
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 01 | Jan – 2022 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | P a g e

C

Secure Cryptography with ngDH protocol along with RSA &

AES Algorithm

 Vivek Singh Rajput1 Dr. J M Keller2 Dr. P Mor3
1 Department of Physics and Electronics,RDVV Jabalpur , Madhya Pradesh , India.

 2 Department of Physics and Electronics,RDVV Jabalpur , Madhya Pradesh , India
 3 Department of Physics and Electronics,RDVV Jabalpur , Madhya Pradesh , India
Abstract—RSA cryptography is an asymmetric communication protocol, and, AES is the most used symmetric-key cryptography

protocol, both are facing cryptanalysis attacks.. The most famous key exchange protocol is Diffie-Hellman; but it has an issue of

Logjam attack that allows man-in-middle attack in Diffie-Hellman. Thus, we combine RSA, AES, and Diffie-Hellman algorithm to

provide security on the key exchange protocol, called next generationDH or ngDH. Our key objective is to provide security to the

Diffie-Hellman Algorithm. Therefore, ngDH does not share the data publicly with the intended party. Instead, ngDH encrypts all

shareable data in the time of key exchange by encrypting using the AES algorithm. ngDH uses the RSA algorithm and retrieves the

public key to avoid a man-in-the-middle attack. Thus, we demonstrate how to provide security to the Diffie-Hellman algorithm to defeat

various kinds of attacks.

Index Terms—Cryptography, RSA cryptography, Diffie-Hellman, Symmetric, Asymmetric, Public key, Encryption, Attacks, Security,

Networking, Communication.

✦

1 INTRODUCTION

RYPTOGRAPHY is the most prominent research chal-
lenge to protect the data from adversaries in commu-

nication. It can be applied in asymmetric and symmetric
communications. RSA cryptography is the most used asym-
metric cryptography algorithm [1], [2]. However, symmetric
communication requires key exchange protocol and encryp-
tion/decryption algorithm. Therefore, the most famous key-

exchange protocols are Diffie-Hellman [3], Elliptic-curve
Cryptography (ECC) [4], [5], and Elliptic-Curve Diffie-

Hellman (ECDH) [6] algorithm. AES is the most used en-
cryption/decryption standard for block cipher [7]. Symmet-
ric key cryptography is the most secure way to exchange
data between two parties, and therefore, it requires a key-
agreement protocol. If the key-agreement protocol is broken,
then the entire communication becomes insecure. Therefore,
key-agreement protocol demands security to protect from
the attackers.

Recent literature suggests that RSA cryptography has an
issue of integer factorization [8], [9]. Also, it faces issues of
low-exponential computation [10], [11], [12]. Also, RSA re-
quires Optimal Encryption Asymmetric Padding [13]. Many
new attacks have already been reported [14], [15]. The RSA
cryptography have already been broken [16], [17], [18], [19].
Therefore, many new techniques have been suggested to
secure RSA [20], [21]. Moreover, the public key cryptogra-
phy requires a trusted third party to distribute the public
key, which is a slow process [22]. Similarly, symmetric-key

cryptography is prone to many attacks, particularly brute-
force, cryptanalysis [23], and fault attacks [24]; however,
symmetric key cryptography has diverse applications, for
instance, healthcare [25], [26].

The Diffie-Hellman algorithm is a widely used symmet-
ric key exchange protocol. Securing key-agreement protocol
is a key challenge because recent research suggests the fail-

ure of the Diffie-Hellman algorithm [27], [28]. Adrian et al.
finds that Diffie-Hellman algorithm allows man-in-middle-
attack [27]. Therefore, Diffie-Hellman requires security to
protect from the attackers. The root cause is publicly shared
keys which makes Diffie-Hellman a failure key-exchange
protocol. Thus, our key objective is to provide security to
the Diffie-Hellman algorithm. The Diffie-Hellman algorithm
becomes private and remains no more public. All the keys
are shared secretly by encrypting using AES. Therefore, We
provide security to the Diffie-Hellman algorithm by RSA
cryptography and AES.

In this article, we provide security to the Diffie-Hellman
algorithm. We derive a private Diffie-Hellman algorithm,
ngDH for short. The sender requires a public key of the
receiver, and therefore, the sender retrieves the receiver’s
public key from a trusted third party. The sender generates
a random key for AES using a true random number gen-
erator [29], [30] and sends the generated random key to the
receiver by encrypting the receiver’s public. The receiver de-
crypts the key from the received ciphertext using its private
key. The receiver initiates the Diffie-Hellman key exchange
process. The receiver generates two prime numbers [31]
and sends the prime numbers to the sender by encrypting
using the received key. Both the receiver and sender encrypt
the whole communication using a single key, and the AES

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 01 | Jan – 2022 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | P a g e

Notation
A

Pr and Qr

e

λ(n)
d
m
c

mod
P and g

a and b

B

SK

EncBpub

EncBpriv

K

Description
The Sender
The receiver
Two prime numbers for RSA algorithm
The exponent of RSA algorithm
LCM of two prime numbers
The private key of RSA algorithm.
It is the converted integer form of message
It is ciphertext in RSA
Modulus operator
Two prime numbers for Diffie-Hellman algo-
rithm
True random number generated
Shared secret key
Secret Key for AES

Encryption process using RSA by the public key
of the B

Decryption process using RSA by the private

ζA

ζB

EncK

DecK
β

key of the B

Ciphertext from A

Ciphertext from B

Encryption by AES using secret key K

Decryption by AES using secret key K
Bit length of a key.

— −

×

× ≡

algorithm is used to encrypt the communication. Therefore,
ngDH maintains secret communication between the sender

and the receiver in the entire computation process of the
shared secret key. The conventional Diffie-Hellman

algorithm shares the numbers over an insecure channel
without encryption; however, ngDH encrypts all the

number and shares secretly between the sender and receiver.
The main contributions of this article are outlined below-

• We derive an enhanced Diffie-Hellman key exchange
algorithm to provide a security while exchanging the
key.

• We demonstrate how to use RSA and AES in the
Diffie-Hellman algorithm.

• Also, we show how to achieve absolute security
without communication overhead. But there is a
computation overhead; however, it is negligible.

• We also analyze the various possible issues of our
proposed solution.

The Diffie-Hellman algorithm is protected from an attacker
using RSA and AES cryptography. Therefore, ngDH shows
strong resistance against attackers and is able to compute
shared secret key securely. In this paper, we demonstrate
how to secure the Diffie-Hellman algorithm from attackers.
There is no key-agreement protocol to get extra security
while computing the shared secret key, to the best of our
knowledge.

This article is organized as follows- Section 2 discusses
the preliminaries of the proposed system. Section 3 estab-
lishes the enhanced Diffie-Hellman algorithm. Section 4
analyzes the proposed system in-depth. Finally, Section 5
concludes the article.

2 BACKGROUND

TABLE 1
Important symbols used in the article and their descriptions.

2.1.1 Encryption

Let the m be the message to be encrypted, then RSA Algo-
rithm encrypts using Equation (1).

me ≡ c (mod n) (1)

2.1.2 Decryption

The sender sends the ciphertext c to the receiver using
encrypting by the receiver’s public key. The receiver receives
the ciphertext c and decrypts using its private key by

In this section, we establish preliminaries and discuss the
RSA, AES, and Diffie-Hellman algorithm. Table 1 shows the
important notations and their definition.
2.1 RSA Cryptography

RSA cryptography is a well-known asymmetric cryptogra-
phy algorithm that relies on public-private key cryptogra-
phy [1], [2]. In RSA, the receiver publishes its public key
and retains its private key. Anyone can send a message to
the receiver by encrypting using the public key. Only the re-
ceiver can decrypt the message. The public key is published,
and it is a long-term key. Attackers can break the security if
the public-private key pair is not renewed. Moreover, the
public-private key is time-consuming cryptography, but it
is useful in many applications.

RSA algorithm requires two large prime numbers; let
the two large prime numbers be Pr and Qr. The prod-
uct of these two prime number is made public; let it be

n = Pr Qr. The Pr and Qr are kept secret. The RSA

algorithm calculates λ(n) = LCM((Pr 1), (Qr 1)) which
is also kept secret. Let us choose a public key exponent

e where 1 < e < λ(n). Moreover, the e is coprime with

λ(n). Finally, the RSA algorithm computes a secret key as

d e 1 (mod λ(n)). RSA algorithm publishes (n, e) as a
public key, and the rest parameters are kept secret.

Equation (2).

cd ≡ m mod n) (2)

2.2 Advanced Encryption Standard

Advanced Encryption Standard (AES) is a block cipher
algorithm for symmetric cryptography [7]. It is known as
Rijndael. The round keys are derived from the cipher key
using AES key schedule method. Moreover, AES performs
an XOR operation in each byte of the state to combine with
a byte of the round key, which is known as AddRoundKey.
Each byte is replaced with another according to a lookup
table in a non-linear substitution step, which is known
as SubBytes. The last three rows of the state are shifted
cyclically a certain number of steps in a transposition step,
which is known as ShiftRows. MixColumns operates on the
columns of the state to combine the four bytes in each col-
umn in a linear mixing operation. AES performs SubBytes,
ShiftRows, MixColumns, and AddRoundKey in rounds 9,
11, and 13. Similarly, it performs SubBytes, ShiftRows, and
AddRoundKey in rounds 10, 12, and 14.
2.3 Diffie-Hellman Cryptography

Table 2 shows the algorithm of Diffie-Hellman key ex-
change. Initially, both the sender and receiver share two
prime numbers P and g over the public channel. Then, the

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 01 | Jan – 2022 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | P a g e

A B

Sender A
P
g
a

Attacker E
P
g

Receiver B

A = ga mod P
B

SK = Ba mod P

A, B

P
g
b

B = gb mod P
A

SK = Ab mod P

A

A B

A B

A B

A B

A

B

A B

B B B

B

B

K A

Sender A Attacker Receiver B
E

K = KEYGENTRNG()

ζ1
A = EncBpub (K)

Bpub

ζ1
A

P = DecK(ζ1
B)

g = DecK(ζ2
B)

a = GENKEYTRNG()
A = ga mod P
B = DecK(ζ3

B)

ζ2
A = EncK(A)

SK = Ba mod P

ζB, ζB 1 2

P = GENKEYPRIME()
g = GENKEYPRIME()

ζ1
B = EncK(P)

ζ2
B = EncK(g)

b = GENKEYTRNG()

B = gb mod P

K = DecBpub (ζ1
A)

ζB = EncK(B) 3

ζ2
A 2

SK = Ab mod P

A = DecK(ζA)

2.4 TABLE 2
Diffie-Hellman Key Exchange Protocol for three secret key generation.

and generate random key a and b using a true-random

number generator, respectively. Both the keys a and b are

kept secret. The A computes A = ga mod P, and sends the

A to B. Similarly, the B computes B = gb mod P and sends

the B to A. The A and B can compute the shared secret key

SK = Ba mod P and SK = Ab mod P, respectively.

3 NGDH: THE PROPOSED SYSTEM

We propose a private Diffie-Hellman algorithm, ngDH for
short, to overcome the existing issues of the Diffie- Hellman
algorithm [27]. It is a straightforward enhancement of the
existing Diffie-Hellman algorithm to provide absolute
security for key exchange. ngDH combines the Diffie-
Hellman algorithm with RSA cryptography [1] and AES
symmetric cryptography [7]. This section demonstrates how
to provide absolute security to the key exchange protocol
using the combination of RSA and AES cryptography.

3.1 Assumption

We have a few assumptions to establish the enhanced Diffie-
Hellman key-exchange protocol, which are outlined below-

• We assume that the Pr and Qr of RSA are large prime
numbers, and integer factorization takes many years.
Also, we assume that the a in the RSA is large, which

is approximately equivalent to 216 − 1.

• We assume the sender and the receiver are valid and
intended users.

• The symmetric key cryptography uses AES cryptog-
raphy algorithm [7].

• ngDH depends on the trusted third party, and the
trusted third party is assumed to be valid.

3.2 Description

Let us assume that the sender A wishes to send a message
to the receiver B. Therefore, the A encrypt sends hello to
B along with the key. The message is encrypted using the

share between and . All communications are encrypted
using the shared key. Conventionally, Diffie-Hellman shares
all the keys publicly excepts randomly selected numbers
and shared secret key. However, we suggest encrypting all
the keys using the initial shared key between and . Thus,
the Diffie-Hellman algorithm shares all the keys secretly.
3.3 Trusted Third Party

The sender requires the public key of to send a message.
Thus, the retrieves the public key of from the trusted
third party. The trusted third party facilitates the public
keys. The trusted third party cannot be malicious; otherwise,
ngDH fails.
3.4 Combination of the RSA, AES, and Diffie-Hellman

algorithm
TABLE 3

Encryption-decryption using asymmetric and symmetric key to
enhance Diffie-Hellman algorithm in the presence of attacker.

Figure 1 demonstrates the combination of the asymmet-
ric and symmetric key exchange with time-frame. Table 3
demonstrates Diffie-Hellman key exchange protocol in the
presence of the attackers. In this enhanced version, the
parameters are shared between the sender and receiver by
encryption. Conventional Diffie-Hellman shares the param-
eters publicly. Initially, the sender generates a random
key using a true-random number generator, let the key be
K. The generated key K is encrypted using the public key
of B, let the public key be Bpub. The A sends the generated
key K to the B using Equation (3).

ζ1
A = EncBpub(K) (3)

Table 3 shows that the attacker E can get the ciphertext

public key of the B, and therefore, only the B can decrypt ζA. The B receives the ciphertext ζA and decrypts the
the message. The receiver B decrypts the hello message 1 1

using its private key. Instead of the hello message, the
generates a random key, encrypt it using the public key of
the , and send the ciphertext to the . The decrypts the
key and initiates the Diffie-Hellman key exchange protocol.
Thus, the and share the initial secret key successfully.
The generates two random prime numbers, encrypt the
two prime numbers by AES using the initial shared secret

message using its private key; let the private key be priv
and decryption process is shown in Equation (4).

K = DecBpriv (ζ1
A) (4)

The needs to generate two prime numbers; let the two

prime numbers be the P and g. The two prime numbers are

encrypted using shared key to send to the as shown in
Equation (5).

ζ1
B = EncK(P)

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 01 | Jan – 2022 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | P a g e

A

a

B

B
SK

A B

SK

A B

B

2

B A

B A E

Time Time

Fig. 1. Encryption-decryption using asymmetric and symmetric key to enhance Diffie-Hellman algorithm.

Equation (5) uses AES symmetric block cipher algorithm to
encrypts the P and g. The receives the two ciphertexts and
decrypts the two shared prime numbers using Equation (6).

A decrypts the ciphertext using Equation (9) and compute
shared secret key SK.

B = DecK(ζB)

P = EncK(ζ1
B)

(6)

3

SK = B mod P
(9)

g = EncK(ζ2
B)

Equation (6) uses the AES algorithm to decrypt the cipher-

Similarly, the B decrypts the ciphertext using Equation (10)
and compute shared secret key SK.

A = DecK(ζA)
text. Thus, both sender and receiver use the AES algorithm
for encryption and decryption using the shared key K SK = A

2

mod P
(10)

and avoid public-key cryptography. The attacker can get

the ciphertexts ζ1
B and ζ1

B. Meanwhile, the generates a

random number using a true-random number generator, let
the number be b. Also, the computes B and encrypts it
using the shared key shown in Equation (7).

B = gb mod P

Thus, the sender and receiver mutual computes shared
secret key secretly. Therefore, the Diffie-Hellman does
not share any parameters publicly. Now, the and
can share the message by the shared secret key using
symmetric key cryptography. The scope of ngDH ends at
the beginning of the message sharing between the A and

ζ3
B = EncK

(B)
(7) . The attack on the symmetric key cryptography (block

cipher or stream cipher) for message communication is out
of the scope of ngDH.

The sends the ciphertext ζ3B to . The attacker can get
the ciphertext ζ3B from . In the meantime, the computes
a random secret number using a true-random number gen-
erator; let the random number be a and computes A using
Equation Equation (8).

A = ga mod P

ζA = EncK(A)
(8)

The A sends the ciphertext ζ2A to B. Similarly, the attacker

E can get the ciphertext ζ2A from A. Simultaneously, the A

and B receive the ciphertexts ζ3
B and ζ2

A, respectively. The

1 ANALYSIS

ngDH shares a random key initially to compute the shared
secret key again. This section analyzes the require- ment of
the initial shared secret key and the overheads. Moreover,
we explore various possible issues.
1.1 Overhead

The total number of communication is equal to the
conventional Diffie-Hellman key

Network

b

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 01 | Jan – 2022 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | P a g e

K

SK

K K

SK

A

A

B

A A

E B

A

E

A E

SK

2β

E A B

E

A A B

A

exchange protocol. The computation overhead is clearly
visible from Figure 1 and Table 3. The encryption and de-

Proof. The sends ciphertext ζ1
A

expects to receive the ζ1
B and ζ2

B

to the B. The sender
from A. The attacker

cryption using public-private keys are not overhead because
any conventional secure communication requires establish-
ing the key exchange protocol. In the conventional secure
communication setup, the trusted third party distributes
the public key. Moreover, the sender retrieves the receiver’s
public key and sends a secret key by encrypting using the
receiver’s public key. The receiver sends the two random
prime numbers to the sender by encrypting using a secret
key instead of an acknowledgment message. Therefore, it
reduces one communication overhead than the conventional
secure symmetric communication. The computation over-
head starts from the encryption and decryption of the g,
B, and A as shown in Figure 1. The overheads of the
sender are one encryption and two decryption. Similarly,
the overheads of the receiver are two encryption and one
decryption. However, these overheads are negligible be-
cause these are encrypted and decrypted using symmetric
key cryptography. Thus, it is much faster than public-key
cryptography. Moreover, ngDH is justifiable if security is
the top concern.
3.5 Public key

There are diverse issues in the public key encryption, and
under this circumstance, the public key may be broken
at any time. Therefore, we are assuming that there is a
quantum attack that can easily break a public key within
eight hours [19]. In this assumption, the attacker can retrieve
all the information excepts a, b, and , which becomes
the conventional Diffie-Hellman algorithm. Let us assume
that the public key is not broken. In this assumption,
the security becomes tighter than the conventional Diffie-
Hellman algorithm. The attacker will not be able to get
the secret key generated by the sender. Thus, ngDH
ensures security even if the public key is broken. The public
key cryptography is slow, and thus, the sender performs
encryption only once, and the receiver performs decryption
only once.
3.6 Symmetric key

The symmetric key requires a shared secret key to encrypt
and decrypt. ngDH shares the secret key encrypting
using the receiver’s public key, and all Diffie-Hellman com-
munications are performed using symmetric-key cryptog-
raphy. For instance, the receiver shares the prime numbers
P and g to the sender by encrypting these prime numbers
using . Moreover, the sender and receiver encrypt using
for further communications. Let us assume that the attacker
is able to break the security of symmetric cryptography by
applying cryptanalysis. In this assumption, all parameters of
ngDH are compromised, and thus, it becomes the con-
ventional Diffie-Hellman algorithm. Therefore, ngDH
ensures security even if the symmetric key cryptography
is broken. The attacker will not get a and , and thus,
ngDH is still secure.
3.7 Security measurement

Theorem 1. ngDH reports a man-in-the-middle attack to the
intended user if the attacker breaks the public key.

is able to break the public-key cryptography, and thus,
the returns ζ1

B and ζ2
B to before being sent by the .

Because the attacker have already the private key of the
corresponding public key. The proceeds with the returns

value of the . Meanwhile, the also sends ζ1
B and ζ2

B to

. The receives two copies of the same ciphertexts ζ1B
and ζ2B from different sources. In this case, the cannot
differentiate between the attacker and the intended user.
Therefore, the unable to process and ngDH fails. Thus,
ngDH reports to both the attacker and intended user about
the failure of the communication.

The public key can be broken, but it takes many CPU
Core years. Therefore, the attacker can send back the cipher-

text ζ1
B and ζ2

B to with certain time gaps. The and can

complete the communication within that time gap. It might
happen that the and have communicated the message
successfully, and then, the ζ1

B and ζ2
B have arrived from the

original source . In this case, the communications have
already over. Therefore, nothing can be undone. However,
the A reports the incident to both the B and E such that the
B can rectify the issue. However, it is an assumed incident.

3.8 Attacks

Diverse attacks are carried out to defeat cryptography. Gid-
ney and Ekerå [19] demonstrates that public keys can be
broken in eight hours using quantum computing. There-
fore, the public key can be compromised, and the attacker
can store the precomputed private keys of corresponding
public keys, but ngDH still ensures security. Similarly,
symmetric-key cryptography is prone to various attacks,
namely, brute-force, cryptanalysis [23], dictionary and fault
attacks [24]. ngDH can ensure security if the symmetric key
is broken using quantum cryptanalysis [23] or any other
methods [24].

Let us assume that an attacker is able to get A and
B; then the attacker still has not broken the security of
ngDH. Therefore, the attacker should attack the shared
secret key . The probability of getting a shared secret key

is 1 using the brute-force method where β is the bit length

of the key. It is hard to get the shared secret key.

4 CONCLUSION

This article demonstrates the private Diffie-Hellman algo-
rithm, ngDH for short, derived from the conventional
Diffie-Hellman algorithm. The conventional Diffie-Hellman
algorithm shares the numbers publicly in the insecure chan-
nel. Therefore, it is possible to attack the Diffie-Hellman
algorithm, for instance, Logjam [27]. Therefore, securing key
exchange protocol becomes a key challenge. Hence, privat-
eDH provides security to the Diffie-Hellman algorithm by
using a combination of RSA and AES. We have demon-
strated how the ngDH algorithm uses RSA and AES to
secure the Diffie-Hellman algorithm with a few computation
overheads. ngDH does not have any communication

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 01 | Jan – 2022 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | P a g e

even if the attackers compromise the public key. Further-
more, it also ensures high security even if the attacker is able
to break symmetric key cryptography. Therefore, ngDH can
compute the secret key securely between two parties.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, p. 120–126, Feb. 1978.

[2] R. L. Rivest, A. Shamir, and L. M. Adleman, “Cryptographic
communications system and method,” Sep. 20 1983, uS Patent
4,405,829.

[3] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
1976.

[4] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology — CRYPTO ’85 Proceedings, H. C. Williams, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986, pp. 417–426.

[5] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of compu-
tation, vol. 48, no. 177, pp. 203–209, 1987.

[6] R. for Pair-Wise Key Establishment Schemes UsingDis-
crete Logarithm Cryptography, “Elaine barker and lily chen
and allen roginsky and miles smid,” Accessed on Jan-
uary 2021 from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-56ar.pdf, 2007.

[7] “Specification for the advanced encryption standard (aes),”
Federal Information Processing Standards Publication 197,
2001. [Online]. Available: http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf

[8] D. Aggarwal and U. Maurer, “Breaking RSA Generically Is
Equivalent to Factoring,” IEEE Transactions on Information Theory,
vol. 62, no. 11, pp. 6251–6259, Nov. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7523212/

[9] C. P. Schnorr, “Fast factoring integers by svp algorithms,” Cryp-
tology ePrint Archive, Report 2021/232, 2021, https://eprint.iacr.
org/2021/232.

[10] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, “Low-
exponent rsa with related messages,” ser. EUROCRYPT’96.
Berlin, Heidelberg: Springer-Verlag, 1996, p. 1–9.

[11] M. Wiener, “Cryptanalysis of short rsa secret exponents,” IEEE
Transactions on Information Theory, vol. 36, no. 3, pp. 553–558, 1990.

[12] J. Hastad, “N using rsa with low exponent in a public key net-
work,” in Advances in Cryptology — CRYPTO ’85 Proceedings, H. C.
Williams, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1986, pp. 403–408.

[13] A. M. Ahmadian and M. Amirmazlaghani, “A novel secret
image sharing with steganography scheme utilizing Optimal
Asymmetric Encryption Padding and Information Dispersal
Algorithms,” Signal Processing: Image Communication, vol. 74, pp.
78–88, May 2019. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0923596518307938

[14] A. Nitaj, M. R. K. Ariffin, D. I. Nassr, and H. M. Bahig, “New
attacks on the rsa cryptosystem,” in International conference on
cryptology in Africa. Springer, 2014, pp. 178–198.

[15] M. J. Hinek, M. K. Low, and E. Teske, On Some Attacks on Multi-
prime RSA. Springer Berlin Heidelberg, 2003, p. 385–404.
[Online]. Available: http://dx.doi.org/10.1007/3-540-36492-7 25

[16] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,
P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele,
A. Timofeev, and P. Zimmermann, Factorization of a 768-Bit RSA
Modulus. Springer Berlin Heidelberg, 2010, p. 333–350.

[17] E. Thomé, “[Cado-nfs-discuss] 795-bit factoring and discrete
logarithms,” Dec 2019, [Online; Accessed on February
2021]. [Online]. Available: https://lists.gforge.inria.fr/pipermail/
cado-nfs-discuss/2019-December/001139.html

[18] P. Zimmermann, “[Cado-nfs-discuss] Factorization of RSA-
250,” Feb 2020, [Online; accessed on Mars 2021].
[Online]. Available: https://lists.gforge.inria.fr/pipermail/ cado-nfs-
discuss/2020-February/001166.html

[19] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers
in 8 hours using 20 million noisy qubits,” Quantum, vol. 5,
p. 433, Apr. 2021. [Online]. Available: https://doi.org/10.22331/
q-2021-04-15-433

[20] O. F. A. Wahab, A. A. M. Khalaf, A. I. Hussein, and H. F. A. Hamed,
“Hiding data using efficient combination of rsa cryptography, and
compression steganography techniques,” IEEE Access, vol. 9, pp.
31 805–31 815, 2021.

[21] S. B. Das, S. K. Mishra, and A. K. Sahu, “A New Modified Version
of Standard RSA Cryptography Algorithm,” in Smart Computing
Paradigms: New Progresses and Challenges. Singapore: Springer,
Dec 2019, pp. 281–287.

[22] J. Li, H. Yan, and Y. Zhang, “Certificateless public integrity check-
ing of group shared data on cloud storage,” IEEE Transactions on
Services Computing, vol. 14, no. 1, pp. 71–81, 2021.

[23] S. Jaques and J. M. Schanck, “Quantum cryptanalysis in the ram
model: Claw-finding attacks on sike,” in Advances in Cryptology
– CRYPTO 2019, A. Boldyreva and D. Micciancio, Eds. Cham:
Springer International Publishing, 2019, pp. 32–61.

[24] A. Baksi, S. Bhasin, J. Breier, D. Jap, and D. Saha, “Fault
attacks in symmetric key cryptosystems,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 1267, 2020. [Online]. Available:
https://eprint.iacr.org/2020/1267

[25] C. Guo, X. Chen, Y. Jie, Z. Fu, M. Li, and B. Feng, “Dynamic multi-
phrase ranked search over encrypted data with symmetric
searchable encryption,” IEEE Transactions on Services Computing,
vol. 13, no. 6, pp. 1034–1044, 2020.

[26] R. Zhang, R. Xue, and L. Liu, “Searchable encryption for health-
care clouds: A survey,” IEEE Transactions on Services Computing,
vol. 11, no. 6, pp. 978–996, 2018.

[27] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, E. Thomé,
L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and
P. Zimmermann, “Imperfect forward secrecy: How diffie-hellman
fails in practice,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 5–17.
[Online]. Available: https://doi.org/10.1145/2810103.2813707

[28] J. Shen, T. Miao, J.-F. Lai, X. Chen, J. Li, and S. Yu, “Ims: An identity-
based many-to-many subscription scheme with efficient key
management for wireless broadcast systems,” IEEE Transac-
tions on Services Computing, pp. 1–1, 2020.

[29] H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi,
R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia,
“A novel true random number generator based on a stochastic
diffusive memristor,” Nat. Commun., vol. 8, no. 882, pp. 1–9, Oct
2017.

[30] İ. Koyuncu, M. Tuna, İ. Pehlivan, C. B. Fidan, and M. Alçın,
“Design, FPGA implementation and statistical analysis of chaos-
ring based dual entropy core true random number generator,”
Analog Integr. Circ. Sig. Process., vol. 102, no. 2, pp. 445–456, Feb
2020.

[31] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES Is in P,” Ann. Of
Math., vol. 160, no. 2, pp. 781–793, Sep 2004. [Online]. Available:
http://www.jstor.org/stable/3597229

http://csrc.nist.gov/publications/fips/
http://ieeexplore.ieee.org/document/7523212/
http://dx.doi.org/10.1007/3-540-36492-7
http://www.jstor.org/stable/3597229

