work. 

 

The volume of the resulting augmented dataset, as well as its 

quality, will depend on the selected parameter values. We will 

now calculate the maximum size that the augmented training set 

may have, to obtain an intuition about the impact of the selected 
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parameter values on the resulting dataset size. Let M be the size 
of the training set. Assume that the range parameter r and the 

dataset’s spatial distribution is such that there exist Smax proximal 

fingerprints for each of the training fingerprints. Then, M 
clusters of size Smax will be formed. Each cluster will create an 

amount of pairs of parents equal to the number of combinations 

of Smax objects taken 2 at a time. Moreover, each of these pairs 

will create N augmented fingerprints. Overall, the size of the 

augmented training set. 

 

Table 2: The Proxyfaug Parameters Selected For This 

Setting 

 

 
Parameter 

 
Explanation 

 
r 

 
20 meters 

 

Smax 

 
2 

 
N 

 
8 

 

pm 

 
0.3 

Upon experimentation with the ProxyFAUG parameters, the 

values reported in Table II were selected for the given setting. 

The selected parameter values suggest that each training 

fingerprint is coupled with another training fingerprint that is in a 

range of 20 meters (if such a fingerprint exists). Each such couple 

of fingerprints, is considered a cluster ofSmax = 2. The two 

fingerprints of the cluster, are the only pair of parents of the 

cluster. Each pair creates N = 8 augmented fingerprints, by the 

crossover-and-mutate operator, with a mutation probability of pm 

= 0.3. After the augmentation process, the augmented training set 

is composed of 68127 training points, as opposed to the 10063 

points of the original training set. 

 

Since the landscape of the training set has undegone a significant 

change with the augmentation process, re-evaluating the 

hyperparameter selection of the positioning system would be 

appropriate. Figure 2 presents the mean and median error on the 

validation set (with the blue and red continuous line 

respectively) for various values of k, for the case of training on 

the augmented training set. The dashed lines indicate the level of 

the performance of the optimal setting of the model trained on 

the original training set, as proposed in [11]. 

Fig. 2. Mean and median localization error on the validation 

set (in blue and red solid lines respectively) for various value of 

the k parameter, for the case of using the augmented training set. 

The constant value of the best performance on the validation set 

of the model trained with the original training set is indicated by 

the dotted lines. 

 

There appears to be a trade-off between the mean and the 

median error, along the axis representing the amount of k Nearest 

Neighbours used for the position estimation. The higher values of 

mean error for low k values can be explained by the fact that, in 

zones of sparse data presence and for estimates of high 

localization error, averaging the location of many neighbours 

may reduce the error. Conversely, the fingerprints of the low 

quartiles are greatly benefited by the profusion of adequate 

neighbours, produced by the augmentation process. 

 

This fact is highlighted in Figure 2, which depicts the trend of 

the median error decreasing as lower values of k are evaluated. 

The median error goes as down as 36 meters (71% improvement) 

for the case of k = 1, though this setting increases the mean error 

to 358 meters (13% deterioration). The value of k = 6 used for 

the optimal setting of the original dataset appears to handle well 

the tradeoff, improving both the mean and the median error, and 

will be used for training on the augmented dataset as well. 

Therefore, having solidified the hyperparameter setting by 

evaluating the performance on the validation set, we can proceed 

to report an unbiased evaluation of the performance on the 

testing set. 

 

B. Performance 

 

The performance of the positioning system for the two 

cases of using the original and the augmented dataset is 

presented in Table III and Figure 3. Table III reports the 

mean, median and 75th percentile of error, on the validation 

and the test set, and for two different training sets: the 

original and the augmented one. While for the mean and the 

75th percentile of error the relative improvement is small, 

ranging around 6%, the improvement in terms of median 

error is impressive. More specifically, the use of the 

augmented dataset improves the median of the test set error 

by 40%. 
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Table 3: Localization Error Comparison Between The 

Original And The Augmented Training Set In Terms 

Of Validation And Test Error 

 

 

Training set 

 
Validation Set Error 

 
Test Set Error 

 
mean 

 
Median 

 
75th 

 
mean 

 
median 

 
75th 

Original 

Augmented 

 

318 

 
307 

 

123 

 
80 

 

336 

 
324 

 

298 

 
280 

 

108 

 
65 

 

319 

 
300 

 
Improvement 

 
3% 

 
35% 

 
4% 

 
6% 

 
40% 

 
6% 

The discrepancy of the relative improvement between the mean 

and median error, is due to the fact that the ProxyFAUG 

augmentation appears to significantly improve the low quartiles 

of error in the studied setting. Moreover, the median error, as a 

metric, is resilient to the presence of outliers of high error that 

exist when using either of the two training sets. On the contrary, 

the mean error is mildly affected by the significant improvement 

of the low ranging errors, as the fewer cases of very high values 

of error affect it disproportionally. The significant performance 

improvement of ProxyFAUG in the lower quartiles of error is 

highlighted in the Cumulative Distribution Function (CDF) of the 

test error, of Figure 3. 
 

 

5. RESULT 
 

 

 

6. CONCLUSIONS AND FUTURE WORK 

 
In this work, we presented ProxyFAUG, a novel, concise 

methodology of proximity-based fingerprint augmentation. 

Unlike other common approaches of fingeprint augmentation, 

ProxyFAUG does not require multiple signal recordings at each 

training location, a fact that broadens the set of fingerprint 

datasets in which the augmentation method is applicable. 

ProxyFAUG proposes a set of parameters, which can allow the 

system designer to adapt the augmentation method to the 

particularities of the dataset and to the system requirements in 

terms of acceptable training data volume, complexity and 

achievable localization accuracy. 

 

7. The results of the tests of this work, performed in a public, 

real-world dataset, highlight the significant perfor- mance 

improvements that are achievable with ProxyFAUG. More 

particularly, ProxyFAUG offers systematic performance 

improvements in the low quartiles of error, indicated by the 40% 

reduction of the median error in the independent test set, in 

comparison to the best performing published method on the 

same dataset. The CDF of error, depicted in Figure 3, high- 

lights a clear performance discrepancy between the augmented 

and the original dataset. 

 

REFERENCES 

1. P. Davidson and R. Piche´, “A survey of selected indoor 

positioning methods for smartphones,” IEEE 

Communications Surveys Tutorials, vol. 19, no. 2, pp. 

1347–1370, 2017. 

 

2. R. W. Ouyang, A. K. Wong, C. Lea, and M. Chiang, 

“Indoor location estimation with reduced calibration 

exploiting unlabeled data via hy- brid 

generative/discriminative learning,” IEEE Transactions 

on Mobile Computing, vol. 11, no. 11, pp. 1613–1626, 

2012. 

 

3. H. Zou, C. L. Chen, M. Li, J. Yang, Y. Zhou, L. 

Xie, and C. J. Spanos, “Adversarial learning-enabled 

automatic wifi indoor radio map construction and 

adaptation with mobile robot,” IEEE Internet of Things 

Journal, vol. 7, no. 8, pp. 6946–6954, 2020. 

 

4. M. Nabati, H. Navidan, R. Shahbazian, S. A. Ghorashi, 

and D. Win- dridge, “Using synthetic data to enhance 

the accuracy of fingerprint- based localization: A deep 

learning approach,” IEEE Sensors Letters, vol. 4, no. 4, 

pp. 1–4, 2020. 

 

5. Q. Li, H. Qu, Z. Liu, N. Zhou, W. Sun, S. Sigg, and J. 

Li, “Af-dcgan: Amplitude feature deep convolutional 

gan for fingerprint construction in indoor localization 

systems,” IEEE Transactions on Emerging Topics in 

Computational Intelligence, pp. 1–13, 2019. 

 

6. C. Shorten and T. M. Khoshgoftaar, “A survey on 

image data augmentation for deep learning,” Journal of 

Big Data, vol. 6, no. 1, p. 60, 2019. [Online]. Available: 

https://doi.org/10.1186/s40537-019-0197-0 

 

7. L. Xiao, A. Behboodi, and R. Mathar, “A deep learning 

approach to fingerprinting indoor localization 

solutions,” in 2017 27th International 

 

8. R. S. Sinha, S.-M. Lee, M. Rim, and S.-H. Hwang, 

“Data augmentation schemes for deep learning in an 

indoor positioning application,” Electronics, vol. 8, no. 

http://www.ijsrem.com/
file:///C:/Users/gayat/Downloads/fingerprint%20paper%204%20(1).docx%23_bookmark14
https://doi.org/10.1186/s40537-019-0197-0


International Journal of Scientific Research in Engineering and Management (IJSREM) 

Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930 

© 2025, IJSREM | www.ijsrem.com | Page 7 

 

 

5, p. 554, May 2019. [Online]. Available: 

http://dx.doi.org/10.3390/electronics8050554 

 

9. ] R. S. Sinha and S.-H. Hwang, “Improved rssi-based 

data augmentation technique for fingerprint indoor 

localisation,” Electronics, vol. 9, no. 5, p. 851, May 

2020. [Online]. Available: http://dx.doi.org/10.3390/ 

electronics905085 

 

10. M. Aernouts, R. Berkvens, K. Van Vlaenderen, and M. 

Weyn, “Sigfox and lorawan datasets for fingerprint 

localization in large urban and rural areas,” Data, vol. 3, 

no. 2, 2018.   [Online]. Available: 

http://www.mdpi.com/2306-5729/3/2/13 

 

11. G. G. Anagnostopoulos and A. Kalousis, “A 

reproducible analysis of rssi fingerprinting for outdoor 

localization using sigfox: Preprocessing and 

hyperparameter tuning,” in 2019 International 

Conference on Indoor Positioning and Indoor 

Navigation (IPIN), 2019, pp. 1–8. 

 

12. J. Torres-Sospedra, R. Montoliu, S. Trilles, Oscar 

Belmonte, and ´ J. Huerta, “Comprehensive analysis of 

distance and similarity measures for wi-fi fingerprinting 

indoor positioning systems,” Expert Systems with 

Applications, vol. 42, no. 23, pp. 9263 – 9278, 2015. 

[Online]. Available: 

http://www.sciencedirect.com/science/article/pii/S0957 

417415005527 

 

13. Grigorios and K. Alexandros, “A Reproducible 

Analysis of RSSI Fingerprinting for Outdoors 

Localization Using Sigfox: Preprocessing and 

Hyperparameter Tuning (datasets),” May 2019. 

[Online]. Available: 

https://doi.org/10.5281/zenodo.3228744 

http://www.ijsrem.com/
http://dx.doi.org/10.3390/electronics8050554
http://dx.doi.org/10.3390/
http://www.mdpi.com/2306-5729/3/2/13
http://www.sciencedirect.com/science/article/pii/S0957417415005527
http://www.sciencedirect.com/science/article/pii/S0957417415005527
https://doi.org/10.5281/zenodo.3228744

