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Abstract—The visualization of screenplays in the pre-
production phase of filmmaking is a resource-intensive and
subjective process. Traditional methods rely heavily on manual
concept art, which is time-consuming and often lacks consistency.
This paper proposes a ”Script-to-Scene” generation system that
leverages Generative Al to automate the conversion of textual
screenplay descriptions into high-fidelity, cinematic visualiza-
tions. The proposed architecture utilizes Stable Diffusion (SDXL)
as the core generative model, enhanced by a hybrid fine-tuning
strategy. We employ DreamBooth to inject specific subject identi-
ties (personalization) and Low-Rank Adaptation (LoRA) to learn
and apply consistent cinematic styles without the computational
cost of full model retraining. The system parses natural language
scripts, extracts scene elements, and generates consistent visuals.
Experimental results demonstrate the system’s ability to produce
photorealistic, stylistically consistent scenes—such as specific
character placements in atmospheric environments—validating
its potential to streamline storyboarding and automated pre-
visualization workflows.

Index Terms—Generative Al, Stable Diffusion, DreamBooth,
Low-Rank Adaptation (LoRA), Text-to-Image, Computer Vision,
Automated Storyboarding.

1. INTRODUCTION

The domain of Computer Vision and Natural Language
Processing (NLP) has witnessed tremendous progress with the
emergence of latent diffusion models. Text-to-image genera-
tion [20] has evolved from producing simple object-centric vi-
suals to generating complex, high-resolution cinematic scenes
guided entirely by natural language prompts. In the film and
media industry, visualizing a script before production is cru-
cial. Directors, cinematographers, and storyboard artists rely
heavily on early visual material to plan lighting, composition,
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and mood. However, manually converting screenplay text into
detailed visual scenes is both time-consuming and requires
skilled artistic effort [13].

Despite recent advancements, existing generative models
face two major challenges: subject consistency and style
consistency. Zero-shot models such as Stable Diffusion can
generate impressive visuals, but they often fail to reproduce the
same character identity across multiple scenes. A prompt like
“a detective standing in a dark alley” may generate a realistic
character, but the exact facial features of a specific actor cannot
be preserved without personalization. Furthermore, maintain-
ing a unified “cinematic” or “film noir” style throughout an
entire sequence of storyboard frames is difficult to achieve
using prompt engineering alone [10].

To overcome these challenges, this work proposes a Script-
to-Scene Generation Framework that integrates Dream-
Booth for subject personalization and LoRA (Low-Rank
Adaptation) for style adaptation. DreamBooth enables the
model to learn a unique character identity from just a few ref-
erence images, while LORA ensures consistent cinematic style
across all generated outputs. By combining these methods, the
system achieves both high fidelity in character preservation
and lightweight, efficient fine-tuning suitable for real-world
pre-production environments [1]. The objective is to create
an automated pipeline that converts screenplay descriptions
directly into visually accurate, stylistically coherent scenes
[12].

Additionally, this framework enhances script visualization
through structured text parsing, ensuring that scene ele-
ments—such as lighting cues, character actions, interactions,
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and environmental descriptions—are translated into detailed
generative prompts. This significantly reduces manual creative
overhead and provides directors and writers with near-instant
previews of their imagined scenes. Such automation not only
accelerates the pre-production workflow but also democratizes
storyboard creation for teams with limited artistic resources.

With generative Al becoming an integral part of creative
industries, the proposed model offers a scalable and extensible
foundation for future developments. Its modular structure
allows the integration of advanced NLP pipelines, multi-
character control, and temporal models for video generation.
As production studios increasingly adopt Al-assisted tools,
this system contributes toward building a fully automated, Al-
driven pre-visualization pipeline for filmmaking.

II. LITERATURE SURVEY

The development of the proposed Script-to-Scene Genera-
tion framework is grounded in recent advancements in dif-
fusion models, subject-driven personalization, and parameter-
efficient fine-tuning (PEFT). Prior research highlights the need
for methods that preserve subject identity, maintain stylistic
coherence, and minimize computational overhead in generative
image synthesis.

A. Subject-Driven Generation

Ruiz et al. introduced DreamBooth, a personalization tech-
nique that fine-tunes text-to-image diffusion models using a
small set of reference images (typically 3-5). By associat-
ing a unique identifier (e.g., “sks person”) with the subject,
the model learns to reproduce consistent facial features and
identity-specific attributes across diverse scenes. DreamBooth
has demonstrated strong performance in high-fidelity subject
preservation. However, its training process is susceptible to
overfitting and language drift, where the model may lose its
ability to generate general categories or may transform the
identity token into an overly dominant concept . Despite these
limitations, DreamBooth remains a cornerstone method for
identity-consistent generation.

B. Parameter-Efficient Fine-Tuning (PEFT)

Fine-tuning large diffusion models end-to-end is compu-
tationally expensive and requires significant GPU memory.
Hu et al. proposed LoRA (Low-Rank Adaptation) , originally
for Large Language Models and later extended to diffusion
architectures. LoRA freezes the original model parameters
and injects small rank-decomposition matrices into attention
layers of the Transformer or U-Net. This design drastically
reduces the number of trainable parameters—often by several
orders of magnitude—resulting in up to a 70,000 reduction
in training cost and improved adaptability on limited hardware
. Although highly efficient, LoRA’s performance depends on
the selected rank value, which restricts the model’s capacity
to capture highly complex style or identity-specific features .
Nevertheless, its lightweight nature makes it ideal for cinema-
style adaptation in diffusion models.
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C. Style Transfer and Control

Cao et al. offer a comprehensive analysis of controllable
text-to-image generation techniques , noting that structural
control methods such as ControlNet are effective for pose
or layout guidance, while style consistency is best achieved
through fine-tuning approaches like LoRA. Research com-
bining DreamBooth and LoRA has gained traction due to
its ability to jointly address subject preservation and stylistic
coherence. Martini et al. explored fine-tuning strategies aimed
at persistent character generation across varied contexts. Their
findings show that while such methods achieve high subject
fidelity, they require careful hyperparameter tuning to prevent
identity distortion and maintain prompt responsiveness. This
establishes a strong motivation for hybrid frameworks like
ours, which balance identity preservation with cinematic style
control.

D. Discussion

Recent advancements also highlight the growing importance
of multimodal alignment—ensuring that textual semantics are
accurately reflected in visual outputs. Studies on CLIP-guided
diffusion and transformer-based conditioning have shown that
enhanced text encoders significantly improve scene coherence,
especially for complex narrative prompts. These methods
emphasize the necessity of stronger text-to-vision grounding,
supporting the adoption of techniques that integrate semantic
parsing, attention-based conditioning, and structured prompt
construction. Such findings further validate the design choices
of the proposed system, which leverages both personalization
and style modules to deliver robust Script-to-Scene generation.

III. METHODOLOGY

The proposed Script-to-Scene Generation framework fol-
lows a structured pipeline that integrates Large Language
Models (LLMs), Stable Diffusion, DreamBooth, and LoRA.
This section describes the core architecture and the fine-
tuning strategies employed to achieve character consistency
and cinematic visual quality. The overall design ensures strong
alignment between textual descriptions and visual output,
enabling the system to interpret screenplay language, extract
contextual cues, and render high-fidelity imagery with con-
trolled style and identity preservation.

A. Core Architecture: Stable Diffusion

Stable Diffusion forms the foundation of the image genera-
tion pipeline. Unlike pixel-space diffusion models, it operates
in latent space, significantly improving efficiency and scala-
bility . The architecture includes:

1) Variational Autoencoder (VAE): Encodes images into
latent vectors and decodes them back into pixel space.

2) U-Net Noise Predictor: Predicts noise at each timestep
using cross-attention mechanisms conditioned on text
embeddings.

3) Text Encoder (CLIP): Converts script-derived prompts
into dense semantic embeddings.
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The latent diffusion objective is defined as:

h Si

L=E | e— ealz, t, )| )

where € is the U-Net predicting noise, z; is the noisy latent,
and c is the conditioning text embedding.

To enhance prompt understanding, the text encoder pro-
cesses descriptive screenplay elements such as mood, ambi-
ence, character appearance, and environmental context. This
ensures the latent space receives a rich semantic representa-
tion, enabling the U-Net to synthesize scenes that not only
match the prompt but also follow cinematic conventions like
dramatic lighting, depth, and atmosphere. The integration
of CLIP further strengthens semantic grounding, reducing
mismatches between textual cues and generated imagery.

B. Fine-Tuning Strategy

To ensure both character fidelity and a consistent cinematic
look, the system employs a dual fine-tuning approach: Dream-
Booth for personalization and LoRA for style adaptation. This
hybrid strategy allows the model to achieve actor-specific iden-
tity preservation while maintaining a uniform artistic direction
across all scenes.

1) DreamBooth for Personalization: DreamBooth is used to
imprint character-specific features on the model. A small set
of 3-5 reference images is used to fine-tune the model using
a unique identifier token (e.g., “sks person”). This enables the
model to reproduce the same character across all scenes . The
goal is to maintain identity-specific attributes such as facial
structure, hair, clothing, and expression.

During fine-tuning, DreamBooth also employs class preser-
vation loss to ensure the model does not forget the general
appearance of the broader category (e.g., “person” or “actor”).
This prevents overfitting and allows the subject to appear
naturally in different scenes, poses, and lighting conditions
while retaining the learned identity features.

2) LoRA for Cinematic Style Adaptation: To embed a
consistent cinematic style, Low-Rank Adaptation (LoRA) is

applied. For a given weight matrix Wy, LoRA introduces a
learnable low-rank update:

W =W, + BA @)

where A and B are small trainable matrices and W, remains
frozen. This allows stylistic training using only 50-100 MB of
parameters, significantly reducing computation . LoRA learns
visual attributes such as lighting, texture, contrast, and color
grading.

Since LoRA operates as an add-on rather than modifying
the full network, multiple cinematic styles (e.g., noir, dra-
matic, sci-fi, vintage) can be plugged in interchangeably. This
modularity allows creators to experiment with different artistic
directions without retraining the entire model. Combined with
DreamBooth, LoRA ensures that each generated scene main-
tains both stylistic coherence and stable character identity.
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Fig. 1. System Architecture: The proposed Script-to-Scene pipeline integrat-
ing Stable Diffusion, DreamBooth, and LoRA.

IV. SYSTEM DESIGN AND IMPLEMENTATION

The Script-to-Scene Generation framework is designed as
a modular, efficient, and scalable system that integrates text
processing, latent diffusion modeling, and personalized fine-
tuning. The overall system architecture mirrors a multi-stage
workflow similar to traditional multimodal Al pipelines, en-
suring smooth interaction between input processing, training
components, and final scene rendering. Each module is de-
signed to operate independently but also cohesively, allowing
upgrades or replacements without affecting the entire pipeline.

A. Hardware and Software Requirements

GPU-enabled hardware is essential for both training and
inference due to the computational demands of diffusion
models. In our implementation, NVIDIA L4 GPUs were used
, providing adequate VRAM for batch processing and high-
resolution generation. The software requirements include:

- Frameworks: Python, PyTorch, Diffusers.

- Libraries: Transformers (for CLIP encoding), PEFT (for
LoRA training), Torchvision.

- Base Model: Stable Diffusion v1.5 or SDXL .

This environment enables smooth execution of DreamBooth
fine-tuning, LoRA injection, and accelerated inference. Lever-
aging GPU acceleration significantly reduces training time per
step and allows higher-resolution image outputs. The integra-
tion of PEFT and Diffusers ensures efficient memory usage,
making the system deployable even on mid-range hardware.

B. Module 1: Input Processing

This module handles screenplay text interpretation and ref-
erence image preprocessing. The system extracts key elements
such as ambience, environment, character name, and actions.

- Input Example: “A cinematic portrait of a warrior
standing in rain.”

- Tokenization: The text is tokenized and encoded using
CLIP to produce dense vector embeddings.
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- Image Preprocessing: Reference identity images are
resized to 512 X 512 (or 1024 X 1024 for SDXL) and
normalized for DreamBooth training .

In addition to tokenization, the system performs semantic
chunking to identify lighting descriptors (e.g., “golden hour”),
spatial cues (e.g., “on a cliff”), and stylistic modifiers (e.g.,
“cinematic,” “moody”). These extracted features later guide
prompt construction, ensuring that generated outputs remain
faithful to the original script description.

Another important aspect of this module is prompt expan-
sion. If the input script lacks environmental details, the system
uses rule-based templates to enhance the prompt (e.g., adding
camera angles, emotional tone, or atmospheric elements). This
ensures higher visual richness and better cinematic results in
the final output.

C. Module 2: LoRA + DreamBooth Training

This module forms the core training pipeline responsible for
personalization and style consistency.

1) Instance Data Loading: 3—5 subject images are paired
with a prompt template such as “a photo of [V] person,”
where [V] is a unique identifier.

2) Class Preservation Loss: Additional generic images
(e.g., “a photo of a person”) are generated to prevent
identity overfitting and language drift.

3) LoRA Injection: Low-rank matrices are added to U-
Net cross-attention layers, reducing training cost while
learning style patterns.

4) Training Loop: The model trains for 800—1200 steps
at a learning rate of 1 X 1074, updating only the LoRA
parameters.

The dual fine-tuning approach allows DreamBooth to learn
unique character identity while LoRA captures the cinematic
mood. This combination ensures consistent visual features
across multiple scenes without overwriting the model’s general
knowledge. Moreover, because LoORA modules are lightweight
(50-100 MB), they can be swapped or combined to generate
different stylistic effects without retraining the entire model.

Additionally, the training module implements gradient
checkpointing, mixed-precision training, and batch normaliza-
tion techniques to reduce GPU memory usage and accelerate
convergence. This ensures that the system remains practical
even when deployed on limited hardware resources or cloud-
based GPU instances.

D. Module 3: Output Generation

During inference, fine-tuned LoRA weights and Dream-
Booth identity parameters are merged into the base Stable
Diffusion pipeline.

- Input Script Example: “A majestic lighthouse atop a

rugged cliff during golden hour” .

- Denoising Scheduler: Algorithms such as Euler Discrete
or DPM++ 2M Karras run for 30-50 steps to refine the
latent representation.

- Decoding: The VAE decoder converts the final latent into
a high-resolution image.
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The generation stage also includes negative prompt filtering
to prevent unwanted artifacts such as distorted hands or
inconsistent lighting. The system can further perform iter-
ative refinement, where the user adjusts prompt parameters
and regenerates scenes to achieve desired cinematic effects.
This flexibility makes the framework suitable for film pre-
production, storyboarding, and creative visualization work-
flows.

To further enhance output fidelity, the system can utilize
post-processing methods such as contrast enhancement, color
grading, film-grain simulation, and adaptive upscaling. These
techniques help align the generated image more closely with
industry-standard cinematic aesthetics. In addition, the modu-
lar design of the generation pipeline allows future integration
of video-based diffusion models, enabling sequential scene
rendering and animated shot visualization.

V. RESULTS AND DISCUSSION

The system was evaluated across multiple test scenarios to
measure its ability to generate visually coherent, stylistically
consistent, and semantically accurate scenes from screenplay
descriptions. Each test examined different aspects such as
lighting, atmospheric detail, subject fidelity, and scene com-
position.

A. Test Case: Cinematic Night Scene

One of the primary evaluations involved generating a com-
plex night-time environment with specific cinematic attributes.

- Prompt: “Vintage car driving through a foggy, dimly lit
city street at night, headlights glowing on wet pavement,
cinematic and moody atmosphere” .

- Result: As shown in Figure 2, the system accurately ren-
dered the vintage car with strong fidelity. The reflective
wet road surface, fog diffusion, and soft lighting around
the headlights demonstrate the model’s ability to capture
fine-grained visual cues. The diffusion process effectively
learned cinematic gradient fall-off and atmospheric den-
sity.

Beyond individual details, this test case demonstrated the
system’s capacity to maintain global visual balance—blending
environmental fog, light scattering, and vehicle geometry to
form a cohesive scene. The DreamBooth and LoRA combi-
nation proved effective in handling low-light scenarios where
color contrast and atmospheric depth are essential.

B. Qualitative Analysis

- Subject Fidelity: DreamBooth significantly improved
identity preservation across scenes. The model consis-
tently reproduced facial structure, hairstyles, and silhou-
ettes of personalized subjects more accurately than the
base Stable Diffusion model.

- Style Consistency: LoRA successfully enforced a cine-
matic tone—enhanced shadows, deeper contrast, and dra-
matic color grading—without requiring prompt repetition
or heavy manual tuning .
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Fig. 2. Generated Output: Vintage car in a cinematic foggy night setting. The
reflections on the wet pavement and the volumetric fog illustrate accurate style
adherence.

- Semantic Coherence: The generated outputs demon-
strated strong alignment with textual descriptions. Spatial
elements such as vehicle placement, building arrange-
ment, and lighting direction were largely accurate and
context-aware.

Additionally, the system produced visually coherent com-
positions even when scripts contained implicit cues (e.g.,
“moody”, “dramatic”), showing that the CLIP encoder gen-
eralized well to stylistic semantics. The consistency across
multiple test scenes indicates robustness in both subject-driven
and style-driven settings.

C. Limitations

Despite strong performance, the system exhibits several

limitations:

1) Complex Interactions: Scenes involving multi-person
interactions, physical contact, or uncommon poses re-
main challenging. Errors such as distorted limbs or
unnatural positioning may appear.

2) Spatial Reasoning: Highly detailed spatial relationships
in scripts—especially those with nested directions—can
occasionally be misinterpreted by CLIP, leading to in-
accurate scene layout .

Another limitation arises when generating scenes with heavy
occlusion or rare object combinations, where the diffusion
model may struggle to balance realism and prompt adherence.
Moreover, very long textual descriptions may overwhelm the
embedding space, requiring prompt truncation or hierarchical
scene decomposition for improved consistency.
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VI. CONCLUSION

This paper presented a Script-to-Scene generation system
that automates the visualization of screenplay descriptions
using Stable Diffusion, DreamBooth, and LoRA. By effec-
tively balancing the need for subject-specific personalization
through DreamBooth and stylistic consistency through LoRA,
the system generates high-quality cinematic visuals that align
closely with textual descriptions . The framework demonstrates
how diffusion models can be adapted to handle complex,
narrative-driven inputs, transforming script text into coherent
and visually compelling scenes.

The implementation shows that lightweight, parameter-
efficient fine-tuning techniques are highly effective for domain
specialization. LoRA enables style transfer without altering
the core diffusion model, while DreamBooth ensures that
character identities remain consistent across multiple scenes.
Together, these methods eliminate the need for expensive
full-model retraining and significantly reduce computational
overhead while delivering results that are visually consistent
and semantically accurate . This makes the system accessible
for creators with limited hardware resources.

Furthermore, the modular design of the system allows easy
integration of additional components such as advanced NLP-
based scene parsing, negative prompt filtering, and iterative re-
finement. The success of this approach highlights the growing
potential of generative Al tools in film pre-production, concept
art creation, advertising, gaming, and virtual prototyping. By
providing rapid visualizations directly from descriptive script
text, the system reduces manual workload for artists and
accelerates the creative decision-making process.

Overall, the Script-to-Scene framework demonstrates a
promising direction for automated visual storytelling. With
further enhancement—such as improved spatial reasoning,
multi-character consistency, and support for sequential frame
generation—the system could evolve into a robust tool for
producing full storyboards, animatics, or even Al-assisted
video sequences.

VII. FUTURE SCOPE

Future enhancements of the Script-to-Scene system will
focus on extending its capabilities, improving efficiency, and
deepening its understanding of cinematic language. The fol-
lowing directions outline key areas for further development:

1) Video Synthesis: Expanding the system from static
image generation to full video synthesis by incorporating
motion-aware diffusion models and temporal consis-
tency networks. This would allow the framework to
create continuous scene animations, enabling filmmakers
to visualize entire sequences rather than isolated frames

2) Edge Deployment: Optimizing the model using quan-
tization, pruning, and knowledge distillation to make
inference lightweight enough for consumer-grade GPUs
or edge devices. This would enable real-time scene pre-
views on film sets, supporting instant creative decision-
making and rapid shot planning .
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3) Advanced NLP Integration: Incorporating Large Lan-
guage Models (LLMs) for deeper script understanding,
including context interpretation, emotional tone extrac-
tion, subtext reasoning, and dialogue-driven scene break-
down. This enhancement would improve prompt quality
and yield more narratively aligned visual outputs .

Beyond these developments, the system can further evolve
through multi-character interaction modeling, improved spatial
reasoning, and integration with 3D generative frameworks. As
diffusion models continue to advance, the Script-to-Scene
pipeline holds the potential to mature into a comprehensive pre-
production tool capable of generating storyboards, ani- matics,
and even Al-assisted cinematography planning. The combination
of advanced NLP and multimodal generation will push the
boundaries of automated visual storytelling in the years to come.
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