
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 09 | Sept - 2025                                  SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                

 

© 2025, IJSREM      | https://ijsrem.com                             DOI: 10.55041/IJSREM52655                                                |        Page 1 
 

Role of Machine Learning in Power Systems: A Review 

P R Arun1, P M Ansho2, J Ancy Juno3, S Rexley4, V.Shajin5 

prarun.eee@gmail.com 
1-5Assistant Professor, Department of EEE 

1-5Loyola Institute of Technology and Science, Thovalai, Tamilnadu, India. 

Abstract 

 The rapid digitalization and decarbonization of electric power systems have created vast, high‐velocity 

data streams and complex decision problems. Machine learning (ML)—spanning supervised, unsupervised, 

reinforcement, and physics-informed paradigms—has emerged as a core toolkit for forecasting, monitoring, 

control, optimization, and cybersecurity across grid planning, operations, and markets. This review synthesizes 

recent advances with an application-oriented taxonomy: (i) forecasting and situational awareness; (ii) 

protection, fault diagnosis, and resilience; (iii) security assessment and state estimation; (iv) optimization and 

control (including learning-assisted optimal power flow); and (v) emerging graph-, physics-, and reinforcement-

learning approaches. We discuss data and model lifecycle issues (labels, drift, uncertainty, explainability, and 

MLOps), benchmarking needs, and pathways for trustworthy deployment. We conclude with a research agenda 

for grid-aligned, auditable ML at scale. 
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1. INTRODUCTION 

Electrification, inverter-based resources, and sensor proliferation (AMI, PMUs, UAV inspections) are 

transforming system dynamics and observability. Traditional physics-driven tools remain indispensable but face 

limits under high uncertainty and topology variability. ML complements these tools by learning patterns from 

historical and streaming data, enabling probabilistic predictions, anomaly detection, and fast approximate 

optimization subject to physical constraints [1]–[3]. 

2. TAXONOMY OF ML IN POWER SYSTEMS 

Applications can be classified as: 

● Forecasting & situational awareness: load, price, renewable energy forecasting, inertia 

estimation, PMU-based event detection [1], [4]–[7]. 
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● Protection & resilience: fault detection/classification, component inspection, resilience 

analytics [8], [9]. 

● Security assessment & state estimation: stability/security margin estimation, hybrid SE, cyber 

considerations [10]–[13]. 

● Optimization & control: OPF approximations, RL for control [14]–[17], [21], [22]. 

● Modeling paradigms: graph neural networks (GNNs), physics-informed ML [18]–[20]. 

3. DATA FOUNDATIONS AND EVALUATION 

Data sources include SCADA, AMI, PMUs, weather data, UAV imagery, and market telemetry. Data issues 

such as missing values, noise, and drift demand robust preprocessing. Public benchmarks are rare; RL2Grid is 

a recent initiative standardizing tasks for reproducibility [25]. 

Metrics must align with operational needs: probabilistic scores for forecasting [1], [4], classification metrics 

for imbalanced data, and feasibility/optimality gaps for OPF surrogates. 

4. FORECASTING AND SITUATIONAL AWARENESS 

4.1 Load and Renewable Forecasting 

Probabilistic load forecasting evolved from regression to deep sequence models [1], [4]. Surveys demonstrate 

advances in wind forecasting via ML [5], [6], while transformer-based architectures offer state-of-the-art 

performance [7]. 

4.2 Inertia and Frequency Dynamics 

Physics-informed ML improves data-driven estimation of inertia and frequency dynamics [12]. 

4.3 Event Detection with PMUs 

Deep models trained on PMU data classify line trips, oscillations, and load ramps, even under noisy or missing 

data [13]. 

5. PROTECTION, INSPECTION, AND RESILIENCE 

Deep learning supports intelligent fault detection, e.g., attention-GRU and CNNs [8]. Reviews further document 

ML-driven condition monitoring and resilience applications [9]. 
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6. SECURITY ASSESSMENT AND STATE ESTIMATION 

ML accelerates stability and security assessments [10]. Hybrid estimators defend against FDI attacks [11]. 

Foundational research revealed SE vulnerabilities [12], and physics-informed neural networks enhance 

resilience [13]. 

7. LEARNING-ASSISTED OPTIMIZATION AND CONTROL 

7.1 Optimal Power Flow (OPF) 

ML surrogates provide fast, approximate OPF. DeepOPF introduced feasibility-aware predictors for DC [14] 

and AC-OPF [15], extended by augmented learning [16]. Warm-start tree-based methods improved 

explainability [17]. Reviews summarize these trends [21], [22]. 

7.2 Reinforcement Learning (RL) 

RL optimizes switching, voltage control, and restoration. Surveys highlight DRL applications [23], [24]. 

RL2Grid offers benchmarks for reproducibility [25]. 

8. EMERGING PARADIGMS 

8.1 Graph Neural Networks (GNNs) 

GNNs leverage network topology for tasks like reliability assessment and forecasting [18], [19]. 

8.2 Physics-Informed ML (PIML) 

PIML embeds physical constraints into ML. Reviews [20] and case studies on frequency [12] and state 

estimation [13] illustrate benefits. 

9. CHALLENGES AND BEST PRACTICES 

● Data drift & quality: require continual learning [13]. 

● Uncertainty: probabilistic methods align predictions with risk [1]. 

● Explainability: tree-based warm starts improve interpretability [17]. 

● Security: models must withstand cyberattacks [11], [12]. 

● Reproducibility: benchmarks like RL2Grid are essential [25]. 
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10. OUTLOOK 

Future research should integrate physics-informed ML with certified optimization, develop safe RL for 

operator-in-the-loop control, explore multimodal data, and advance benchmarking for trustworthy deployment. 

REFERENCES 

1. T. Hong and S. Fan, “Probabilistic electric load forecasting: A tutorial review,” Int. J. 

Forecasting, vol. 32, no. 3, pp. 914–938, 2016. 

2. T. Hong et al., “Energy Forecasting: A Review and Outlook,” 2020. 

3. PNNL, “AI/ML technology in power systems—state of the art and gaps,” Tech. Rep. PNNL-

35735, 2024. 

4. T. Hong et al., “Energy forecasting: A review,” 2020. 

5. Y. Yang et al., “A survey on wind power forecasting with machine learning,” Neural Comput. 

Appl., 2024. 

6. Z. Wu et al., “A comprehensive review of deep learning approaches in wind forecasting,” IET 

Cyber-Syst. Robot., 2022. 

7. S. Huang et al., “Transformer-based wind power forecasting,” Front. Energy Res., 2023. 

8. M. Mishra et al., “Deep learning techniques in power system protection: a comprehensive 

review,” Eng. Appl. Artif. Intell., 2025. 

9. Frontiers in Smart Grids, “Review of ML applications in power system protection and control,” 

2024. 

10. J. M. H. Arteaga et al., “Deep learning for power system security assessment,” IEEE PowerTech, 

2019. 

11. L. Hu et al., “State estimation under false data injection attacks,” Automatica, 2018. 

12. J. Kruse et al., “Physics-informed ML for power-grid frequency dynamics,” PRX Energy, vol. 

2, p. 043003, 2023. 

13. P. Iliadis et al., “PINNs for enhanced distribution system state estimation,” Appl. Sci., 2025. 

14. X. Pan et al., “DeepOPF: Deep neural networks for DC OPF,” arXiv:1905.04479, 2019. 

15. X. Pan et al., “DeepOPF: Neural networks for AC OPF,” arXiv:2007.01002, 2020. 

16. X. Pan et al., “DeepOPF-AL: Augmented learning for AC-OPF,” ACM eEnergy, 2023. 

17. Y. Cao et al., “Fast, explainable warm-start learning for AC-OPF,” Int. J. Electr. Power Energy 

Syst., 2023. 

18. W. Liao et al., “A review of graph neural networks and their applications in power systems,” 

arXiv:2101.10025, 2021. 

19. C. C. van Nooten et al., “GNNs for n-1 reliability assessment,” Applied Energy, 2025. 

20. B. Huang et al., “Applications of PINNs in power systems: a review,” IEEE Trans., 2023. 

21. B. Jiang et al., “ML for AC-OPF: advancements and future directions,” Energies, 2024. 

22. H. Khaloie et al., “Review of ML techniques for OPF,” Applied Energy, 2025. 

23. T. Yang et al., “Reinforcement learning in sustainable energy and electric power systems,” 

Renew. Sustain. Energy Rev., 2020. 

24. N. Xu et al., “Deep reinforcement learning in smart grids: a review,” Energies, 2025. 

25. RL2Grid Team, “RL2Grid: Benchmarking RL in power grids,” arXiv:2503.23101, 2025. 

 

https://ijsrem.com/

