
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December – 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17235 | Page 1

RPM Packaging for Ansible Automation Configuration Management in Linux

Minakshi Pushpendra Chavan1, Pushpendra Madhukar Chavan2, Dr Babasaheb S. Sonawane3

1M.Tech. CST Student – G. S. Mandal’s Maharashtra Institute of Technology, Aurangabad, MH – IN
2M.Tech. CSE Student – CSMSS’s Chh Shahu College of Engineering, Aurangabad, MH – IN

3Asst. Professor - CSE Dept – G.S. Mandal’s Maharashtra Institute of Technology, Aurangabad, MH – IN

---***---
Abstract – Ansible automation is not a new configuration

management method but is a widely used and accepted DevOps

tool to manage Linux as well as non-Linux servers across the

networks. It not only helps to manage systems from the control

host but also enables remote administration tasks such as

package management, system evaluation, security scans, user

management as well as service configuration implementations.

This paper utilises the same concept for systems management

and enables the configuration files as well as ansible yaml files

packages and shipped through fully secured and signed rpm

package which guarantees that neither the rpm package is

tampered nor the shipped ansible yaml playbooks are modified.

 The rpm package can be built on Red Hat Enterprise

Linux and can also be signed to make sure that the package

doesn't get any replaced files in between the time it is shipped

by the vendor till it reaches the end user/customer. This paper

will also talk about the rpm building best practices including

spec files, public-private key pairs, rpm macros as well as yum

metadata to host the package over the internet. The deployed

package will make sure that it adheres to the complete lifecycle

of the rpm package management, appropriate dependencies and

suitable changelog as per the Open Source and Red Hat

Package Management standards.

Key Words: rpm, ansible, private-public keypair, rpm-macros-

spec file, security.

1. INTRODUCTION

A very well known IT Change Management practice in

ITIL calls out for the need of a uniform process to follow while
making changes to the system across the whole network. Any
tool which ensures the points below can be accepted as a
configuration management tool in any Industries.

● Faster Changes to be pushed to the end systems.

● Easy understanding of the complex processes.

● No human errors since an automation process.

● Very minimal or no downtime at all while making the
change.

● Appropriate logging enabled for auditing purposes.

● Easy reporting of the systems where changes are
made.

● A rollback and Disaster recovery plan.

 Simple process to add or remove systems from a

single point etc. Ansible automation justifies all the

requirements here, the only problem here is that the ansible

playbooks are very easy to be tampered with, and once

tampered, the playbooks can lead to disaster if someone gets

read-write access to it and those aren't pre-validated prior

executed.

 With the help of rpm packaging mechanism, it has

become very easy to deliver data and package payload to a

number of systems. RPM package not only validates the

originality of the deployed files, but also helps to replace them

in normal life cycle updates of the said package.

 Combination of ansible custom playbooks and

delivering those through rpm channels and features makes it a

very approachable method. The next chapters will discuss each

of these topics in detail.

2. Related Work
Automation, Configuration and Change Management is the

need of today's Information Technology Infrastructure both in
on-prem and Cloud setup. It becomes a challenge when these
processes are followed by individuals manually, hence there is
a need of tools like Ansible, Terraform & Puppet models which
run these massive infrastructure changes diligently. These
DevOps Tools not only make appropriate and identical changes
to the system or group of systems but also keeps track of all
changes done with messages/logs and even errors so an
effective and related post-performance actions can be
performed.

The tools like ansible, terraform and puppet are just tools,
and don't just get delivered with the actions to be taken on the
system, these tools need a set of instructions in the form of
inputs. The related work discusses not only authoring such an
extensive input file but also packaging those into a very highly
secured rpm packaging format. Let's discuss these topics in
brief as follows.

2.1 RPM: RPM is nothing but a packaging format backed and
supported by Red Hat. A rpm packaged software guarantees
easy shipping of the payload through multiple means like
Internet/Network/Locally hosted Private/Public repositories.
World Wide Public repositories like VLC, RPMForge, EPEL,
Fedora, etc are few of many trusted ones. A rpm package is
basically a compressed archive packaged in such a way that it
includes package metadata, binary sources, configuration files,
manual pages, scripting and sometimes ghost files.

The rpm package is built with the help of a specification file
which is also known as spec file. There are many optional and
mandatory sections. Some of the mandatory sections are as
follows.

● Package Metadata including

1. Name of the package, packager and source.

2. version, release, package group, architecture and
build architecture information of the package.

3. Dependencies required during package build as
well as during installation of the package.

4. Short summary of the packaged software.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December – 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17235 | Page 2

5. Long description of the packaged software.

6. Licensing information.

● Preparation, Setup & Build section: This section
prepares the pre-packaging environment, compiles the
sources, fetches required files from the build host and
provides it to the next rpm build process.

● Install section: The install section would fetch the
compiled binary sources, manual pages, configuration
files, directories to an appropriate buildroot directories
for further packaging.

● cleanup section: This section cleans up all residue
post packaging.

● Files Section: Very important section of a
specification file which depicts the type of the files,
permissions, ownership and group ownership of the
deployed files by that specific rpm package. The files
section is very helpful as the entries from this section
would be populated in the rpm database located at
/var/lib/rpm in the system and this database would be
responding back to all rpm queries made by the system
administrator.

● Changelog: As per ITIL Process, one needs to make
sure that all the changes must be logged in order to
keep track of them all and mitigate, improvise and
avoid duplication of efforts. This is again a must-have
section of a rpm package.

● Scripts: These sections are optional, but are very
helpful as well. There are four types of script sections
available to use in the specification file as follows.

1. pre – the set of instructions to be executed before
installation of the package.

2. post – the set of instructions to be executed after
installation of the package.

3. preun – the set of instructions to be executed
before uninstallation of the package.

4. postun – the set of instructions to be executed
after uninstallation of the package.

Upon package build, both the source package and binary
package can be hosted on a public/private repository.

2.2 Ansible: Though Ansible is an open source software
project, was part of Ansible Inc which got acquired by Red Hat
in 2015 and since then there has been numerous positive
changes to its core as well as functionalities. Ansible is a
configuration management tool which works on trusted
networks where ssh keys are used for remote logins and built
in python binaries are utilized for client side configuration
changes. Hence, unlike puppet, Ansible doesn't need to have a
client deployed with a dedicated client side software. The
ansible architecture consists of control host and managed
nodes. As per its design, the control host would always need to
be on a Linux system, whereas the managed hosts can be of any
type of an Operating System including Linux, Windows and
MacOS. An appropriate ansible architecture can be briefed with
the following subsections.

Inventory: Inventory file is nothing but a text file written in
such a way that all the systems are grouped properly in a
specific format. Inventory file not only includes the system's
information, but also local/global variables. An Inventory file
looks like below.

[uat]

www.example-uat.com

www.soon-to-be-pre-prod-uat.com

[prod]

www.production-sales.com

www.production-it.com

Modules: The ansible modules are in fact the scripts which are
pushed to the managed nodes when the playbooks operations
are in place. These modules are temporarily copied to the
managed nodes, and upon execution of the plays, are removed
from them. There is a flexibility that one can even write custom
modules as well.

Playbooks: The playbooks are actually the program or an
orchestration instructions to be executed on the targeted
managed nodes which can be written in YAML format. These
will be the building blocks of the rpm package to be shipped as
a part of payload delivery.

2.3 GPG Encryption: The GnuPG helps encrypt and sign the
user data as well as communications sent over the internet.
During key pair generation, GPG generates both public and
private keys. Any sort of data can be encrypted with the public
key and only gets decrypted with the private key which resides
only at the actual owner so the data can be sent over to the only
intended person. The data like rpm package can also be only
signed with a private key and once altered, it needs to be signed
once again and that's possible only by the private key holder,
which ultimately guarantees that only the authoritative and
rightful owner has permissions and rights to change the file, not
someone else masquerading in between. This is only possible
if the private keys are kept safely by the owner. The utmost
physical safety of the private key is the sole responsibility of
the rightful owner himself/herself.

2.4 Repository: A package repository is a combination of
binary and source packages along with their group information
and package metadata held tightly together. The repository can
be hosted anywhere i.e. on the internet, or network, or even a
Hard disk drive. It can be of any nature such as public or
private. There are multiple software available such as Red Hat
Satellite, Jfrog Artifactory, npm, spacewalk project and many
more. Red Hat also provides in-built software repository tools
like createrepo and yum to fetch the details from remote
repositories.

 There are many public software repositories, some of
them are VLC, rpmforge, epel, fedora, google-chrome and
many more. Best practices recommend hosting only signed rpm
packages and these signed packages to be installed only if the
public key of those specific package signers is first imported
and trusted by the end system administrator installing these
packages from the repository. An example repository
configuration file at an end client looks like this.

[repository_name]

Name=Example Repository

baseurl=http://somelocation/repository

enabled=1

gpgcheck=1

gpgkey=http://somelocation/repo-public-

gpg-key.txt

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December – 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17235 | Page 3

3. IMPLEMENTATION

There would be two sections for the implementation model,
first section would be to write an appropriate playbook and then
these files along with ansible configurations and inventory
would be the source code for the further stage of packaging it
together.

The proof of concept model includes several steps for the
implementation purpose. This research is an ongoing work
hence, yaml definitions are supposed to be written whereas the
packaging mechanism would include the steps below.

1. Learn and understand the build host machine: The
system where a rpm package is supposed to be built
needs a verification of supportability. The system can
be of any Linux flavours such as Fedora, Red Hat
Enterprise Linux, or CentOS Linux.

2. Collect and gather the source code and yaml files:
In original implementation, the code would be the
ansible configuration management playbooks written
in such a way that those would perform individual and
dedicated tasks over the trusted network. The code
would also include an inventory file and a script which
would self setup the control node.

3. Create the SPECification file: The code would need
to be packaged and the instructions would be depicted
by the spec file.

4. Build the binary as well as source RPM package:
The verified host system from step 01 would be where
the package can be built.

5. Generate GPG key pair to sign the built rpm
package: The private key of the gpg keypair would be
used to sign the package to be shipped through the
repository.

6. Verify the imported public keys and import a new
public key from public-private keypair: One time
execution on a test system to verify if the keypair
works as expected and is ready to use to sign the
generated rpm package.

7. Sign the newly generated binary rpm package:
Needs to be done only on the build host, the private
gpg key would be used to sign the rpm package.

8. Install the newly generated rpm package: First test
deployment of the built rpm to verify the contents and
usability.

9. Create a test repository online and publish it on an
internet accessible location for test purpose:
Creation of the public repository for free use.

10. To test it further, create a repository configuration
file on any of the test Red Hat Enterprise Linux or
Fedora Linux pointing out to the newly hosted online
repository: The end client systems would utilize the
client repository file to fetch packages from publicly
hosted repositories.

11. Finally install the newly hosted binary package on
any client through the internet hosted repository:
Finally fetch the package built and hosted on the
internet.

4. RESULTS

A single package can help manage 1000s of managed nodes
for the said configuration management. The rpm package can
be built in such a way that it will also fetch the ansible binaries
as a part of its dependencies, not only it is secure but also easy
for version control, a new version can be easily pushed to the
channel.

 Any changes to the existing playbooks would be easily
reported to the system administration since these files would be
considered libraries and rpm rules of verification would
definitely catch the changes made to any of the files.

 The performance model for any specific action required to
complete task A manually versus using ansible playbook in
minutes can be predicted approximately as follows.

Number of

Managed

Nodes

Time Required to

perform action A

manually (in

minutes)

Time Required to

perform action A

using process

defined (in minutes)

1 5 2

2 10 3

5 25 5

10 50 7

20 100 10

100 500 20

* the time is in minutes and isn’t accurate but approximate

5. CONCLUSIONS

Use of ansible playbooks for configuration change
management helps extremely faster and reliable methods as
compared to manual methods. Use of rpm adds up additional
security and guarantee to the predefined and preprogrammed
YAML files of not to be tampered with. The minimal pros and
cons can be briefed as follows.

Pros:

1. Secured, Guaranteed.

2. Ease of version control.

3. Easy access via Public repositories.

4. Faster than manual method

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 12 | December – 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17235 | Page 4

5. Extensive logging mechanism

Cons:

1. Works only on trusted network

2. Single point of failure if control node goes down.

3. Can’t be used for infrastructure deployment unlike
Terraform.

ACKNOWLEDGEMENT

Gratitude to the original creators of RPM, Ansible and Red

Hat Enterprise Linux Projects. A number of contributors all
across the world have freely improvised these tools so today the
world can rely on them.

Special Thanks to Red Hat Organization for making all
these tools open source and free to use without seeking
copyright or licensing control on use of ansible, rpm package
management, and repository tools for educational as well as
production purpose.

REFERENCES

1. Documentation – Adam Miller, Maxim
Svistunov, Marie Doleželová, et al, RPM Packaging Guide,
https://rpm-packaging-guide.github.io/

2. Documentation – Fedora Documentation,
https://rpm-packaging-guide.github.io/

3. Siphon Mongkolluksame; Chavee Issariyapat;
Panita Pongpaibool; Koonlachat Meesublak; Nontaluck
Nulong; Sirikarn Pukkawanna (2012), "A management
system for software package distribution" -
https://ieeexplore.ieee.org/abstract/document/6304372,
Date of Conference: 29 July 2012 – 02 August 2012, Date
Added to IEEE Xplore: 17 September 2012, Print ISSN:
2159-5100, INSPEC Accession Number: 12999654,
Publisher: IEEE, Conference Location: Vancouver, BC,
Canada

4. Jing Wang; Qingbo Wu; Yusong Tan; Jing Xu;
Xiaoli Sun (2015), "A graph method of package dependency
analysis on Linux Operating system" -
https://ieeexplore.ieee.org/abstract/document/7490780,
2015 4th International Conference on Computer Science and
Network Technology (ICCSNT), Date of Conference: 19-20
December 2015, Date Added to IEEE Xplore: 16 June 2016,
Electronic ISBN:978-1-4673-8173-4, CD:978-1-4673-
8172-7, INSPEC Accession Number: 16090264, DOI:
10.1109/ICCSNT.2015.7490780, Publisher: IEEE,
Conference Location: Harbin

5. Shrinidhi G Hegde; G Ranjani (2021), "Package
Management System in Linux" -
https://ieeexplore.ieee.org/abstract/document/954480541,
2021 Asian Conference on Innovation in Technology
(ASIANCON), Date of Conference: 27-29 August 2021,
Date Added to IEEE Xplore: 04 October 2021, Electronic
ISBN:978-1-7281-8402-9, CD:978-1-7281-8400-5, USB
ISBN:978-1-7281-8401-2, Print on Demand(PoD)
ISBN:978-1-7281-8403-6, INSPEC Accession Number:
21202856, DOI:
10.1109/ASIANCON51346.2021.9544805, Publisher:
IEEE

BIOGRAPHIES

Minakshi Chavan is currently

pursing Masters of Technology in G

S Mandal’s Maharashtra Institute of

Technology, Aurangabad. She holds

a Bachelor of Engineering Degree in

Computer Science and Engineering.

Her areas of interests are Linux and

DevOps. Minakshi is a Red Hat

Certified Engineer.

Pushpendra Chavan is a student of
M.Tech. In CSE department of
CSMSS’s Chh Shahu College of
Engineering. His areas of interest
are Linux Security and Cloud
Computing. He is a Red Hat
Certified Architect.

Dr B. S. Sonawane is an Assistant
Professor at G. S. Mandal’s
Maharashtra Institute of
Technology, Aurangabad and has
hold positions like Vice Principal
at MIT Rotegaon. Prof. Sonawane
is a PhD holder in the area of
Diskless Clients and has expertise
in Linux Networking and AWS.

http://www.ijsrem.com/

