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Abstract—RSA cryptography is an asymmetric communication protocol, and, AES is the most used symmetric-key cryptography 

protocol, both are facing cryptanalysis attacks.. The most famous key exchange protocol is Diffie-Hellman; but it has an issue of 

Logjam attack that allows man-in-middle attack in Diffie-Hellman. Thus, we combine RSA, AES, and Diffie-Hellman algorithm to 

provide security on the key exchange protocol, called next generationDH or ngDH. Our key objective is to provide security to the 

Diffie-Hellman Algorithm. Therefore, ngDH does not share the data publicly with the intended party. Instead, ngDH encrypts all 

shareable data in the time of key exchange by encrypting using the AES algorithm. ngDH uses the RSA algorithm and retrieves the 

public key to avoid a man-in-the-middle attack. Thus, we demonstrate how to provide security to the Diffie-Hellman algorithm to defeat 

various kinds of attacks. 

Index Terms—Cryptography, RSA cryptography, Diffie-Hellman, Symmetric, Asymmetric, Public key, Encryption, Attacks, Security, 

Networking, Communication. 
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1 INTRODUCTION 

RYPTOGRAPHY is the most prominent research chal- 
lenge to protect the data from adversaries in commu- 

nication. It can be applied in asymmetric and symmetric 
communications. RSA cryptography is the most used asym- 
metric cryptography algorithm [1], [2]. However, symmetric 
communication requires key exchange protocol and encryp- 
tion/decryption algorithm. Therefore, the most famous key- 

exchange protocols are Diffie-Hellman [3], Elliptic-curve 
Cryptography (ECC) [4], [5], and Elliptic-Curve Diffie- 

Hellman (ECDH) [6] algorithm. AES is the most used en- 
cryption/decryption standard for block cipher [7]. Symmet- 
ric key cryptography is the most secure way to exchange 
data between two parties, and therefore, it requires a key- 
agreement protocol. If the key-agreement protocol is broken, 
then the entire communication becomes insecure. Therefore, 
key-agreement protocol demands security to protect from 
the attackers. 

Recent literature suggests that RSA cryptography has an 
issue of integer factorization [8], [9]. Also, it faces issues of 
low-exponential computation [10], [11], [12]. Also, RSA re- 
quires Optimal Encryption Asymmetric Padding [13]. Many 
new attacks have already been reported [14], [15]. The RSA 
cryptography have already been broken [16], [17], [18], [19]. 
Therefore, many new techniques have been suggested to 
secure RSA [20], [21]. Moreover, the public key cryptogra- 
phy requires a trusted third party to distribute the public 
key, which is a slow process [22]. Similarly, symmetric-key 

 

 
 

 

 
 

cryptography is prone to many attacks, particularly brute- 
force, cryptanalysis [23], and fault attacks [24]; however, 
symmetric key cryptography has diverse applications, for 
instance, healthcare [25], [26]. 

The Diffie-Hellman algorithm is a widely used symmet- 
ric key exchange protocol. Securing key-agreement protocol 
is a key challenge because recent research suggests the fail- 

ure of the Diffie-Hellman algorithm [27], [28]. Adrian et al. 
finds that Diffie-Hellman algorithm allows man-in-middle- 
attack [27]. Therefore, Diffie-Hellman requires security to 
protect from the attackers. The root cause is publicly shared 
keys which makes Diffie-Hellman a failure key-exchange 
protocol. Thus, our key objective is to provide security to 
the Diffie-Hellman algorithm. The Diffie-Hellman algorithm 
becomes private and remains no more public. All the keys 
are shared secretly by encrypting using AES. Therefore, We 
provide security to the Diffie-Hellman algorithm by RSA 
cryptography and AES. 

In this article, we provide security to the Diffie-Hellman 
algorithm. We derive a private Diffie-Hellman algorithm, 
ngDH for short. The sender requires a public key of the 
receiver, and therefore, the sender retrieves the receiver’s 
public key from a trusted third party. The sender generates 
a random key for AES using a true random number gen- 
erator [29], [30] and sends the generated random key to the 
receiver by encrypting the receiver’s public. The receiver de- 
crypts the key from the received ciphertext using its private 
key. The receiver initiates the Diffie-Hellman key exchange 
process. The receiver generates two prime numbers [31] 
and sends the prime numbers to the sender by encrypting 
using the received key. Both the receiver and sender encrypt 
the whole communication using a single key, and the AES 

 



                           International Journal of Scientific Research in Engineering and Management (IJSREM)  
                          Volume: 06 Issue: 01 | Jan – 2022                                                                                  ISSN: 2582-3930   

© 2022, IJSREM      | www.ijsrem.com                                                                                                                              | P a g e  
 

Notation 
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Pr and Qr 

e 

λ(n) 
d 
m 
c 

mod 
P and g 

a and b 

B 

SK 

EncBpub 

EncBpriv 

K 

Description 
The Sender 
The receiver 
Two prime numbers for RSA algorithm 
The exponent of RSA algorithm 
LCM of two prime numbers 
The private key of RSA algorithm. 
It is the converted integer form of message 
It is ciphertext in RSA 
Modulus operator 
Two prime numbers for Diffie-Hellman algo- 
rithm 
True random number generated 
Shared secret key 
Secret Key for AES 

Encryption process using RSA by the public key 
of the B 

Decryption process  using RSA  by the  private 

ζA 

ζB 

EncK 

DecK 
β 

key of the B 

Ciphertext from A 

Ciphertext from B 

Encryption by AES using secret key K 

Decryption by AES using secret key K 
Bit length of a key. 

— − 

× 

×   ≡ 

algorithm is used to encrypt the communication. Therefore, 
ngDH maintains secret communication between the sender 

and the receiver in the entire computation process of the 
shared secret key. The conventional Diffie-Hellman 

algorithm shares the numbers over an insecure channel 
without encryption; however, ngDH encrypts all the 

number and shares secretly between the sender and receiver. 
The main contributions of this article are outlined below- 

• We derive an enhanced Diffie-Hellman key exchange 
algorithm to provide a security while exchanging the 
key. 

• We demonstrate how to use RSA and AES in the 
Diffie-Hellman algorithm. 

• Also, we show how to achieve absolute security 
without communication overhead. But there is a 
computation overhead; however, it is negligible. 

• We also analyze the various possible issues of our 
proposed solution. 

The Diffie-Hellman algorithm is protected from an attacker 
using RSA and AES cryptography. Therefore, ngDH shows 
strong resistance against attackers and is able to compute 
shared secret key securely. In this paper, we demonstrate 
how to secure the Diffie-Hellman algorithm from attackers. 
There is no key-agreement protocol to get extra security 
while computing the shared secret key, to the best of our 
knowledge. 

This article is organized as follows- Section 2 discusses 
the preliminaries of the proposed system. Section 3 estab- 
lishes the enhanced Diffie-Hellman algorithm. Section 4 
analyzes the proposed system in-depth. Finally, Section 5 
concludes the article. 

 
2 BACKGROUND 

TABLE 1 
Important symbols used in the article and their descriptions. 

 

 
 

2.1.1 Encryption 

Let the m be the message to be encrypted, then RSA Algo- 
rithm encrypts using Equation (1). 

me  ≡ c (mod n) (1) 

2.1.2 Decryption 

The sender sends the ciphertext c to the receiver using 
encrypting by the receiver’s public key. The receiver receives 
the ciphertext c and decrypts using its private key by 

In this section, we establish preliminaries and discuss the 
RSA, AES, and Diffie-Hellman algorithm. Table 1 shows the 
important notations and their definition. 
2.1 RSA Cryptography 

RSA cryptography is a well-known asymmetric cryptogra- 
phy algorithm that relies on public-private key cryptogra- 
phy [1], [2]. In RSA, the receiver publishes its public key 
and retains its private key. Anyone can send a message to 
the receiver by encrypting using the public key. Only the re- 
ceiver can decrypt the message. The public key is published, 
and it is a long-term key. Attackers can break the security if 
the public-private key pair is not renewed. Moreover, the 
public-private key is time-consuming cryptography, but it 
is useful in many applications. 

RSA algorithm requires two large prime numbers; let 
the two large prime numbers  be  Pr  and  Qr.  The  prod- 
uct of these two prime number is made public; let it be 

n = Pr Qr. The Pr and Qr are kept secret. The RSA 

algorithm calculates λ(n) = LCM((Pr    1),  (Qr     1)) which 
is also kept secret. Let us choose a public key exponent 

e where 1 < e  <  λ(n). Moreover, the e is coprime with 

λ(n). Finally, the RSA algorithm computes a secret key as 

d e  1 (mod λ(n)). RSA algorithm publishes (n, e) as a 
public key, and the rest parameters are kept secret. 

Equation (2). 

cd ≡ m mod n) (2) 

 
2.2 Advanced Encryption Standard 

Advanced Encryption Standard (AES) is a block cipher 
algorithm for symmetric cryptography [7]. It is known as 
Rijndael. The round keys are derived from the cipher key 
using AES key schedule method. Moreover, AES performs 
an XOR operation in each byte of the state to combine with 
a byte of the round key, which is known as AddRoundKey. 
Each byte is replaced with another according to a lookup 
table in a  non-linear  substitution  step,  which  is  known 
as SubBytes. The last three rows of the state are shifted 
cyclically a certain number of steps in a transposition step, 
which is known as ShiftRows. MixColumns operates on the 
columns of the state to combine the four bytes in each col- 
umn in a linear mixing operation. AES performs SubBytes, 
ShiftRows, MixColumns, and AddRoundKey in rounds  9, 
11, and 13. Similarly, it performs SubBytes, ShiftRows, and 
AddRoundKey in rounds 10, 12, and 14. 
2.3 Diffie-Hellman Cryptography 

Table 2 shows the algorithm of Diffie-Hellman key ex- 
change. Initially, both the sender and receiver share two 
prime numbers P and g over the public channel. Then, the 
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A B 

Sender A 
P 
g 
a 

Attacker E 
P 
g 

Receiver B 

A = ga mod P 
B 

SK = Ba mod P 

A, B 

P 
g 
b 

B = gb mod P 
A 

SK = Ab mod P 

A 

A B 

A B 

A B 

A B 

A 

B 

A B 

B B B 

B 

B 

K A 

Sender A Attacker Receiver B 
E 

K = KEYGENTRNG( ) 

ζ1
A = EncBpub (K) 

Bpub 

 
ζ1
A 

P  = DecK(ζ1
B ) 

g = DecK(ζ2
B ) 

a = GENKEYTRNG( ) 
A = ga mod P 
B = DecK(ζ3

B ) 

ζ2
A = EncK(A) 

SK = Ba mod P 

ζB, ζB 1 2 

P = GENKEYPRIME( ) 
g = GENKEYPRIME( ) 

ζ1
B = EncK(P ) 

ζ2
B = EncK(g) 

b = GENKEYTRNG( ) 

B = gb mod P 

K = DecBpub (ζ1
A) 

ζB = EncK(B) 3 

ζ2
A 2 

SK = Ab mod P 

A = DecK(ζA) 

 
2.4 TABLE 2 
Diffie-Hellman Key Exchange Protocol for three secret key generation. 

 

 
and generate random key a and b using a true-random 

number generator, respectively. Both the keys a and b are 

kept secret. The A computes A = ga mod P, and sends the 

A to B. Similarly, the B computes B = gb mod P and sends 

the B to A. The A and B can compute the shared secret key 

SK = Ba mod P and SK = Ab mod P, respectively. 

3 NGDH: THE  PROPOSED  SYSTEM 

We propose a private Diffie-Hellman algorithm, ngDH for 
short, to overcome the existing issues of the Diffie- Hellman 
algorithm [27]. It is a straightforward enhancement of the 
existing Diffie-Hellman algorithm to provide absolute 
security for key exchange. ngDH combines the Diffie- 
Hellman algorithm with RSA cryptography [1] and AES 
symmetric cryptography [7]. This section demonstrates how 
to provide absolute security to the key exchange protocol 
using the combination of RSA and AES cryptography. 

 
3.1 Assumption 

We have a few assumptions to establish the enhanced Diffie- 
Hellman key-exchange protocol, which are outlined below- 

• We assume that the Pr and Qr of RSA are large prime 
numbers, and integer factorization takes many years. 
Also, we assume that the a in the RSA is large, which 

is approximately equivalent to 216 − 1. 

• We assume the sender and the receiver are valid and 
intended users. 

• The symmetric key cryptography uses AES cryptog- 
raphy algorithm [7]. 

• ngDH depends on the trusted third party, and the 
trusted third party is assumed to be valid. 

3.2 Description 

Let us assume that the sender A wishes to send a message 
to the receiver B. Therefore, the A encrypt sends hello to 
B along with the key. The message is encrypted using the 

share between and . All communications are encrypted 
using the shared key. Conventionally, Diffie-Hellman shares 
all the keys publicly excepts randomly selected numbers 
and shared secret key. However, we suggest encrypting all 
the keys using the initial shared key between  and . Thus, 
the Diffie-Hellman algorithm shares all the keys secretly. 
3.3 Trusted Third Party 

The sender requires the public key of to send a message. 
Thus, the  retrieves the public key of   from the trusted 
third party. The trusted third party facilitates the public 
keys. The trusted third party cannot be malicious; otherwise, 
ngDH fails. 
3.4 Combination of the RSA, AES, and Diffie-Hellman 

algorithm 
TABLE 3 

Encryption-decryption using asymmetric and symmetric key to 
enhance Diffie-Hellman algorithm in the presence of attacker. 

 

Figure 1 demonstrates the combination of the asymmet- 
ric and symmetric key exchange with time-frame. Table 3 
demonstrates Diffie-Hellman key exchange protocol in the 
presence of the attackers. In this enhanced version, the 
parameters are shared between the sender and receiver by 
encryption. Conventional Diffie-Hellman shares the param- 
eters publicly. Initially, the sender    generates a random 
key using a true-random number generator, let the key be 
K. The generated key K is encrypted using the public key 
of B, let the public key be Bpub. The A sends the generated 
key K to the B using Equation (3). 

ζ1
A  = EncBpub(K) (3) 

Table 3 shows that the attacker E can get the ciphertext 

public key of the B, and therefore, only the B can decrypt ζA.  The  B  receives  the  ciphertext  ζA  and  decrypts  the 
the message. The receiver B decrypts the hello message 1 1 

using its private key. Instead of the hello message, the 
generates a random key, encrypt it using the public key of 
the    , and send the ciphertext to the    . The decrypts the 
key and initiates the Diffie-Hellman key exchange protocol. 
Thus, the and share the initial secret key successfully. 
The generates two random prime numbers, encrypt the 
two prime numbers by AES using the initial shared secret 

message using its private key; let the private key be priv 
and decryption process is shown in Equation (4). 

K = DecBpriv (ζ1
A) (4) 

The needs to generate two prime numbers; let the two 

prime numbers be the P and g. The two prime numbers are 

encrypted using shared key to send to the as shown in 
Equation (5). 

ζ1
B  = EncK(P )  
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Fig. 1. Encryption-decryption using asymmetric and symmetric key to enhance Diffie-Hellman algorithm. 

 

Equation (5) uses AES symmetric block cipher algorithm to 
encrypts the P and g. The receives the two ciphertexts and 
decrypts the two shared prime numbers using Equation (6). 

A decrypts the ciphertext using Equation (9) and compute 
shared secret key SK. 

B = DecK(ζB) 

P  = EncK(ζ1
B)  

(6) 

3 

SK = B   mod P 
(9) 

g = EncK(ζ2
B) 

Equation (6) uses the AES algorithm to decrypt the cipher- 

Similarly, the B decrypts the ciphertext using Equation (10) 
and compute shared secret key SK. 

A = DecK(ζA) 
text. Thus, both sender and receiver use the AES algorithm 
for encryption and decryption using the shared key K SK = A 

2 

mod P 
(10) 

and avoid public-key cryptography. The attacker can get 

the  ciphertexts  ζ1
B   and  ζ1

B.  Meanwhile,  the       generates  a 

random number using a true-random number generator, let 
the number be b. Also, the computes B and encrypts it 
using the shared key shown in Equation (7). 

 
B = gb mod P 

Thus, the sender and receiver mutual computes shared 
secret key secretly. Therefore, the Diffie-Hellman does 
not  share  any  parameters  publicly.  Now,  the and 
can share the message by the shared secret key  using 
symmetric key cryptography. The scope of ngDH ends at 
the beginning of the message sharing between the A and 

ζ3
B  = EncK 

 

(B) 
(7) . The attack on the symmetric key cryptography (block 

cipher or stream cipher) for message communication is out 
of the scope of ngDH. 

The   sends the ciphertext ζ3B to    . The attacker    can get 
the ciphertext ζ3B from   . In the meantime, the     computes 
a random secret number using a true-random number gen- 
erator; let the random number be a and computes A using 
Equation Equation (8). 

 
A = ga mod P 

ζA = EncK(A) 
(8)

 

The A sends the ciphertext ζ2A to B. Similarly, the attacker 

E can get the ciphertext ζ2A from A. Simultaneously, the A 

and  B  receive  the  ciphertexts  ζ3
B  and  ζ2

A,  respectively.  The 

1 ANALYSIS 

ngDH shares a random key initially to compute the shared 
secret key again. This section analyzes the require- ment of 
the initial shared secret key and the overheads. Moreover, 
we explore various possible issues. 
1.1 Overhead 

The total number of communication is equal to the 
conventional Diffie-Hellman key 

Network 

b 
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exchange protocol. The computation overhead is clearly 
visible from Figure 1 and Table 3. The encryption and de- 

Proof.  The sends   ciphertext   ζ1
A 

expects  to  receive  the  ζ1
B   and  ζ2

B 

to the B. The sender 
from A. The attacker 

cryption using public-private keys are not overhead because 
any conventional secure communication requires establish- 
ing the key exchange protocol. In the conventional secure 
communication setup, the trusted third party distributes 
the public key. Moreover, the sender retrieves the receiver’s 
public key and sends a secret key by encrypting using the 
receiver’s public key. The receiver sends the two random 
prime numbers to the sender by encrypting using a secret 
key instead of an acknowledgment message. Therefore, it 
reduces one communication overhead than the conventional 
secure symmetric communication. The computation over- 
head starts  from the  encryption and decryption  of the g, 
B, and A as shown in Figure 1. The overheads  of  the 
sender are one encryption and two decryption. Similarly, 
the overheads of the receiver are two encryption and one 
decryption. However, these overheads are negligible be- 
cause these are encrypted and decrypted using symmetric 
key cryptography. Thus, it is much faster than public-key 
cryptography. Moreover, ngDH is justifiable if security is 
the top concern. 
3.5 Public key 

There are diverse issues in the public key encryption, and 
under this circumstance,  the  public  key  may  be  broken 
at any time. Therefore, we are assuming that there is a 
quantum attack that can easily break a public key within 
eight hours [19]. In this assumption, the attacker can retrieve 
all the information excepts a, b, and  , which becomes 
the conventional Diffie-Hellman algorithm. Let us assume 
that the  public  key  is  not  broken.  In  this  assumption, 
the security becomes tighter than the conventional Diffie- 
Hellman algorithm. The attacker will not  be  able  to  get 
the secret key generated by the sender. Thus, ngDH 
ensures security even if the public key is broken. The public 
key cryptography is slow, and thus, the sender performs 
encryption only once, and the receiver performs decryption 
only once. 
3.6 Symmetric key 

The symmetric key requires a shared secret key to encrypt 
and decrypt. ngDH shares the secret key  encrypting 
using the receiver’s public key, and all Diffie-Hellman com- 
munications are performed using symmetric-key cryptog- 
raphy. For instance, the receiver shares the prime numbers 
P and g to the sender by encrypting these prime numbers 
using . Moreover, the sender and receiver encrypt using 
for further communications. Let us assume that the attacker 
is able to break the security of symmetric cryptography by 
applying cryptanalysis. In this assumption, all parameters of 
ngDH are compromised, and thus, it becomes the con- 
ventional Diffie-Hellman algorithm. Therefore, ngDH 
ensures security even if the symmetric key cryptography 
is broken. The attacker will not get a and , and thus, 
ngDH is still secure. 
3.7 Security measurement 

Theorem 1. ngDH reports a man-in-the-middle attack to the 
intended user if the attacker breaks the public key. 

is able to break the public-key cryptography, and thus, 
the      returns  ζ1

B   and  ζ2
B   to       before  being  sent  by  the     . 

Because the attacker     have already the private key of the 
corresponding public key. The proceeds with the returns 

value  of  the     .  Meanwhile,  the       also  sends  ζ1
B  and  ζ2

B  to 

. The        receives two copies of the same ciphertexts ζ1B 
and ζ2B from different sources. In this case, the cannot 
differentiate between the attacker and the intended user. 
Therefore, the unable to process  and  ngDH  fails. Thus, 
ngDH reports to both the attacker and intended user about 
the failure of the communication. 

The public key can be broken, but it takes many CPU 
Core years. Therefore, the attacker can send back the cipher- 

text ζ1
B  and ζ2

B  to      with certain time gaps. The      and     can 

complete the communication within that time gap. It might 
happen that the and have communicated the message 
successfully, and then, the ζ1

B  and ζ2
B  have arrived from the 

original source    . In this case, the communications have 
already over. Therefore, nothing can be undone. However, 
the A reports the incident to both the B and E such that the 
B can rectify the issue. However, it is an assumed incident. 

 
3.8 Attacks 

Diverse attacks are carried out to defeat cryptography. Gid- 
ney  and  Ekerå  [19]  demonstrates  that  public  keys  can  be 
broken in eight hours using quantum computing. There- 
fore, the public key can be compromised, and the attacker 
can store the precomputed private keys of corresponding 
public keys, but ngDH still ensures security. Similarly, 
symmetric-key cryptography is prone to various attacks, 
namely, brute-force, cryptanalysis [23], dictionary and fault 
attacks [24]. ngDH can ensure security if the symmetric key 
is broken using quantum cryptanalysis [23] or any other 
methods [24]. 

Let us assume  that  an  attacker  is  able  to  get  A and 
B; then the attacker still has not broken the security of 
ngDH. Therefore, the attacker should attack the shared 
secret key    . The probability of getting a shared secret key 

is 1 using the brute-force method where β is the bit length 

of the key. It is hard to get the shared secret key. 

4 CONCLUSION 

This article demonstrates the private Diffie-Hellman algo- 
rithm, ngDH for short, derived from the conventional 
Diffie-Hellman algorithm. The conventional Diffie-Hellman 
algorithm shares the numbers publicly in the insecure chan- 
nel. Therefore, it is possible to attack the Diffie-Hellman 
algorithm, for instance, Logjam [27]. Therefore, securing key 
exchange protocol becomes a key challenge. Hence, privat- 
eDH provides security to the Diffie-Hellman algorithm by 
using a combination of RSA and AES. We have demon- 
strated how the ngDH algorithm uses RSA and AES to 
secure the Diffie-Hellman algorithm with a few computation 
overheads. ngDH does not have any communication  
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even if the attackers compromise the public key. Further- 
more, it also ensures high security even if the attacker is able 
to break symmetric key cryptography. Therefore, ngDH can 
compute the secret key securely between two parties. 
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